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Abstract. - We consider a mixture of two single-spin-state fermions with an interaction of negli-
gible range and infinite s-wave scattering length. By varying the mass ratio α across αc ≃ 13.6069
one can switch on-and-off the Efimov effect. We determine analytically the third cluster coefficient
of the gas. We show that it is a smooth function of α across αc since, unexpectedly, the three-body
parameter characterizing the interaction is relevant even on the non-efimovian side α < αc.

Introduction. – A powerful theory tool in the sta-
tistical physics of interacting quantum systems is the so-
called cluster or virial expansion, where the thermody-
namic potentials are expanded in powers of the small de-
generacy parameter [1]. Whereas the second cluster coeffi-
cient b2 has a known general expression since the 1930s [2],
it is a long-lasting challenge to determine the third cluster
coefficient b3 explicitly. Starting from the late 1950s, ana-
lytical results for b3 have been obtained for the two-body
hard-core model, the archetype of non-resonant interac-
tions where the s-wave scattering length a is at most of
the order of the interaction range, in the form of expan-
sions in powers of a small parameter λ/a [3] or a/λ [4],
where λ is the thermal de Broglie wavelength.

Interest in b3 was reactivated by a recent experimental
breakthrough with ultracold atoms: long-lived spin 1/2
Fermi gases can be prepared in the resonantly interacting
regime, that is with |a| much larger than the interaction
range, thanks to magnetic Feshbach resonances [5]. This
triggered numerical calculation of b3 in the maximally in-
teracting, unitary limit (1/a = 0), with the harmonic regu-
lator technique of [6] as done in [7], or with diagrammatic
techniques [8]. Due to scaling invariance in the unitary
limit, b3 is just a number, and through a precise measure-
ment of the equation of state of the gas [9,10], its predicted
value was confirmed [10].

Physics is richer when the Efimov effect [11] sets in: the
continuous scaling invariance is broken, there appears a
length scale Rt characterizing the interaction, the three-
body parameter, and there exists an infinite number of
trimer states with an asymptotically geometric spectrum.

The third cluster coefficient b3 becomes a function of tem-
perature. In a spinless bosonic gas with zero-range inter-
actions, it was determined analytically [12]. Within the
three-body hard-core model that fixes Rt [13], Quantum
Monte Carlo simulations have confirmed this analytical
prediction and have shown that the third order cluster ex-
pansion can provide a good description of the gas phase
down to the liquid-gas phase transition [14], thus exempli-
fying its usefulness.

The problem becomes even more intriguing when there
exists a system parameter allowing to switch on-and-off
the Efimov effect, as in the two-component Fermi gas with
an adjustable mass ratio. For two identical fermions and
a distinguishable particle, there is an Efimov effect if the
mass ratio α of a fermion to the other particle exceeds
αc = 13.6069 . . . [11, 15]. Up to now, the calculation of
b3 is numerical and limited to α < αc [16]. Strikingly it
predicts that b3 has an infinite derivative at α = αc. As
b3 is a coefficient in the grand potential Ω, this would im-
ply a singular derivative of Ω as a function of α, i. e. a
first order phase transition, subsisting at arbitrarily low
phase space density, i. e. at temperatures T arbitrarily
higher than the Fermi temperature TF , contrarily to com-
mon expectations for phase transitions. The present work
determines b3 analytically and solves this paradox.

The cluster expansion. – We consider a mixture of
two fully polarized fermionic species, with single particle
masses m1 and m2, with no intraspecies interaction and a
purely s-wave interspecies interaction, of negligible range
and infinite scattering length (unitary limit). At thermal
equilibrium in a cubic box, the total pressure admits in
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the thermodynamic limit the cluster expansion

Pλ3
r

kBT
=

∑

(n1,n2)∈N2

bn1,n2
zn1

1 zn2

2 (1)

where zi are fugacities exp(βµi), λr = [2π~2/(mrkBT )]
1/2

is the thermal de Broglie wavelength associated to the re-
duced mass mr = m1m2/(m1 +m2) and temperature T ,
β = 1/(kBT ), µi is the chemical potential of species i, and
N is the set of all non-negative integers.
To determine the cluster coefficients bn1,n2

one can
use the harmonic regulator trick [6]: one rather assumes
that the system is at thermal equilibrium in an isotropic
harmonic trap, with the same trap frequency ω for the
two species, and one considers the cluster expansion of
(−Ω)/(kBTZ1) in powers of z1 and z2, with Ω the grand
potential and Z1 the single particle partition function in
the trap. When ω → 0, the corresponding coefficients
have a limit Bn1,n2

that one can relate to bn1,n2
[6, 7, 16]:

Bn1,n2
=

(

mr

n1m1 + n2m2

)3/2

bn1,n2
(2)

We study B2,1 as a function of the mass ratio α = m1/m2.

Case α < αc: 0-parameter zero-range model. –

The cluster coefficient B2,1 can be deduced from the par-
tition functions of up to three bodies in the trap, that is
from the n-body energy spectra for n ≤ 3. In the uni-
tary limit, the interspecies interaction is described by the
Bethe-Peierls binary contact condition on the wavefunc-
tion, which leads to a separable three-body Schrödinger
equation in internal hyperspherical coordinates [11] even
in a harmonic trap [17–19]. The hyperangular part of the
problem can be solved in position space [11] or in momen-
tum space [20]: the corresponding real eigenvalue s2 (that
will serve as a separability constant) obeys the transcen-
dental equation Λl(s) = 0 of explicit expression [21]1

Λl(s) = cos ν +
1

sin ν

∫ π
2
+ν

π
2
−ν

dθ Pl

(

cos θ

sin ν

)

sin(sθ)

sin(sπ)
(3)

with l ∈ N the angular momentum, Pl a Legendre poly-
nomial, ν = arcsin α

1+α the mass angle. We call (ul,n)n∈N

the positive roots of Λl, sorted in increasing order. There
is no complex root for α < αc. The hyperradial part of
the wavefunction, after multiplication by R2, solves an ef-
fectively bidimensional Schrödinger equation:

EF = −
~
2

2M

(

F ′′ +
1

R
F ′

)

+

(

~
2s2

2MR2
+

1

2
Mω2R2

)

F

(4)
where s is any of the ul,n, M = 2m1 + m2 is the mass
of two particles of species 1 and one particle of species 2,
and the hyperradius R is the corresponding mass-weighted
root-mean-square deviation of the positions of the three

1There exists a less explicit hypergeometric expression for Λl [22].

particles from their center of mass. Solving Eq.(4) with
the usual boundary conditions that F (R) vanishes at zero
and infinity gives

E = (s+ 1 + 2q)~ω, ∀q ∈ N (5)

The semi-infinite ladder structure of this spectrum, with
equidistance 2~ω, reflects the existence of an undamped
breathing mode of the trapped non-efimovian unitary gas
[23] related to its SO(2, 1) dynamical symmetry [24].
Finally B2,1 is the ω → 0 limit of a series [12]2:

B2,1= lim
ω→0

∑

(l,n,q)∈N3

(2l+1)
[

e−(ul,n+1+2q)β~ω−e−(vl,n+1+2q)β~ω
]

(6)
with vl,n = l+2n+1 the positive poles of Λl(s) [21]. The
summation over q can be done, and even over n by inverse
application of the residue theorem [12]:

B2,1 = −
∑

l∈N

(

l +
1

2

)
∫ +∞

0

dS

π
ln

Λl(iS)

cos ν
(7)

As shown in Fig. 1, the result agrees with the numerical
evaluation of the series by [16]. The analytics however
directly allows to see why B2,1 has an infinite derivative
with respect to α at α = α−

c : it suffices to isolate the
contribution of the channel (l, n) = (1, 0) in Eq.(6), the
only one where ul,n vanishes at α = αc, by the splitting

B2,1 = B
(1,0)
2,1 +B

6=(1,0)
2,1 (8)

All the other channels have ul,n > 1 over the figure range
and give a smooth contribution to B2,1. On the contrary

B
(1,0)
2,1 = lim

ω→0
3
∑

q∈N

[

e−(u1,0+1+2q)β~ω−e−(v1,0+1+2q)β~ω
]

= −
3

2
(u1,0 − v1,0) (9)

and u1,0 vanishes as (αc − α)1/2 since Λ1(s) is even, so
that d

dαB2,1 diverges as (αc − α)−1/2 at the threshold.

Case α > αc: Efimov zero-range model. – We
now assume that the mass ratio obeys αc < α <
75.99449 . . . [25], so that the Efimov effect takes place in
the sector l = 1 only. The function Λl=1 has a pair of
complex conjugate purely imaginary roots ±s and we set

ul=1,n=0 = s = i|s| (10)

Then the 1/R2 potential in Schrödinger’s equation (4) for
F (R) becomes attractive, which leads to a “fall to the

2Actually one calculates the difference between partition func-
tions of unitary and non-interacting problems; still this directly gives
B2,1 of the unitary gas since B2,1 is zero for the ideal gases; the con-
tributions of the laughlinian states (whose wavefunction vanishes
when two particles are at the same point) cancel out in the differ-
ence; the vl,n appear via the non-laughlinian spectrum of the non-
interacting three-body problem. Similarly, the contributions of the
unphysical root s = 2 in the sector l = 0, which exists in both the
unitary and non-interacting cases, automatically cancel out.
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Fig. 1: Reduced third cluster coefficient eβE0B̄2,1 of a trapped
two-component three-dimensional unitary Fermi gas in the
zero trapping frequency limit, as a function of the mass ra-
tio α = m1/m2 of the two species, for various values of
the three-body parameter Rt, and hence of the global en-
ergy scale Eglob of Eqs.(13,24). Here E0 is the ground free-
space three-body energy, a smooth function of α: for α ≤ αc,
E0 = 0; for α > αc, E0 = −Eglob exp(−2π/|s|) is the
ground trimer energy and the factor exp(βE0) ensures that
the plotted quantity remains bounded. From bottom to top
for α . 15: βEglob = 102(cyan), 3 × 102(red), 103(green), 3 ×
103(blue), 104(violet), 105(orange), 106(magenta). For α > 15,
the curves cross, indicating that eβE0B̄2,1 is not always, at fixed
α, an increasing function of βEglob. Discontinuous black solid
line: limit βEglob → +∞, corresponding for α ≤ αc to the
genuine 0-parameter zero-range model studied numerically in
[16] (black circles), and being, for α > αc, identically equal to
3, the ground-trimer contribution. Vertical dotted line: critical
mass ratio αc where the Efimov effect sets in.

center” [26] and to an unphysical continuous spectrum of
bound states, forcing one to modify the boundary condi-
tion at R = 0 [27]:

F (R) =
R→0

(R/Rt)
i|s| − (R/Rt)

−i|s| +O(R2) (11)

To make evident that the third cluster coefficient now de-
pends on one parameter, this length Rt called three-body
parameter, we write it as B̄2,1, that is with one overlin-
ing bar. In free space, Eq.(11) leads to a discrete infinite
number of Efimov trimer states, with a purely geometric
spectrum extending from −∞ to 0. In any physical sys-
tem, however, the interaction is not strictly zero range and
the spectrum must be bounded from below [11]. One may
expect that finite range effects then spoil the geometric na-
ture of the spectrum for the more deeply bound trimers.
However, for a narrow Feshbach resonance [21, 28], for
momentum-space cut-off models of a Feshbach resonance
[29, 30], and for the three-body hard core model [13], the
spectrum is almost entirely geometric, at least when |s|
is not too large (|s| . 1), and becomes entirely geomet-
ric when α → α+

c , since the typical particle wavenum-
ber times the interaction range tends to zero [21]. In
what follows, we assume the free space geometric spec-

trum bounded from below:

ǫq(0
+) = −Eglobe

−2π(1+q)/|s|, ∀q ∈ N (12)

The global energy scale Eglob can be calculated from a
microscopic model for the interaction, as it was done in the
above mentioned models. Here we take it as a parameter
that solution of Eq.(4) with ω = 0 and with the boundary
condition (11) relates to Rt as

Eglob =
2~2

MR2
t

e[ln Γ(1+s)−ln Γ(1−s)]/s (13)

with ln Γ the usual branch of the Γ function logarithm.
The contribution to B̄2,1 of the channels (l, n) 6= (1, 0) is

unchanged since no Efimov effect occurs in these channels:

B̄
6=(1,0)
2,1 = B

6=(1,0)
2,1 (14)

We calculate it as in [12], using Eq.(7) as it is for l 6=

1, while substituting Λl(iS) with
S2+v2

1,0

S2+u2
1,0

Λl(iS) for l =

1. In the efimovian channel (l, n) = (1, 0), the spectrum
is no longer given by Eq.(5), but by the solution of the
transcendental equation deduced from [31] and rewritten
as in [12, 32] to match Eq.(12) in free space:

Im lnΓ
(1 + s− ǫq/(~ω)

2

)

+
|s|

2
ln
( 2~ω

Eglob

)

+ (q + 1)π = 0

(15)
so that the first identity in Eq.(9) is replaced by

B̄
(1,0)
2,1 = lim

ω→0
3
∑

q∈N

[

e−βǫq(ω) − e−(v1,0+1+2q)β~ω
]

(16)

For a small enough but non-zero ω, two classes emerge in
the three-body spectrum: (i) negative energy eigenstates,
that are the equivalent of free space trimer states, and (ii)
positive energy eigenstates, that are the equivalent of the
free space continuum. The second class has a harmonic
spectrum except for an energy dependent “quantum de-
fect” ∆(ǫ) [32]

ǫq(ω)

~ω
=

q→+∞
2q +∆(ǫq(ω)) +O(1/q) (17)

where qω is ≈ fixed. By the reasoning of [12], we get

B̄
(1,0)
2,1 = 3

∑

q∈N

(e−βǫq(0
+) − 1)

−
3

2

∫ +∞

0

dǫβ[∆(ǫ)− (1 + v1,0)]e
−βǫ (18)

We obtained a new expression of the quantum defect3:

∆(ǫ) = 2 +
2

π
atan

tan( |s|2 x)

th( |s|2 π)
+ 2

⌊

|s|x

2π

⌉

(19)

3This expression and the one (C6) of [32] are equal, since their
difference is a continuous function of x that vanishes at zero and has
an identically zero derivative.
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where x = ln(ǫ/Eglob). The nearest-integer function in
the last term exactly compensates the jumps of the atan
function when tan(|s|x/2) diverges, so as to render ∆(ǫ) a
smooth function of ǫ and of |s|.
The corresponding values of B̄2,1 for α > αc are shown

in Fig.1, after multiplication by a factor eβE0 , where E0 =
ǫq=0(0

+) is the ground trimer energy, so as to absorb its
contribution that becomes rapidly dominant and divergent
for kBT < |E0| [33]. The result depends on βEglob, a
parameter that must be≫ 1: our theory, being zero range,
requires that Rt, of order the interaction range or effective
range, as in the three-body hard core and narrow Feshbach
resonance models respectively, is≪ the thermal de Broglie
wavelength λt = [2π~2/(MkBT )]

1/2. Clearly, there is a
discrepancy of B2,1(α) and B̄2,1(α) at α

∓
c at non-zero Rt.

When Rt → 0 (Eglob → +∞) there is agreement at αc, as
seen by first taking the s → 0 limit in Eq.(19),

∆(ǫ) →
α→α+

c

∆0(ǫ) = 2 +
2

π
atan

ln(ǫ/Eglob)

π
(20)

then taking the Rt → 0 limit in Eq.(18)4:

B̄
(1,0)
2,1 (α+

c ) = −
3

2

∫ +∞

0

dǫβ[∆0(ǫ)− (1 + v1,0)]e
−βǫ

=
βEglob→+∞

3

2
v1,0 −

3

lnβEglob
+O

(

1

lnβEglob

)2

(21)

successfully collated with the u1,0 → 0 value of Eq.(9).
The key point however is that this Rt → 0 limit is in
practice inaccessible, due to the very slow logarithmic con-
vergence. We expect this problem to extend to α < αc,
which makes the strictly zero-range calculation of [16] not
fully realistic. There also remains the puzzle of the diverg-
ing derivative of B2,1(α) with respect to α at α−

c . Both
issues are solved in the next section.

Case α < αc revised: 1-parameter zero-range

model. – We now see that a three-body parameter Rt

must be introduced for α < αc, i. e. even in the absence
of Efimov effect, when α is close enough to αc. The root
s = u1,0 > 0 then approaches 0 and the centrifugal bar-
rier in the hyperradial equation (4) weakens, so that the
function F (R), the eigenenergies E and the third cluster
coefficient become increasingly sensitive to short distance
physics of the interaction [30, 34].
Assume that the three-body physics inside the interac-

tion range is described by an extra term V (R)F in Eq.(4),
e.g. some three-body hard core of range b. Knowing that
the relevant eigenenergies E are at most a few kBT , and
that b ≪ λt, we can make the following reasonings.
(i) at R ≪ λt, one can obtain the behavior of F (R)

by a zero-energy calculation (neglecting the EF term) in
free space (since the harmonic oscillator length is ≫ λt).
Due to b ≪ λt there exists a range b ≪ R ≪ λt where

4One takes βǫ as integration variable and one expands the inte-
grand in powers of 1/ ln(βEglob).

one can also neglect V (R). Then F (R) is a superposition
of the two particular solutions Rs and R−s, with relative
amplitudes fixed by the microscopic details of V (R) 5:

F (R) ≃
b≪R≪λt

(R/Rt)
s − (R/Rt)

−s (22)

e.g. Rt = b for a three-body hard core of radius b.
(ii) one can approach the same range b ≪ R ≪ λt from

large distances. The trapping potential and the EF term
must now be kept, and F (R) is the unique solution (up to
a normalisation factor) of Eq.(4) that does not diverge at
infinity, a Whittaker function divided by R [19]. Then at
R ≪ λt, F (R) is also found to be a linear superposition
of Rs and R−s, as it must be, but with coefficients A±(E)
that are known functions of E. Matching with Eq.(22)
gives an implicit equation for E, as if Eq.(4) was subjected
to the modified boundary condition at R = 0 [18, 35]6:

F (R) =
R→0

(R/Rt)
s − (R/Rt)

−s +O(R2−s) (23)

The third term in Eq.(23), coming from a property of the
Whittaker function, is indeed negligible as compared to
the first one, and this model makes sense, only when s < 1.
Remarkably this reproduces the Efimov zero-range model
(11) if one formally replaces s by i|s|. Then it is natural
to extend the definition of Eglob to α < αc

7:

Eglob =
0<s<1

(

Γ(1 + s)

Γ(1− s)

)1/s
2~2

MR2
t

(24)

where the first factor is a smooth function of α, as its series
expansion involves only even powers of s.
The more common boundary condition F (R = 0) = 0,

that led to the spectrum (5), is usually justified as follows:
at R ≈ λt, the R−s term in (22) is negligible as compared
to the Rs term in the zero-range limit b ≪ λt, that is
βEglob ≫ 1, as one expects Rt ≈ b 8:

(λt/Rt)
−s

(λt/Rt)s
≈ (βEglob)

−s ≪ 1 (25)

However this condition becomes more and more difficult
to satisfy when α → α−

c , and it will be violated when

s .
1

lnβEglob
(26)

5If one sets F (R) = R−sφ(r = R2s) then F ′′+F ′/R−s2F/R2 =
4s2R3s−2φ′′(r) so that R2s

t = aeff , where aeff is the s-wave scat-
tering “length” of a particle of mass M on the potential v(r) =
V (r1/(2s))r−2+1/s/(4s2). We suppose here that aeff > 0, e.g. be-
cause V (R) is non-negative.

6For s = 0 this becomes F (R) = ln(R/Rt) + O(R2 lnR).
7On a narrow resonance of Feshbach length R∗ one gets from [21]

(
mrR

2
∗

2~2
Eglob)

s = 1−s
1+s

Γ(1+2s)
Γ(1−2s)

f(v1,0)
∏

n∈N∗

f(v1,n)

f(u1,n)
with f(z) =

Γ(z − s)Γ(1 + z − s)/[Γ(z + s)Γ(1 + z + s)].
8In peculiar cases, known as three-body resonances, see [18, 35],

Rt/b can be arbitrarily large and βEglob can remain finite in the
zero-range limit. This is improbable here as there is already a two-
body resonance.
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This forces us to recalculate the third cluster coefficient
with the boundary condition (23). From the implicit equa-
tion for the energy spectrum (ǫq(ω))q∈N [19] 9:

Γ(1+s−E/~ω
2 )

Γ(1−s−E/~ω
2 )

=

(

Eglob

2~ω

)s

(27)

we recalculate the quantum defect as in [32], using the
Euler reflection and Stirling formulas:

∆(ǫ) = 2 +
2

π
atan

th[ s2 ln(ǫ/Eglob)]

tan( s2π)
(28)

When Rt → 0, βEglob → +∞ and this reproduces the
value 1 + s of the quantum defect in Eq.(5). Eq.(28) only
revises the contribution of the channel (1, 0), since the
other channels have ul,n > 1 for the values of α in Fig. 1:

B̄
(1,0)
2,1 =

0<s<1
−
3

2

∫ +∞

0

dǫβ[∆(ǫ)− (1 + v1,0)]e
−βǫ (29)

In Fig. 1 we plot for α < αc the corresponding values of
B̄2,1, for the same values of the parameter βEglob as in
the part α > αc of the figure, leading to an apparently
smooth connection at α = αc. The continuity of the con-
nection could be expected from the fact that (i) the formal
change s → i|s| in Eq.(28) reproduces the value (19) of the
quantum defect on the side α > αc apart from the nearest-
integer function which is irrelevant when |s| → 0, and (ii)
the efimovian trimer spectrum has a vanishing contribu-
tion to B̄2,1 when α → α+

c .

Indeed B̄
(1,0)
2,1 (α) (and B̄2,1(α)) are smooth functions of

α at αc at fixed βEglob, since ∆(ǫ) is an even function of
s and its series expansion only has even powers of s:

∆(ǫ) =
s→0

∆0(ǫ)−
x

6
s2 +

x3 − π2x

360
s4 + O(s6) (30)

where ∆0(ǫ) given by Eq.(20), x = ln(ǫ/Eglob) and s can
be real or purely imaginary. Insertion in Eq.(29) leads to

converging integrals over ǫ and to an expansion of B̄
(1,0)
2,1

with only even powers of s:

B̄
(1,0)
2,1 (α)− B̄

(1,0)
2,1 (αc) =

s→0
−
A

4
s2

−
A(π2 − γ2 −A2)− 4ζ(3)

480
s4 +O(s6) (31)

where A = ln(eγβEglob) and γ ≃ 0.577 is Euler’s constant
10. Since s2 is a smooth function of α across αc, so is B̄2,1.

9The ground state solution of this equation must be omitted,
because it connects when ω → 0 to a bound state of energy −Eglob

and spatial extension ≈ Rt, which cannot be faithfully described by
our zero-range model when Rt ≈ b (i.e. in the absence of three-body
resonance) and indeed does not exist in the three-body hard-core or
in the narrow Feshbach resonance model.

10Exchange of Taylor expansion and integration is justified by the
theorem of derivation under the integral, where x is the integration
variable. For α < αc, one sets u(x, s) = th(sx/2)/s and v(x, s) =
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Fig. 2: Scaling-law analysis of Fig.1 for α close to αc in
the limit βEglob → +∞. (a) For a fixed t ≡ s ln(βEglob):
the data approach the law (33) (black solid line), provided
that |t| < 2π on the side α > αc. From top to bottom:
βEglob = 102(cyan), 104(violet). Dashed line: 0-parameter the-
ory prediction −3t/2. (b) On the side α > αc, for a fixed
u ≡ [|t|/(2π) − 1] ln(βEglob): the data approach the law (34)
(black solid line), which explains the peaked structure observed
in Fig.1. From bottom to top for u < −0.6: values of βEglob

listed in caption of Fig.1, with same order and colors.

Eq.(31), combined with Λ1(s) = 0, predicts how the
first order derivative at αc diverges when βEglob → +∞:

d

dα
B̄2,1(αc) ∼

βEglob→+∞
C lnβEglob with C ≃ 0.0478243

(32)
It also suggests an interesting scaling law close to αc: keep-
ing in the coefficients of the powers of s in (31) only the
leading terms in lnβEglob, one uncovers, after multiplica-
tion of (31) by lnβEglob, the following law when βEglob

diverges to infinity at fixed t ≡ s lnβEglob:

(lnβEglob)[B̄2,1(α)− B̄2,1(αc)]
t fixed
→

βEglob→+∞
3−

3t/2

th(t/2)
(33)

with no constraint on the α < αc side, and with the con-
straint that |t| < 2π on the side α > αc due to the occur-
rence of a pole at t = 2πi in the quantum defect contribu-
tion and to a divergence of the ground trimer contribution
for |t| > 2π. Eq.(33) is obtained by neglecting ln(βǫ) as
compared to ln(βEglob) in (19,28), as βǫ is typically unity
in the integral (29). In Fig. 2a we replot the data of Fig.1
after rescaling as in Eq.(33): the results are indeed almost
aligned on a single scaling curve given by Eq.(33), the
better the larger lnβEglob is. The 0-parameter zero-range
theory prediction −3t/2, see dashed line, is only asymp-
totically equivalent to the correct law at t → +∞. The

tan(sπ/2)/s and one fixes some η ∈]0, 1[. Then there exist positive
numbers (An, Bn)n∈N and C > 0 such that ∀(x, s) ∈ R× [0, η], ∀n ∈
N: |∂n

s u(x, s)| ≤ An|x|n+1, |∂n
s v(x, s)| ≤ Bn, u(x, s)2+v(x, s)2 ≥ C.

For α > αc one sets u(x, |s|) = [π sin(|s|x) − x sinh(π|s|)]/|s|2 and
v(x, |s|) = [cosh(π|s|) − cos(|s|x)]/|s|2 and one fixes some η > 0.
Then there exist positive numbers (An, Bn, Cn,Dn)n∈N and G > 0
such that ∀(x, |s|) ∈ R × [0, η], ∀n ∈ N: |∂n

|s|
u(x, |s|)| ≤ An|x| +

Bn|x|n+2, |∂n
|s|

v(x, |s|)| ≤ Cn + Dn|x|2+n, |v(x, |s|)| ≥ G. The u

and v functions appear in ∂s∆(ǫ) as (v∂su − u∂sv)/(u2 + v2) for
α < αc, and in ∂|s|∆(ǫ) as u/v for α > αc. Then |∂n

s ∆| and |∂n
|s|

∆|

are polynomially bounded in |x| uniformly in s or |s| ∀n ∈ N
∗.
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scaling law fully justifies the intuitive condition (26): the
crossover from the 0- to the 1-parameter zero-range regime
indeed occurs for s ≈ 1/ lnβEglob.

What happens on the side α > αc close to |t| = 2π?
For |t| fixed to a value > 2π, the ground-trimer contri-
bution 3[e−βE0 − 1], where E0 = ǫ0(0

+), rapidly diverges
when βEglob → +∞ and dominates all other contribu-
tions, so that the reduced cluster coefficient eβE0B̄2,1 of
Fig. 1 tends to three. However, before that, the reduced
cluster coefficient exhibits as a function of α an interest-
ing structure in Fig. 1, a sharp rise with a maximum, that
corresponds to a neighbourhood of |t| = 2π with a width
1/ ln(βEglob). This is revealed by the affine change of vari-
able u ≡ [|t|/(2π) − 1](lnβEglob). When βEglob → +∞
for a fixed u, βE0 → −eu, the ground-trimer contribution
remains finite and, from dominated convergence theorem,

eβE0B̄2,1
u fixed
→

βEglob→+∞
e−eu

[

B2,1(αc) + 3

(

ee
u

−
1

2

)

+
3

π

∫ +∞

0

dǫβe−βǫ atan
u− lnβǫ

π

]

(34)

where B2,1(αc) ≃ 1.7153 [16] is the prediction of the 0-
parameter zero-range theory at αc. As shown in Fig. 2b,
the rescaled data of Fig. 1 nicely converge to this law.

Conclusion. – As compared to the usual zero-range
theory we have found corrections of order 1/ ln(λt/Rt) to
the third virial coefficient of the two-component unitary
Fermi gas, close to and below the threshold for the Efi-
mov effect, at a distance αc − α scaling as 1/[ln(λt/Rt)]

2,
where Rt is a three-body parameter and λt a thermal de
Broglie wavelength. As a consequence, for a given finite
λt/Rt as in all realistic systems, the third virial coeffi-
cient reconnects smoothly to its values deduced from the
Efimov zero-range model above the threshold, precluding
the unphysical first-order phase transition predicted by
the zero-range theory. These 1/ ln(λt/Rt) corrections are
dominant over the more usual (but here neglected) cor-
rections, originating from finite interaction range effects
at the two-body level, since these should vanish as power
laws with Rt [36]
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