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Abstract

We consider a reaction-diffusion equation with a nonlinear term of the Fisher-KPP type, depending
on time t and admitting two limits as t → ±∞. We derive the set of admissible asymptotic past and
future speeds of transition fronts for such equation. We further show that any transition front which is
non-critical as t → −∞ always admits two asymptotic past and future speeds. We finally describe the
asymptotic profiles of the non-critical fronts as t → ±∞.

1 Introduction and main results

This paper is concerned with asymptotic dynamical properties of front-like solutions for time-dependent
reaction-diffusion equations of the type

ut = uxx + f(t, u), t ∈ R, x ∈ R. (1.1)

We focus here on the case where the reaction term f admits some limits as t → ±∞. These limits are in
general different and the medium is thus in general not uniquely ergodic. Actually, even if the limits of f(t, u)
as t → ±∞ are equal, the medium is in general truly time-dependent and is not periodic, almost-periodic
or even recurrent. We prove the existence of solutions which move with some – in general different – speeds
as t → ±∞ and we also characterize the set of all admissible asymptotic speeds as t → ±∞ among all
time-global front-like solutions.

Throughout the paper, the reaction term f : R×[0, 1] → R is assumed to be uniformly Hölder continuous,
of class C1 and such that ∂uf := ∂f

∂u is bounded in R× [0, 1]. We will further require that





f(t, 0) = f(t, 1) = 0 for all t ∈ R,

f(t, u) ≥ 0 for all (t, u) ∈ R× [0, 1],

f(t, u)

u
is nonincreasing with respect to u ∈ (0, 1], for all t ∈ R,

(1.2)
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French National Research Agency (ANR). The research leading to these results has also received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement
n.321186 - ReaDi - Reaction-Diffusion Equations, Propagation and Modelling, and from Italian GNAMPA-INdAM. Part of this
work was carried out during visits by F. Hamel to the Università di Padova, whose hospitality is thankfully acknowledged.
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and that there are two C1 functions f± : [0, 1] → R such that





f±(0) = f±(1) = 0, f±(u) > 0 for all u ∈ (0, 1),

f(t, u)

f±(u)
→ 1 as t → ±∞, uniformly for u ∈ (0, 1).

(1.3)

Notice that the hypotheses imply in particular that the functions u 7→ f±(u)/u are nonincreasing with
respect to u ∈ (0, 1] and that f ′

±(0) > 0. We denote

µ± := f ′
±(0) > 0 and µ := min(µ−, µ+) > 0. (1.4)

In order to derive the existence result, we will also need the following regularity property:

f(t, u) ≥ ∂uf(t, 0)u− Cu1+ω for all (t, u) ∈ R× (0, δ), (1.5)

for some C > 0 and δ, ω ∈ (0, 1].
Such nonlinearities f(t, u) are said to be of the Fisher or KPP type, for Kolmogorov, Petrovski and

Piskunov, by analogy with the time-independent case f(u) which was first considered in [12, 22]. It follows
from assumption (1.3) that f(t, ·) > 0 in (0, 1) for all |t| large enough. However, no strict sign assumption
is made on f for intermediate times t. In particular, the functions f(t, ·) may well be identically equal to 0
on [0, 1] for some times t belonging to a non-empty bounded set.

A typical example of a function f(t, u) satisfying all above assumptions is f(t, u) = µ̃(t) f̃(u)
where f̃ : [0, 1] → R is of class C1,ω, f̃(0) = f̃(1) = 0, f̃ > 0 on (0, 1), u 7→ f̃(u)/u is nonincreas-
ing with respect to u ∈ (0, 1], and the function µ̃ : R → [0,+∞) is of class C1 and admits some limits
µ̃± = limt→±∞ µ̃(t) in (0,+∞). In this case, f±(u) = µ̃±f̃(u) for all u ∈ [0, 1] and µ± = µ̃±f̃ ′(0).

1.1 Notions of transition fronts and asymptotic mean speeds

Equations of the type (1.1) are known to be good models to describe the propagation of fronts connecting
the steady states 0 and 1, see e.g. [11, 29, 45]. The solution u typically stands for the density of a species
invading an open space and the fronts are known to play a fundamental role in the description of the
dynamical properties of the solutions of (1.1). We will recall a bit later some of the main results about the
existence and dynamical properties of known front-like solutions of particular equations of the type (1.1).

From a mathematical point of view, for problem (1.1), using the same terminology as in [4, 5], the
front-like solutions connecting 0 (say, on the right) and 1 (on the left) are called transition fronts and they
are defined as follows:

Definition 1.1. For problem (1.1), a transition front connecting 0 and 1 is a time-global classical solu-

tion u : R× R → [0, 1] for which there exists a function X : R → R such that

{
u(t,X(t) + x) → 1 as x → −∞
u(t,X(t) + x) → 0 as x → +∞

uniformly in t ∈ R. (1.6)

Several comments on this definition are in order. First of all, it is actually a particular case of a
more general definition given in [4, 5] in a broader framework. For the one-dimensional equation (1.1),
the transition fronts connecting 0 and 1 correspond to the “wave-like” solutions defined in [40, 41] (see
also [28] for a different notion involving the continuity with respect to the environment around the front
position). Roughly speaking, condition (1.6) means that the diameter of the transition zone between the
sets where u ≃ 1 and u ≃ 0 is uniformly bounded in time: the fundamental property in (1.6) is the
uniformity of the limits with respect to time t ∈ R. The limits (1.6) imply in particular that, given any real
numbers a and b such that 0 < a ≤ b < 1, there is a constant C = C(u, a, b) ≥ 0 such that, for every t ∈ R,
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{
x ∈ R; a ≤ u(t, x) ≤ b

}
⊂
[
X(t)− C,X(t) + C

]
. Standard parabolic estimates and the strong maximum

principle also easily imply that, for any transition front u connecting 0 and 1, and for every C ≥ 0,

0 < inf
t∈R, x∈[X(t)−C,X(t)+C]

u(t, x) ≤ sup
t∈R, x∈[X(t)−C,X(t)+C]

u(t, x) < 1. (1.7)

Notice furthermore that, for a given transition front u connecting 0 and 1, the family (X(t))t∈R is not
uniquely defined since, for any bounded function ξ : R → R, the family (X(t) + ξ(t))t∈R satisfies (1.6)
if (X(t))t∈R does. Hence, one can choose for instance as X(t) one point x such that u(t, x) = 1/2. On the
other hand, if (X(t))t∈R and (X̃(t))t∈R are associated to a given transition front u connecting 0 and 1 in
the sense of (1.6), then it can be immediately seen that

sup
t∈R

∣∣X(t)− X̃(t)
∣∣ < +∞. (1.8)

Lastly, it is shown in Proposition 4.1 of [19], in the case of general space-time dependent reaction-diffusion
equations, that for any transition front u connecting 0 and 1, any function X such that (1.6) holds has
uniformly bounded local oscillations, that is,

∀ τ ≥ 0, sup
(t,s)∈R2, |t−s|≤τ

|X(t)−X(s)| < +∞. (1.9)

When the function f = f(u) does not depend on the time variable, the most typical exam-
ples of transition fronts connecting 0 and 1 are the standard traveling fronts u(t, x) = φ(x − ct)
with 0 = φ(+∞) < φ(ξ) < φ(−∞) = 1 for all ξ ∈ R. Under the Fisher-KPP hypothesis, such travel-
ing fronts exist if and only if c ≥ 2

√
f ′(0) and, for each c ≥ 2

√
f ′(0), the function φ = φc is decreasing and

unique up to shifts [2, 22]. Furthermore, these fronts φc(x− ct) are known to be stable with respect to per-
turbations in some suitable weighted spaces and to attract the solutions of the associated Cauchy problem
for a large class of exponentially decaying initial conditions, see e.g. [3, 7, 10, 15, 21, 22, 23, 37, 46]. When
the function f = f(t, u) depends periodically on time t, the standard traveling fronts do not exist anymore
in general and the notion of traveling fronts is replaced by that of pulsating traveling fronts φ(t, x − ct),
where φ is periodic in its first variable and converges to 1 (resp. 0) as x− ct → −∞ (resp. as x− ct → +∞).
The existence, uniqueness and stability properties of such pulsating traveling fronts have been established
in [18, 24, 25, 26, 30, 35, 47]. The notions of pulsating traveling fronts can also be extended in time almost-
periodic, almost-automorphic, recurrent or uniquely ergodic media, we refer to [20, 38, 39, 40, 42, 43, 44]
for further existence, qualitative and asymptotic properties in such media.

In the present paper, due to the time-dependence and assumption (1.3), equation (1.1) is not assumed to
be periodic, almost-periodic, recurrent or uniquely ergodic in time and the standard traveling or pulsating
traveling fronts no longer exist in general. The notion of transition fronts satisfying (1.6) provides the
good framework to describe the propagation of more general front-like solutions. This notion has already
been used in various contexts. For instance, particular transition fronts have recently been constructed for
monostable equations (1.1) in [5, 32] (see the comments after Theorem 1.3 below). Recently, transition fronts
for reaction-diffusion equations with general non-periodic monostable x-dependent nonlinearities f(x, u)
have also been constructed in [31, 34, 49, 50].

The time-dependent monostable equation (1.1) considered here, with f(t, u) having some limits
as t → ±∞, is one of the simplest examples of heterogeneous equations which are not periodic, recur-
rent or uniquely ergodic in time. Nevertheless, equation (1.1) already captures new interesting propagating
front-like solutions. In particular, we will prove the existence of transition fronts which had not been consid-
ered in [5, 32]. We will characterize the set of all admissible rates of propagation, as well as the asymptotic
profiles of the non-critical fronts.

As for the possible rates of propagation, an important notion associated to the transition fronts is that
of their possible speed. Namely, we say that a transition front connecting 0 and 1 for (1.1), in the sense of
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Definition 1.1, has a global mean speed γ if

X(t)−X(s)

t− s
→ γ as t− s → +∞, (1.10)

that is (X(t+ τ)−X(t))/τ → γ as τ → +∞ uniformly in t ∈ R.1 Applying recursively Property (1.9) with,
say, τ = 1, one readily sees that the function τ 7→ (X(t+τ)−X(t))/τ is bounded on [1,+∞), independently
of t, whence the global mean speed cannot be infinite.

If a transition front connecting 0 and 1 has a global mean speed γ, then this speed does not depend
on the family (X(t))t∈R, due to the property (1.8). But the global mean speed, if any, does depend on
the transition front. This is seen already in homogeneous media, where f = f(u). Indeed, any standard
traveling front φ(x − ct) in a homogeneous medium has a global mean speed equal to c, and then the set
of admissible speeds in the class of all standard traveling fronts is equal to [2

√
f ′(0),+∞). This property

remains true if one considers the whole class of transition fronts, because the global mean speed cannot be
smaller than the spreading speed for the Cauchy problem with compactly supported initial datum, which
is 2

√
f ′(0), see [2]. In the non-homogeneous case considered in the present paper, the picture is more

complicated and may be radically different. Namely, under some slightly stronger assumptions than (1.2)-
(1.3), Corollary 1.6 below asserts that the set of global mean speeds among all transition fronts coincides
with [2

√
µ−,+∞) if µ+ ≤ µ−, whereas it is empty if µ+ > µ−.

It is important to realize at this stage that, in general, a given transition front connecting 0 and 1 may
not have any global mean speed, even for some homogeneous equations (1.1) with f = f(u). More precisely,
it follows from [14], as shown in [19], that for a C2 concave f : [0, 1] → R such that f(0) = f(1) = 0 < f(s)
on (0, 1) and for any real numbers c1 and c2 such that 2

√
f ′(0) ≤ c1 < c2, there exist transition fronts u

connecting 0 and 1 such that

{
u(t, x)− φc1(x− c1t) → 0 as t → −∞,

u(t, x)− φc2(x− c2t) → 0 as t → +∞,
uniformly in x ∈ R, (1.11)

where φc1(x − c1t) and φc2(x − c2t) are any two given standard traveling fronts connecting 0 and 1 with
speeds c1 and c2 respectively. This result implies in particular that, even in a homogeneous medium, the
notion of transition fronts is necessary to describe front-like solutions that are not standard traveling fronts.
Furthermore, the transition fronts satisfying (1.11) for (1.1) with f = f(u) do not have a global mean
speed as soon as c1 6= c2 since, whatever X(t) may be, one has X(t)/t → c1 as t → −∞ and X(t)/t → c2
as t → +∞ for these transition fronts. Nevertheless, it is natural to say that these fronts have an asymptotic
speed, c1, as t → −∞, and another asymptotic speed, c2, as t → +∞.

These facts lead us naturally to the definition of the notion of possible asymptotic past and future mean
speeds, as t → −∞ and as t → +∞, for the general time-dependent equation (1.1).

Definition 1.2. We say that a transition front connecting 0 and 1 for the equation (1.1) has an asymptotic
past speed c− ∈ R, resp. an asymptotic future speed c+ ∈ R, if

X(t)

t
→ c− as t → −∞, resp.

X(t)

t
→ c+ as t → +∞. (1.12)

Notice that, for a given transition front, these signed speeds, if any, do not depend on the family
(X(t))t∈R, due to (1.8) again. Clearly, if a transition front admits a global mean speed γ in the sense
of (1.10), then it has asymptotic past and future speeds equal to γ. It is natural to ask if the reverse
property holds true. Namely, if a front has past and future speeds both equal to some γ, does it admit
a global mean speed equal to γ ? We partially answered to this question in Remark 4.1 of [19] in the

1We point out that this definition slightly differs from the one used in [4, 5], but, in this one-dimensional situation and given
Definition 1.1, it is quite easy to see that the two definitions coincide.
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homogeneous case: the answer is yes provided γ > 2
√

f ′(0), but it is not known if γ = 2
√

f ′(0). Here, we
extend this result to (1.1), under some stronger hypotheses on the convergences f → f± as t → ±∞, showing
that the answer is yes provided γ > 2

√
µ−. This can be derived from the last statement of Theorem 1.4

below about the convergence of the profile to that of standard fronts, as shown in Section 2.4. We point out
that the answer to the above question in general is no for a nonlinearity f(t, u) which does not satisfy (1.3),
see Remark 2.2 below.

The asymptotic past and future speeds characterize the rate of expansion of the front at large negative
or positive times. These asymptotic speeds might not exist a priori and one could wonder whether these
notions of speeds as t → ±∞ would be sufficient to describe the large time dynamics of all transition
fronts for (1.1). As a matter of fact, one of the main purposes of the present paper will be to characterize
completely the set of all admissible asymptotic speeds and to show that the asymptotic speeds exist for all
fronts which are supercritical as t → −∞, in a sense which will be made more precise in Theorem 1.4 below.

1.2 Existence of transition fronts

We first show the existence of some transition fronts with asymptotic speeds c± as t → ±∞ ranging in some
explicitly given semi-infinite intervals.

Theorem 1.3. Under the assumptions (1.2), (1.3) and (1.5), let µ± be defined as in (1.4), and c± be any

two real numbers such that

c− ≥ 2
√
µ− and c+ ≥ κ+

µ+

κ
, with κ = min

(√
µ+,

c− −
√

c2− − 4µ−

2

)
> 0. (1.13)

Then equation (1.1) admits some transition fronts u connecting 0 and 1 with asymptotic past and future

speeds c±, that is, such that (1.12) holds. Furthermore, u satisfies ux(t, x) < 0 for all (t, x) ∈ R×R. Lastly,

in all cases, except possibly when µ+ > µ− and c± satisfy c− = 2
√
µ− and c+ =

√
µ− + µ+√

µ−
, there exists a

bounded function ξ : R → R such that

u(t,X(t) + ξ(t) + ·) → φc± in C2(R) as t → ±∞, (1.14)

where φc±(x − c±t) are standard traveling fronts connecting 0 and 1 for the limiting equations with non-

linearities f±.

Concerning the missing case for the last statement of Theorem 1.3, we show that (1.14) holds as t → −∞,
but we derive the convergence to φc+ only along a particular sequence tn → +∞, under the additional
assumption that f+ is C2 and concave, see Proposition 2.5 below.

A first obvious observation following (1.13) is that c+ ≥ 2
√
µ+. This relation is not at all sur-

prising, and is actually immediately necessary, since 2
√
µ+ is the spreading speed of the solutions u of

the Cauchy problem (1.1) with compactly supported nonzero initial conditions 0 ≤ u0 ≤ 1, in the sense
that maxR\(−ct,ct) u(t, ·) → 0 as t → +∞ for every c > 2

√
µ+ and min[−ct,ct] u(t, ·) → 1 as t → +∞ for

every 0 ≤ c < 2
√
µ+ (this asymptotic result can be easily obtained from the maximum principle and the

facts that u(t, x) has a Gaussian decay as x → ±∞ at every time t > 0, and initial conditions with Gaussian
decay spread at the speed 2

√
f ′(0) in the time-independent case [2, 46]). We also refer to Proposition 2.4

below for a direct proof of the bounds c± ≥ 2
√
µ±.

A second observation is a comparison between the range of asymptotic past and future speeds provided
by Theorem 1.3 and the sets of admissible speeds for the limiting problems as t → −∞ and t → +∞, which
are given by [2

√
µ−,+∞) and [2

√
µ+,+∞) respectively. On the one hand, the range of past speeds in

Theorem 1.3 coincides with [2
√
µ−,+∞), no matter what the relation between µ− and µ+ is. On the other

hand, the range of future speeds coincides with [2
√
µ+,+∞) if and only if κ in (1.13) coincides with

√
µ+

for some c− ≥ 2
√
µ−, and this happens if and only if µ+ ≤ µ−. Indeed, if µ+ > µ− then the minimal future
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speed given by Theorem 1.3 is strictly larger than 2
√
µ+, namely, it is larger than the spreading speed for

the solutions of the Cauchy problem with compactly supported initial conditions.
The set of asymptotic speeds c± provided by Theorem 1.3, that is, satisfying (1.13), can be equivalently

expressed by

c± = κ± +
µ±
κ±

, κ− ∈
(
0,
√
µ−
]
, κ+ ∈

(
0,min(κ−,

√
µ+)

]
. (1.15)

(a) µ+ < µ− (b) µ+ ≥ µ−

Figure 1: The set K of admissible exponential decays.

The admissible pairs (κ−, κ+) in (1.15) are represented by the shaded region in Figure 1. The expres-
sion (1.15) yields an immediate interpretation of the asymptotic speeds: µ± reflect the characteristics of
the medium as t → ±∞, while κ± are the exponential decaying rates (as x → +∞) of the asymptotic
profiles φc± of the front as t → ±∞. Thus, when t passes from −∞ to +∞, the rate of decay of the profile
of the fronts in Theorem 1.3 cannot increase. In particular, if µ+ > µ− then the range of admissible values
for κ+ is smaller than (0,

√
µ+], which is the range of admissible decaying rates for standard fronts of the

limiting problem as t → +∞. This can be viewed as the real reason why the set of future speeds is smaller
than that of admissible speeds for the limiting problem as t → +∞ in that case.

Based on the formulation (1.15), let us now compare the asymptotic past and future speeds c± given by
Theorem 1.3 with each other. If µ+ > µ−, the decreasing monotonicity of k 7→ k+ µ+/k in (0,

√
µ+] yields

c+ = κ+ +
µ+

κ+
≥ κ− +

µ+

κ−
> κ− +

µ−
κ−

= c−, (1.16)

whence the transition fronts always strictly globally accelerate, in the sense that the asymptotic future
speed c+ is strictly larger than the past one c−. If µ+ = µ− = µ (as for instance if f does not depend
on t), then c+ = κ+ + µ/κ+ ≥ κ− + µ/κ− = c−, whence the transition fronts always globally accelerate in
this case. Lastly, if µ+ < µ−, then the transition fronts may globally accelerate because c+ can be as large
as wanted for a given c−, but they may also strictly decelerate, for any choice of admissible c−: indeed,
for any κ− ∈ (0,

√
µ−], taking κ+ = min(κ−,

√
µ+) we deduce from the fact that k 7→ k + µ−/k attains its

minimum at κ =
√
µ−, that c+ = κ+ + µ+/κ+ < κ+ + µ−/κ+ ≤ κ− + µ−/κ− = c−.

As a matter of fact, because of the convergence (1.14) to the limiting fronts φc± as t → ±∞, the solutions
constructed in Theorem 1.3 above satisfy more than (1.12). Namely, except possibly when µ+ > µ− and
the speeds c± satisfy c− = 2

√
µ− and c+ =

√
µ− + µ+/

√
µ−, the solutions u of Theorem 1.3 are such that





lim
τ→+∞

(
sup
t≤−τ

∣∣∣X(t+ τ)−X(t)

τ
− c−

∣∣∣
)
= 0,

lim
τ→+∞

(
sup
t≥0

∣∣∣X(t+ τ)−X(t)

τ
− c+

∣∣∣
)
= 0,

(1.17)
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see Section 2.3 for the proof of this property. The speeds c± are thus truly asymptotic mean speeds
as t → ±∞. In part 1) of Theorem 2.3 of [32], some transition fronts connecting 0 and 1 were constructed
for problem (1.1) under more general assumptions on f (in particular, f(t, ·) is not assumed to converge to
the profiles f± as t → ±∞). With the assumptions of the present paper, the transition fronts given in [32] are
special cases of the ones of Theorem 1.3 above, namely those for which (1.15) holds with κ− = κ+ ∈ (0,

√
µ).

Thus, on the one hand the assumptions of [32] are more general but, on the other hand, the choice of
possible asymptotic speeds c± provided in the present paper is larger than in [32]. In particular, the
speed c− can here be as close as wanted to 2

√
µ− and can even be equal to the critical value 2

√
µ−, whereas

the corresponding c− of [32] is strictly larger than
√
µ + µ−/

√
µ (≥ 2

√
µ−). Furthermore, once the past

speed c− is assigned, the future speed c+ can be here as large as wanted whereas, in [32], the speed c+

is uniquely determined by c− through the formula c+ = c− + 2(µ+ − µ−)/(c− −
√
c2− − 4µ−). Let us

also remark that, here, the future speed c+ can also be equal to the critical speed 2
√
µ+ for the limiting

problem as t → +∞, provided µ+ ≤ µ− and c− is not too large, whereas, in [32], c+ is always strictly larger
than 2

√
µ+. Actually, one should think of the fronts of [32] as the analogues of the standard fronts φ(x−ct)

for homogeneous equations, because they have constant exponential decaying rate. These fronts are the
keystone we use to construct other fronts which change their exponential decay in time, at least in the
supercritical case c± > 2

√
µ±. The analysis of the critical cases requires a special attention and the method

used in the present paper to cover these cases is actually completely different from [32].

1.3 A priori bounds on the asymptotic speeds, and asymptotic profiles

The second main result is almost the converse of Theorem 1.3: it shows, in general, the existence of the
asymptotic speeds c± and the optimality of the relations (1.13).

Theorem 1.4. Assume that (1.2) and (1.3) hold, that f− is of class C2 and concave on [0, 1] and that there

exists a continuous function ζ : (−∞, 0) → R such that

ζ ∈ L1(−∞, 0) and sup
s∈(0,1)

∣∣∣f(t, s)
f−(s)

− 1
∣∣∣ ≤ ζ(t) for all t < 0. (1.18)

Then, for any transition front u connecting 0 and 1 for problem (1.1), there holds





2
√
µ− ≤ c− := lim inf

t→−∞
X(t)

t
≤ lim sup

t→−∞

X(t)

t
< +∞,

κ+
µ+

κ
≤ c+ := lim inf

t→+∞
X(t)

t
≤ lim sup

t→+∞

X(t)

t
< +∞,

(1.19)

where κ is as in (1.13). Furthermore, if c− > 2
√
µ−, then the liminf and limsup in (1.19) are limits, that

is, u has asymptotic past and future speeds c± satisfying (1.13). Lastly, if c− > 2
√
µ− and if there exists a

continuous function ζ̃ : (0,+∞) → R such that

ζ̃ ∈ L1(0,+∞) and sup
s∈(0,1)

∣∣∣f(t, s)
f+(s)

− 1
∣∣∣ ≤ ζ̃(t) for all t > 0, (1.20)

then there exists a bounded function ξ : R → R for which (1.14) holds true.

This result improves Theorem 1.7 of [19], which dealt with homogeneous equations. Two of the main
interests of Theorem 1.4 are to prove the existence of the asymptotic past and future speeds of any transition
front connecting 0 and 1, provided that lim inft→−∞X(t)/t is not critical (that is, larger than 2

√
µ−) on

one hand, and to show the sharpness of the bounds (1.13) for the asymptotic speeds on the other hand.
Thus, even if the family of fronts constructed in the proof of Theorem 1.3 does not exhaust the whole
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class of transition fronts connecting 0 and 1, it completely covers the range of possible asymptotic past and
future speeds. Therefore the observations and the comparisons between the speeds following the statement
of Theorem 1.3 apply to arbitrary transition fronts connecting 0 and 1 for problem (1.1).

When c− := lim inft→−∞X(t)/t is not critical, Theorem 1.4 excludes in particular the existence of
more complex dynamics for which the set of limiting values of X(t)/t as t → −∞ and t → +∞ would
not be reduced to a singleton. The only open question is the existence of the asymptotic speeds when
lim inft→−∞X(t)/t = 2

√
µ−. We conjecture that the asymptotic speeds still exist in this case, and

that (1.14) holds without any restrictions on c±.

Remark 1.5. The technical conditions (1.18) and (1.20) used in Theorem 1.4 mean that f(t, u) con-
verges to f±(u) sufficiently fast as t → ±∞. We do not know whether (1.18) is necessary or not for
the first part of Theorem 1.4 to hold, and (1.18) and (1.20) for the last part. Notice that if, in addi-
tion to the hypotheses that f and f± are of class C1 and satisfy (1.2), (1.3) (which imply f ′

±(0) > 0),
one assumes that f ′

±(1) < 0 (which is automatically fulfilled if f− is assumed to be concave) then
the functions ζ± : t 7→ supu∈(0,1)

∣∣f(t, u)/f±(u) − 1
∣∣ are continuous in R and the conditions (1.18)

and (1.20) are therefore equivalent to ζ± ∈ L1(R±). This is immediately seen by noticing that the
functions (t, u) 7→ f(t, u)/f±(u) are continuously extended at (t, 0) by ∂uf(t, 0)/f

′
±(0) and at (t, 1)

by ∂uf(t, 1)/f
′
±(1). Lastly, a typical example for which these conditions (1.18) and (1.20) are fulfilled

is when f is of the type f(t, u) = µ̃(t) f̃(u) with limt→±∞ µ̃(t) = µ̃± ∈ (0,+∞) and µ̃− µ̃± ∈ L1(R±).

1.4 The set of admissible asymptotic and global mean speeds

We derive here an immediate corollary of Theorems 1.3 and 1.4, and of formula (1.17). It is about the
characterization of the set of all admissible asymptotic past and future speeds and global mean speeds of
transition fronts connecting 0 and 1 for problem (1.1).

Corollary 1.6. If (1.2), (1.3), (1.5), (1.18) hold and f− is of class C2 and concave, transition fronts

connecting 0 and 1 and having asymptotic past and future speeds c± exist if and only if c− and c+ fulfill (1.13),
or equivalently (1.15). Furthermore, transition fronts connecting 0 and 1 and having a global mean speed γ,
in the sense of (1.10), exist if and only if µ+ ≤ µ− and γ ≥ 2

√
µ−.

Proof. The first sentence is an immediate consequence of Theorems 1.3 and 1.4. Thus, a transition front
connecting 0 and 1 with a global mean speed γ exists only if c± := γ satisfy (1.13), or equivalently c± := γ
can be written in the form (1.15). If µ+ > µ−, then c± in (1.15) always satisfy c+ > c−, as already
emphasized in (1.16), and therefore a transition front with a global mean speed cannot exist.

Suppose now that µ+ ≤ µ− and take γ ≥ 2
√
µ−. Let us show that c± := γ can be

written in the form (1.15). The choice of κ− ∈ (0,
√
µ−] is uniquely determined by the condi-

tion c− = γ, i.e., κ− + µ−/κ− = γ. Then, the equation κ+ + µ+/κ+ = γ admits a solu-
tion κ+ ∈ (0,min(κ−,

√
µ+)] because the function Γ : κ 7→ κ + µ+/κ is continuous on (0,+∞) and

satisfies Γ(0+) = +∞, Γ(κ−) = κ− + µ+/κ− ≤ κ− + µ−/κ− = γ and Γ(
√
µ+) = 2

√
µ+ ≤ 2

√
µ− ≤ γ.

It then follows from Theorem 1.3 that there exists a transition front u connecting 0 and 1 and having
asymptotic past and future speeds both equal to γ. Since µ+ ≤ µ−, we know that the fronts given by
Theorem 1.3 satisfy (1.14), which, in turn, yields (1.17), as shown in Section 2.4. This implies that, for the
front u, (1.10) holds whenever s and t have the same sign, whereas, in the case s < 0 < t, one writes

∣∣∣∣
X(t)−X(s)

t− s
− γ

∣∣∣∣ ≤
|X(t)− γt|

t− s
+

|X(s)− γs|
t− s

,

and readily sees that both terms in this sum go to 0 as t − s → +∞ because X(t)/t → γ as t → ±∞
by (1.17), and X is locally bounded by (1.9). The proof of Corollary 1.6 is thereby complete. �
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1.5 A sufficient condition for an entire solution to be a transition front

Our last main result provides a sufficient condition for an entire solution of (1.1) to be a transition front.

Theorem 1.7. Assume that f satisfies (1.2), (1.3), (1.18) and (1.20), with f− concave and in C2([0, 1]).
Let 0 < u < 1 be a solution of (1.1) such that

∃ c > 2
√
µ−, max

[−c|t|,c|t|]
u(t, ·) → 0 as t → −∞. (1.21)

Then the limit

λ := − lim
x→+∞

lnu(0, x)

x

exists, satisfies λ ∈
[
0,
√
µ−
)
, and u is a transition front connecting 0 and 1 if and only if λ > 0. Further-

more, if λ > 0, then the transition front u admits some asymptotic past and future speeds c− and c+ given

by 



2
√
µ− < c− = sup

{
γ ≥ 0, lim

t→−∞
max

[−γ|t|,γ|t|]
u(t, ·) = 0

}
,

c+ = min(λ,
√
µ+) +

µ+

min(λ,
√
µ+)

,
(1.22)

and (1.14) holds for some bounded function ξ : R → R.

The above result provides a characterization of transition fronts, in the class of entire solutions 0 < u < 1
satisfying (1.21), in terms of the profile of u at time 0 (or, equivalently after shifting times, at another
arbitrary time t0; as a matter of fact, we show in the proof of Theorem 1.7 that lnu(t, x) ∼ −λx as x → +∞
for all t ∈ R, with λ ∈ [0, 2

√
µ−) independent of t). The hypothesis (1.21) is used to apply some results

of [14]. This is not such a restrictive assumption in general, because the limit in (1.21) automatically holds
for any 0 ≤ c < 2

√
µ−, as an easy consequence of the spreading result.

Remark 1.8. In [34], the authors consider the reaction-diffusion (1.1) with x-dependent KPP type non-
linearities f(x, u), instead of time-dependent ones f(t, u). Among other things they prove the following
striking result: if, say, fu(x, 0) :=

∂f
∂u(x, 0) → m ∈ (0,+∞) as x → ±∞ and fu(·, 0)−m is nonnegative and

compactly supported, then transition fronts connecting 0 and 1, in the sense of (1.6), do not exist if λ > 2m,
where λ is the supremum of the spectrum of the operator ∂xx+fu(x, 0). On the other hand, transition fronts
with global mean speed γ exist when 2m > λ(≥ m) for every speed γ ∈ (2

√
m,λ/

√
λ−m) (the existence

for the critical speeds is unclear). More general x-dependent equations have been considered in [49] and
more general existence results have been obtained under a similar smallness condition for a quantity which
is similar to λ. The time and space variables obviously play a different role in equations of the type (1.1).
But if we wanted to make an analogy between the transition fronts for x or t-dependent equations, we
could make the following two comparisons. Firstly, transition fronts always exist for our time-dependent
equation (1.1) whereas they do not exist in general for the associated x-dependent one. Secondly, under
the assumption fu(t, 0) → µ = µ± as t → ±∞ (or more generally when µ+ ≤ µ−) in (1.1), transition fronts
with global mean speeds always exist, whatever the temporal range of the transition between the limiting
profiles f± may be and whatever the amplitude of f(t, ·) for the intermediate times t may be, and the set
of admissible speeds is a closed semi-infinite interval including the critical speed, whereas transition fronts
may not exist in general for the x-dependent equation and, even if they exist, the set of admissible global
mean speeds c a bounded interval.

1.6 Time-dependent diffusivity

We conclude this first section by showing that changing the time-variable, one can extend Theorems 1.3
and 1.4 to equations with time-dependent diffusivities. Namely, we consider the equation

ut = σ(t)uxx + f(t, u), t ∈ R, x ∈ R, (1.23)
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with σ ∈ C1(R) being bounded from below away from 0. Writing ũ(t, x)=u(τ−1(t), x) with τ(t) :=
∫ t
0 σ(s)ds,

leads to the equation

ũt = ũxx +
f(τ−1(t), ũ)

σ(τ−1(t))
, t ∈ R, x ∈ R. (1.24)

We can apply Theorems 1.3 and 1.4 to this equation, provided the nonlinear term satisfies the hypotheses
there, and then derive a characterization of the asymptotic past and future speeds of transition fronts
connecting 0 and 1 for (1.24). Notice that ũ is a transition front for (1.24) satisfying (1.6) with X = X̃ if
and only if u(t, x) = ũ(τ(t), x) is a transition front for (1.1) with X(t) = X̃(τ(t)). Therefore, if ũ has past
and future speeds equal to c̃± then u has past and future speeds equal to

c± := lim
t→±∞

X(t)

t
= lim

t→±∞
X̃(τ(t))

τ(t)

τ(t)

t
= c̃± lim

t→±∞
1

t

∫ t

0
σ(s)ds, (1.25)

provided the latter exist (notice that τ(t) → ±∞ as t → ±∞ because inf σ > 0).
A situation where these arguments apply is when f satisfies the hypotheses (1.2), (1.3), (1.5) and (1.18)

of Theorems 1.3 and 1.4 and σ ∈ C1(R) is such that

σ > 0 in R, σ(t) → σ± > 0 as t → ±∞ and t 7→ (σ(t)− σ−) ∈ L1(−∞, 0). (1.26)

Indeed, the new nonlinear term f̃(t, u) = f(τ−1(t), u)/σ(τ−1(t)) satisfies (1.2) and (1.3) with f± replaced
by f±/σ±, as well as (1.5) with C replaced by C/ inf σ. It also fulfils the hypothesis (1.18) of Theorem 1.4,
since

sup
s∈(0,1)

∣∣∣∣
f(τ−1(t), s)

σ(τ−1(t))

σ−
f−(s)

− 1

∣∣∣∣ ≤
σ−
inf σ

ζ(τ−1(t)) +

∣∣∣∣
σ−

σ(τ−1(t))
− 1

∣∣∣∣ ,

and this term belongs to L1(−∞, 0) because ζ does and
∫ 0
−∞

∣∣σ−/σ(τ−1(t))− 1
∣∣ dt =

∫ 0
−∞ |σ−−σ(z)| dz < ∞.

One can therefore derive the results for (1.23) from the ones for (1.24), noticing that, in virtue of (1.25), when
coming back to the original time-variable, the asymptotic speeds are multiplied by σ±. For instance, apply-
ing Corollary 1.6 we can characterize the admissible past and future speeds c̃± for (1.24) by c̃− ≥ 2

√
µ−/σ−

and c̃+ ≥ κ+µ+/(κσ+), where κ = min
(√

µ+/σ+,
(
c̃−−

√
c̃2− − 4µ−/σ−

)
/2
)
, and thus derive the following:

Corollary 1.9. Assume that f satisfies (1.2), (1.3), (1.5) and (1.18) and that σ ∈ C1(R) satisfies (1.26).
Then transition fronts connecting 0 and 1 for (1.23) having asymptotic past and future speeds c± exist if and

only c− ≥ 2
√
σ−µ− and c+ ≥ κ+ (σ+µ+)/κ, where κ = min

(√
σ+µ+, (σ+/σ−)×

(
c− −

√
c2− − 4σ−µ−

)
/2
)
.

Outline of the paper. Section 2 is concerned with the proof of Theorem 1.3. More precisely, Section 2.1
deals with the existence of transition fronts of (1.1) for non-critical asymptotic speeds c±, while the critical
cases are considered in Section 2.2. Section 3 is devoted to the proofs of Theorems 1.4 and 1.7: after
recalling in Section 3.1 some known useful results on the transition fronts in the homogeneous case, we
prove in Section 3.2 the a priori bounds on the asymptotic speeds of any transition front connecting 0 and 1
for (1.1), as well as the asymptotic behavior of all non-critical fronts. Lastly, Theorem 1.7 is proved in
Section 3.3.

2 Existence of transition fronts: proof of Theorem 1.3

This section is dedicated to the proof of Theorem 1.3. In Section 2.1, we derive the existence of transition
fronts having supercritical past and future speeds c±, that is, such that c± > 2

√
µ±. Recall that the set of

asymptotic past and future speeds c± satisfying (1.13) can be expressed by (1.15), with (κ−, κ+) belonging
to the set

K :=
{
(k1, k2); 0 < k1 ≤

√
µ−, 0 < k2 ≤ min(k1,

√
µ+)

}
,
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see Figure 1. Supercritical speeds are the ones for which (κ−, κ+) ∈ K and κ± <
√
µ±. Actually, the

case κ− = κ+ <
√
µ = min(

√
µ−,

√
µ+), that is the oblique open segment in Figure 1, has been treated

in [32]. In Section 2.1 of the present paper, we will construct a supercritical front associated with any choice
of 0 < κ− <

√
µ− and 0 < κ+ < min(κ−,

√
µ+) using two distinct fronts of [32].

In Section 2.2, we deal with the case where at least one between c− and c+ is critical. We start
with c− > 2

√
µ− and c+ = 2

√
µ+. Next, we make use of the critical front provided by the recent paper [31],

which, roughly speaking, has the slowest admissible past and future speeds. In particular, being slower
than any front with supercritical speed, its past and future speeds c± satisfy the equalities in (1.13),
namely c− = 2

√
µ− and c+ =

√
µ + µ+/

√
µ. Finally, using the critical front and the same method as in

Section 2.1, we construct fronts such that c− = 2
√
µ− and c+ satisfies the strict inequality c+ >

√
µ+µ+/

√
µ

in (1.13).
To summarize, the construction of the fronts corresponding to the different portions of the set K in

Figure 1 is derived in:

• [32] (see also Proposition 2.1 below): the oblique open segment;

• Section 2.1: the interior of K;

• Section 2.2.2: the segment (BC] (in the case µ+ < µ−), without the point B;

• Section 2.2.3: the point B;

• Section 2.2.4: the segment (AB);

In Section 2.3, we show some exponential lower bounds which are used in the construction of the
transition front with critical asymptotic speeds and which are also of independent interest. Finally, the
slightly stronger properties (1.17) are proved in Section 2.4.

2.1 Interior of K : supercritical speeds

We will make use of the existence result of [32], Theorem 2.3 part 1). That result applies to a general time-
dependent nonlinearity f and it is expressed in terms of the least mean of the function µ(t) := ∂uf(t, 0),
see Definition 2.2 in [32]. Under the hypotheses (1.3), (1.4) considered in the present paper, the least mean
of µ coincides with µ = min(µ−, µ+). This is a consequence of the fact that µ(t) → µ± as t → ±∞,
which, in turn, follows immediately from (1.3), after writing f(t, u)/u = (f(t, u))/f±(u)) × (f±(u)/u).
Actually, in [32] it is assumed that f(t, u) > 0 for u ∈ (0, 1). However, it is shown in [36] - where more
general coefficients depending also on x are considered - that the construction in [32] works only requiring
that f(·, u) is nonnegative and has positive least mean for any u ∈ (0, 1). Under the hypothesis (1.3), the
least mean of f(·, u) is equal to min(f−(u), f+(u)), and then it is positive for u ∈ (0, 1). Thus, Theorem 1.3
in [36] yields the following

Proposition 2.1. Assume that f satisfies (1.2), (1.5), that µ(t) = ∂uf(t, 0) admits positive limits µ(±∞)
as t → ±∞ and that, for every u ∈ (0, 1), the least mean of f(·, u) is positive. Then, for every

κ ∈
(
0,
√
min(µ(−∞), µ(+∞))

)
, there exists a transition front u connecting 0 and 1 such that

X(t) =

∫ t

0

(
κ+

µ(s)

κ

)
ds for all t ∈ R. (2.1)

Furthermore, ux(t, x) < 0 for all (t, x) ∈ R× R and

u(t, x+X(t)) eκx → 1 as x → +∞, uniformly in t ∈ R. (2.2)
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Remark 2.2. The fronts constructed in [32] still satisfy (2.1), even when (1.3) does not hold (and µ is
bounded). Hence, they admit a global mean speed γ if and only if (1/t)

∫ s+t
s µ(τ)dτ → (γ−κ)κ as t → ±∞

uniformly in s ∈ R. In order to admit past and future speeds it is instead sufficient that the above limits
exist, not necessarily coinciding, for a given s ∈ R (and then for every s ∈ R because µ is bounded). This
shows that in the case of a general time-dependent reaction term, the asymptotic past and future speeds
may or may not exist, and even if they exist and coincide this does not imply the existence of a global mean
speed.

We now derive the existence result in the supercritical case.

Proposition 2.3. Under the assumptions (1.2), (1.3) and (1.5), for every (κ−, κ+) ∈ K such

that κ± <
√
µ±, equation (1.1) admits a transition front u connecting 0 and 1 with asymptotic past and

future speeds c± := κ±+µ±/κ±. Furthermore, ux(t, x) < 0 for all (t, x) ∈ R×R and there exists a bounded

function ξ : R → R such that (1.14) holds true.

Proof. The proof is divided into four steps.
Step 1: construction of the transition front. Let (κ−, κ+) ∈ K satisfy κ± <

√
µ±. If κ− = κ+, the front

is directly provided by Proposition 2.1. Let us consider the other case, that is, κ+ < κ−. We introduce the
following symmetrization of f : f̃(t, u) := f(−|t|, u). The function µ̃(t) := ∂uf̃(t, 0) satisfies µ̃(±∞) = µ−.
By Proposition 2.1, there exists a transition front u1 for the nonlinearity f̃ such that (1.6) holds withX = X1

given by

X1(t) :=

∫ t

0

(
κ− +

µ̃(s)

κ−

)
ds for all t ∈ R. (2.3)

In particular, u1 is a solution of (1.1) for t < 0. Since 0 < κ+ = min(κ−, κ+) <
√
min(µ−, µ+), Proposi-

tion 2.1 also provides a transition front u2 for the original equation (1.1), which satisfies (1.6) with X = X2

given by

X2(t) :=

∫ t

0

(
κ+ +

µ(s)

κ+

)
ds for all t ∈ R. (2.4)

By (2.2) we know that u1 and u2 satisfy

u1(t, x+X1(t))e
κ−x → 1 and u2(t, x+X2(t))e

κ+x → 1 as x → +∞, uniformly in t ∈ R. (2.5)

Let us set u(t, x) := max(u1(t, x), u2(t, x)) and u(t, x) := min(u1(t, x) + u2(t, x)), 1). The function u is a
generalized subsolution of (1.1) for t < 0. On the other hand, since by (1.2),

∀ t ∈ R, ∀ 0 < α ≤ β ≤ 1−α, f(t, α+β)≤ f(t, β)

β
(α+β)=

f(t, β)

β
α+f(t, β)≤f(t, α)+f(t, β),

it follows that u is a generalized supersolution of (1.1) for t < 0. For n ∈ N, let un denote the (bounded)
solution of (1.1) for t > −n, with initial datum un(−n, x) = u(−n, x). The parabolic comparison principle
yields u ≤ un ≤ u in (−n, 0) × R, and, moreover, un ≥ u2 in the whole (−n,+∞) × R. Using interior
parabolic estimates we see that, up to extraction of a subsequence, the sequence (un)n∈N converges locally
uniformly to an entire solution u of (1.1) satisfying 0 < u ≤ u ≤ u ≤ 1 in (−∞, 0) × R, as well as u ≥ u2
in R×R. Furthermore, u is nonincreasing in x because this is true for u whence for the un by the comparison
principle.

We now claim that u is a transition front connecting 0 and 1 for (1.1), such that (1.6) holds with

X(t) =

{
X1(t) if t < 0

X2(t) if t ≥ 0.
(2.6)
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Since µ(±∞) = µ±, as seen at the beginning of the section, (2.6) will then imply that u has the de-
sired past and future speeds c± = κ± + µ±/κ±. Let us start to check it for large negative times. The
inequalities 0 < κ+ < κ− <

√
µ− yield

lim
t→−∞

X1(t)

t
= κ− +

µ−
κ−

< κ+ +
µ−
κ+

= lim
t→−∞

X2(t)

t
.

Thus, since u2(t, x + X2(t)) → 0 = inf u1 as x → +∞ and u1(t, x + X1(t)) → 1 = supu2 as x → −∞
uniformly in t ∈ R, we infer that supx∈R

∣∣u(t, x)−u1(t, x)
∣∣→ 0 and supx∈R

∣∣u(t, x)−u1(t, x)
∣∣→ 0 as t → −∞.

Hence u(t, x)− u1(t, x) → 0 as t → −∞ uniformly in x ∈ R, because u ≤ u ≤ u in (−∞, 0)× R. It follows
that, for given ε > 0, there exist Tε < 0 and Rε > 0 such that

inf
t<Tε, x<−Rε

u(t, x+X1(t)) > 1− ε and sup
t<Tε, x>Rε

u(t, x+X1(t)) < ε. (2.7)

We now focus on positive times. Using (2.5) with 0 < κ+ < κ− and the limit u2(t, x + X2(t)) → 1
as x → −∞, we deduce the existence of Mε ≥ 1 such that Mεu2(Tε, x) ≥ u1(Tε, x) for all x ∈ R.
Consequently, u(Tε, x) ≤ u(Tε, x) ≤ min

(
(Mε + 1)u2(Tε, x), 1

)
for all x ∈ R. As for u, the function

min((M +1)u2, 1) is a generalized supersolution of (1.1) by the last hypothesis in (1.2). Hence, by compar-
ison,

∀ t ∈ [Tε,+∞), ∀x ∈ R, u2(t, x) ≤ u(t, x) ≤ min
(
(Mε + 1)u2(t, x), 1

)
. (2.8)

Since u2 satisfies (1.6) with X = X2, we find a constant R′
ε > 0 such that

inf
t≥Tε, x<−R′

ε

u(t, x+X2(t)) > 1− ε, sup
t≥Tε, x>R′

ε

u(t, x+X2(t)) < ε.

This and (2.7) prove the claim, because X1 and X2 are locally bounded.
Step 2: ux < 0 in R × R. We know that ux(t, x) ≤ 0 for all (t, x) ∈ R × R. Differentiating (1.1)

with respect to x, we find that the function ux is an entire solution of a linear parabolic equation. Being
nonpositive, the parabolic strong maximum principle implies that it is either strictly negative, or identically
equal to 0. The latter case is ruled out because, as a transition front connecting 0 and 1, u is such
that u(t,−∞) = 1, u(t,+∞) = 0 for every t ∈ R.

Step 3: convergence to a standard front as t → +∞. We finally need to show that there exists a bounded
function ξ such that (1.14) holds when t → ±∞, where u, X and c± are defined in Step 1. The function ξ
is chosen in such a way that u(t,X(t) + ξ(t)) = 1/2 for t ∈ R. Notice that ξ is bounded by (1.6). Let us
first prove here the convergence (1.14) as t → +∞. To do so, consider an arbitrary sequence (tn)n∈N in R

diverging to +∞. As n → +∞, the functions u(t+tn, x+X(tn)+ξ(tn)) converge (up to subsequences) locally
uniformly in (t, x) ∈ R× R to a solution 0 ≤ ũ ≤ 1 of (1.1) with f replaced by f+, satisfying ũ(0, 0) = 1/2
and ũx ≤ 0 in R× R.

We now derive the exponential decay of ũ. By (2.5) and (2.8), the profile of u decays as x → +∞ with
exponential rate κ+, in the sense that there are R > 0 and M > 1 such that

∀ t ≥ 0, ∀x > R, M−1 ≤ u(t, x+X2(t)) e
κ+x ≤ M. (2.9)

For fixed (t, x) ∈ R × R, we want to estimate ũ(t, x + c+t) = limn→+∞ u(t + tn, x + c+t +X(tn) + ξ(tn)).
We know that X(tn) = X2(tn) for n large enough and, by (2.4) and c+ = κ+ + µ+/κ+, we get that
c+t+X2(tn)−X2(t+ tn) → 0 as n → +∞. As a consequence, if x > R+ ‖ξ‖L∞(R), we can apply (2.9) and
deduce

M̃−1 ≤ ũ(t, x+ c+t) e
κ+x ≤ M̃, (2.10)

with M̃ = M eκ+‖ξ‖L∞(R) . Let φc+(x − c+t) be the standard traveling front for the nonlinearity f+, con-
necting 0 and 1 and moving with speed c+ = κ+ + µ+/κ+ > 2

√
µ+, normalized by φc+(0) = 1/2. We
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know from [2] that φc+ has the same exponential decay κ+ as ũ, in the sense that there exists A ≥ 1
such that A−1 ≤ φc+(y) e

κ+y ≤ A for all y ≥ 0. It then follows from Proposition 4.3 in [32] that there
is a ≥ 0 such that φc+(x − c+t + a) ≤ ũ(t, x) ≤ φc+(x − c+t − a) for all (t, x) ∈ R × R. This allows us to
apply a Liouville type result from [4] (Theorem 3.5 there, see also Lemma 8.2 of [16], adapted here to the
homogeneous case) and infer the existence of b ∈ R such that ũ(t, x) = φc+(x−c+t−b) for all (t, x) ∈ R×R.
Since ũ(0, 0) = 1/2 = φc+(0) and φc+ is strictly decreasing, we derive b = 0. We have shown in particular
that (up to subsequences) u(tn, x + X(tn) + ξ(tn)) → φc+(x) as n → +∞ locally uniformly in x ∈ R.
Since the limit φc+(x) does not depend on the particular sequence (tn)n∈N diverging to +∞, we deduce
that u(t, x+X(t) + ξ(t)) → φc+(x) as t → +∞ locally uniformly in x ∈ R. The convergence actually holds
uniformly in x ∈ R - whence in C2(R) by parabolic estimates - because 0 < u(t, x) < 1 is decreasing with
respect to x ∈ R for any t ∈ R and φc+(−∞) = 1, φc+(+∞) = 0.

Step 4: convergence to a standard front as t → −∞. Consider here a sequence (tn)n∈N diverging to −∞
and let ũ be as in Step 3. In order to apply the previous arguments to show that ũ coincides with the
standard traveling front φc−(x − c−t) for the nonlinearity f−, normalized by φc−(0) = 1/2, and thus to

conclude the proof, it is sufficient to check that there exists M̃ ≥ 1 such that, for x large enough, (2.10)
holds with c+ and κ+ replaced by c− and κ−. Since u(t, x) − u1(t, x) → 0 as t → −∞ uniformly in x ∈ R

and X = X1 on R−, for fixed (t, x) ∈ R× R we see that

ũ(t, x+ c−t) e
κ−x = lim

n→+∞
u(t+ tn, x+ c−t+X(tn) + ξ(tn)) e

κ−x

= lim
n→+∞

u1(t+ tn, x+ c−t+X1(tn) + ξ(tn)) e
κ−x.

(2.11)

Now, we know from the one hand that c−t + X1(tn) − X1(t + tn) → 0 as n → +∞ by (2.3)
and c− = κ− + µ−/κ−, and from the other hand that there exists R′ > 0 such that

∀ t ∈ R, ∀n ∈ N, ∀ y > R′,
1

2
≤ u1(t+ tn, y +X1(t+ tn))e

κ−y ≤ 2.

Thus, for all t ∈ R and x > R′+ ‖ξ‖L∞(R), (2.11) yields e
−κ−‖ξ‖L∞(R)/2 ≤ ũ(t, x+ c−t) eκ−x ≤ 2 eκ−‖ξ‖L∞(R) ,

that is, (2.10) holds with c+ and κ+ replaced by c− and κ−. The proof of Proposition 2.3 is thereby
complete.

2.2 Critical asymptotic past or future speeds

In this subsection, we construct transition fronts connecting 0 and 1 with either critical past speed c− or
critical future speed c+, that is, c− = 2

√
µ− or c+ = 2

√
µ+. This will conclude the proof of Theorem 1.3.

Until the end of Section 2.2, we assume that f satisfies (1.2), (1.3) and (1.5).

2.2.1 A lower bound on the asymptotic past and future speeds

We first derive an easy consequence of the spreading result of [2].

Proposition 2.4. Any transition front u connecting 0 and 1 for (1.1) satisfies lim inft→±∞X(t)/t ≥ 2
√
µ±.

In particular, if u has some asymptotic past or future speeds c±, then c± ≥ 2
√
µ±.

Proof. By hypothesis (1.3), for any ε ∈ (0, 1/2), there is Tε ∈ R such that f(t, u) ≥ (1−ε)f+(u) for all t > Tε

and u ∈ (0, 1). Let u be a transition front connecting 0 and 1 for (1.1). Hence, u is a supersolution of the
problem

wt = wxx + (1− ε)f+(w), (2.12)

for t > Tε, x ∈ R. It then follows from [2] that u(t, 2
√
(1− 2ε)µ+ t) → 1 as t → +∞, whence,

by (1.6), lim inft→+∞
(
X(t) − 2

√
(1− 2ε)µ+ t

)
> −∞. The inequality lim inft→+∞X(t)/t ≥ 2

√
µ+ then

follows from the arbitrariness of ε ∈ (0, 1/2).
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The case t → −∞ is similar: take ε ∈ (0, 1/2) and let Tε ∈ R be such that u is a supersolution of the
problem

wt = wxx + (1− ε)f−(w), (2.13)

for t < Tε, x ∈ R. By (1.6), there exists a continuous function v0 : R → [0, 1] which is not identically equal
to 0 and satisfies u(t,X(t)+x) ≥ v0(x) for all t ∈ R and x ∈ R. Let v be the solution of vt = vxx+(1−ε)f−(v)
for t > 0 and x ∈ R, emerging from the initial datum v0. By [2] we know that v(t, 2

√
(1− 2ε)µ− t) → 1

as t → +∞. Therefore, one infers by comparison that, for any s < Tε,

1 ≥ u
(
Tε, X(s) + 2

√
(1− 2ε)µ−(Tε − s)

)
≥ v
(
Tε − s, 2

√
(1− 2ε)µ−(Tε − s)

)
→ 1 as s → −∞.

It follows then from (1.6) that lim sups→−∞
(
X(s) + 2

√
(1− 2ε)µ−(Tε − s)

)
< +∞, which concludes the

proof of the proposition due to the arbitrariness of ε ∈ (0, 1/2).

2.2.2 Segment (BC]: supercritical past speed and critical future speed

We now construct fronts with asymptotic speeds c± satisfying (1.15) with the restrictions

κ− <
√
µ− and κ+ =

√
µ+.

Since
√
µ+ = κ+ ≤ κ−, this case is allowed only if µ+ < µ−. We know from Proposition 2.1 that,

for κ ∈ (0,
√
µ+), there is a transition front uκ connecting 0 and 1 satisfying (1.6) with

X(t) = Xκ(t) :=

∫ t

0

(
κ+

µ(s)

κ

)
ds for all t ∈ R,

and such that uκ is decreasing with respect to x. We need some additional properties of the transition
fronts (uκ)0<κ<

√
µ+ , which are derived in their construction in the proof of Theorem 2.3 part 1) of [32] or

Theorem 1.3 of [36]. Let us recall the construction. For κ ∈ (0,
√
µ+), set

Uκ(x) := min(e−κx, 1). (2.14)

For n ∈ N, let unκ be the bounded solution of (1.1) for t > −n, emerging from

unκ(−n, x) = Uκ(x− xn), where xn :=

∫ −n

0

(
κ+

µ(s)

κ

)
ds.

Then uκ is the locally uniform limit of (a subsequence of) (unκ)n∈N.
We claim that, performing the same construction, but taking κ = κ− ∈ [

√
µ+,

√
µ−), one obtains a tran-

sition front with the desired asymptotic past and future speeds c±. Call u := uκ− the function constructed
in such a way. The exponential decay κ = κ− is admissible in the construction of [32, 36] if one replaces the
nonlinearity f with f̃(t, s) := f(−|t|, s). For t < 0, f̃ = f and therefore u coincides with a transition front
connecting 0 and 1 for the nonlinearity f̃ and it satisfies (1.6) with X such that X ′(t) = κ− + µ(t)/κ−
for t < 0. This implies that u satisfies (1.6) for t < 0, with X such that X(t)/t → κ− + µ−/κ− as t → −∞.
In particular, u has an asymptotic past speed equal to κ− + µ−/κ− = c−.

In order to investigate the properties of u for positive times, consider the family (Uκ)0<κ<
√
µ+ defined

in (2.14). Fix κ ∈ (0,
√
µ+) and, for ρ ∈ R, call Uρ

κ the translated of Uκ by ρ, that is, Uρ
κ(x) := Uκ(x+ ρ).

Since 0 < κ <
√
µ+ = κ+ ≤ κ−, any translated Uρ

κ is less steep than Uκ−(x) := min(e−κ−x, 1), in the sense
that there is ζρ ∈ R such that Uκ− ≥ Uρ

κ in (−∞, ζρ] and Uκ− < Uρ
κ in (ζρ,+∞). Thus, the classical result

about the number of zeros of solutions of linear parabolic equations (see [1], and also [9, 8, 23]) implies
that, for any ρ and t ∈ R, there exists ζρt ∈ R ∪ {±∞} for which

u(t, x) ≥ uκ(t, x+ ρ) if x ≤ ζρt and u(t, x) ≤ uκ(t, x+ ρ) if x ≥ ζρt . (2.15)
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This readily implies that, for any t ∈ R and 0 < a < b < 1, the diameter of the transition zone
{x ∈ R; a ≤ u(x, t) ≤ b} cannot be bigger than that of {x ∈ R; a ≤ uκ(x, t) ≤ b}. Thus, since tran-
sition fronts are characterized by the uniform boundedness in time of transition zones, and 0 < u < 1 by
the strong maximum principle, we deduce that u is a transition front for (1.1), as uκ is. Namely, (1.6)
holds for some function X : R → R. Moreover, the second inequality in (2.15) implies that we can
choose a large negative ρ in such a way that u(0, x) ≤ uκ(0, x + ρ) for all x ≥ 0. On the other hand,
uκ(0, x+ρ) ≥ uκ(0, ρ) > 0 for x ≤ 0 since uκ is decreasing with respect to x. As a consequence, there exists
M ≥ 1 such that u(0, x) ≤ Muκ(0, x+ ρ) for all x ∈ R. Hence, by comparison,

u(t, x) ≤ min(Muκ(t, x+ ρ), 1) for all (t, x) ∈ R+ × R,

because min(Muκ, 1) is a generalized supersolution of (1.1) by the last hypothesis in (1.2). Therefore, from
the fact that uκ admits future speed equal to κ + µ+/κ, one easily gets that the function X for which u
satisfies (1.6) verifies

lim sup
t→+∞

X(t)

t
≤ κ+

µ+

κ
. (2.16)

Since this holds for all κ ∈ (0,
√
µ+), we derive lim supt→+∞X(t)/t ≤ 2

√
µ+. Owing to Proposition 2.4, we

eventually infer that u has a future speed equal to c+ = 2
√
µ+.

It remains to show that u satisfies ux(t, x) < 0 for all (t, x) ∈ R×R, as well as (1.14) for some bounded
function ξ. Consider again the family of supercritical fronts (uκ)0<κ<

√
µ+ given by Proposition 2.1. These

are the same fronts provided by Proposition 2.3 in the cases where κ− = κ+, and therefore they satisfy the
same type of properties we want to derive for u. The fact that u satisfies everywhere ux < 0 then follows
immediately from (2.15). Indeed, for a given (t, x) ∈ R × R, let ρ ∈ R be such that u(t, x) = uκ(t, ρ).
Then ux(t, x) > (uκ)x(t, ρ) would violate (2.15), whence ux(t, x) ≤ (uκ)x(t, ρ) < 0.

The convergence in (1.14) as t → −∞ is a consequence of Proposition 2.3. Indeed u coincides for t < 0
with the supercritical front for the nonlinearity f̃ with past and future speeds both equal to c− = κ−+µ−/κ−
given by Proposition 2.1 or, equivalently, by Proposition 2.3 and such a front satisfies the desired convergence
as t → −∞ by the last statement of Proposition 2.3.

We now deal with the convergence as t → +∞. Let X be such that u satisfies (1.6). Up to perturbing X
by adding a bounded function, we can assume without loss of generality that u(t,X(t)) = 1/2 for all t ∈ R.
For given (tn)n∈N diverging to +∞, the functions (u(· + tn, · +X(tn)))n∈N converge (up to subsequences)
locally uniformly to a solution ũ of the limit equation with nonlinearity f+. Moreover, ũ(0, 0) = 1/2.
Let (Xκ)0<κ<

√
µ+ be the family of functions for which the transition fronts (uκ)0<κ<

√
µ+ satisfy (1.6),

together with uκ(t,Xκ(t)) = 1/2 for all t ∈ R (the real numbers Xκ(t) are then uniquely defined, since the
functions uκ are continuously decreasing in x). We know by Proposition 2.3 that there exists a family of
bounded functions (ξκ)0<κ<

√
µ+ such that

∀κ ∈ (0,
√
µ+), uκ(t,Xk(t) + ξκ(t) + ·) → φcκ in C2(R) as t → +∞, (2.17)

where cκ = κ+µ+/κ and φcκ(x−cκt) is a standard traveling front for the equation with nonlinearity f+. Fix
any given κ ∈ (0,

√
µ+). By adding a constant to ξκ if need be, we can reduce without loss of generality to the

case where φcκ satisfies φcκ(0) = 1/2. We then have 1/2 = limt→+∞ uκ(t,Xk(t)) = limt→+∞ φcκ(−ξκ(t)),
whence ξκ(+∞) = 0 by the strict monotonicity of φcκ . It then follows from the uniform continuity of
the uκ and their space derivatives up to order 2, that (2.17) holds with ξκ ≡ 0. Now, for any ε > 0, we
have u(t,X(t) + ε) < 1/2 = uκ(t,Xκ(t)) for all t ∈ R and thus, owing to (2.15),

∀ t ∈ R, ∀x ≥ 0, u(t, x+X(t) + ε) ≤ uκ(t, x+Xκ(t)).

The arbitrariness of ε > 0 implies that u(t, x+X(t)) ≤ uκ(t, x+Xκ(t)) for all t ∈ R and x ≥ 0. The reverse
inequality for x ≤ 0 is obtained in analogous way. Using these inequalities at t = tn and letting n → +∞,
we eventually derive by (2.17) (with ξκ ≡ 0),

∀κ ∈ (0,
√
µ+), ũ(x, 0) ≥ φcκ(x) for x ≤ 0 and ũ(x, 0) ≤ φcκ(x) for x ≥ 0.
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On the other hand, as κ → √
µ+, the standard traveling fronts φcκ converge uniformly in R to the (unique)

critical traveling front φ2
√
µ+ for the nonlinearity f+, normalized by φ2

√
µ+(0) = 1/2. We infer that

ũ(x, 0) ≥ φ2
√
µ+(x) for x ≤ 0, ũ(x, 0) ≤ φ2

√
µ+(x) for x ≥ 0. (2.18)

This means that ũ is steeper than φ2
√
µ+ at time 0. But it is known that φ2

√
µ+(x− 2

√
µ+t) is the steepest

entire solution of the equation with nonlinearity f+. Indeed, it is the limit of the solutions vn(t, x) of the
corresponding Cauchy problems emerging from vn(−n, ·) = 1(−∞,xn) at time −n for some sequence (xn)n∈N,
where 1(−∞,xn) denotes the characteristic function of the interval (−∞, xn), and the Heaviside function
is steeper than any function ranging in [0, 1] (see e.g. [19, 22, 31]). Therefore, the reverse inequalities
of (2.18) hold true as well, because ũ(0, 0) = 1/2 = φ2

√
µ+(0). We have eventually shown that, up to

subsequences, u(tn, X(tn) + ·) converges locally uniformly to φ2
√
µ+ as n → +∞. Since this holds for any

sequence (tn)n∈N diverging to +∞, we deduce that u(t, · + X(t)) → φ2
√
µ+ as t → +∞ locally uniformly

in x ∈ R. The convergence actually holds uniformly in x ∈ R - whence in C2(R) by parabolic estimates -
because 0 < u(t, ·) < 1 is decreasing for any t ∈ R and φ2

√
µ+(−∞) = 1, φ2

√
µ+(+∞) = 0. This concludes

the proof of Theorem 1.3 in this case.

2.2.3 Point B: minimal past and future speeds

We deal with the case κ− =
√
µ− and κ+ = min(

√
µ−,

√
µ+) =

√
µ , that is, asymptotic speeds c± given by

c− = 2
√
µ− and c+ =




2
√
µ+ if µ− ≥ µ+√
µ− +

µ+√
µ−

otherwise.
(2.19)

To this aim, we make use of the “critical” transition front u connecting 0 and 1 for (1.1), which can be
constructed as in [31]. Namely, there is a sequence (xn)n∈N in R such that the solutions un of (1.1) for t > −n
and emerging from un(−n, ·) = 1(−∞,xn) at time −n, converge locally uniformly in R×R, up to extraction
of a subsequence, to an entire solution 0 < u < 1 of (1.1) such that u(0, 0) = 1/2 and u is decreasing
in x. Furthermore, since the Heaviside function is steeper than any function ranging in [0, 1], it follows
from [1] that u is critical in the following sense: if 0 < v < 1 is any solution of (1.1) coinciding with u at
some (t0, x0) ∈ R × R, then either v ≡ u in R × R, or u(t0, x) > v(t0, x) for x < x0 and u(t0, x) < v(t0, x)
for x > x0. In other words, u is steeper than any entire solution 0 < v < 1 of (1.1). Taking as v a
suitable translation of one of the transition fronts (uκ)0<κ<

√
µ connecting 0 and 1 for (1.1) provided by

Proposition 2.1, we conclude, as in (2.15), that u is a transition front connecting 0 and 1.
From this one claims that, if X is a function for which the critical front u satisfies (1.6), and v is

transition front connecting 0 and 1 with asymptotic past and future speeds c̃±, then

lim sup
t→±∞

X(t)

t
≤ c̃±. (2.20)

More precisely, the inequality lim supt→+∞X(t)/t ≤ c̃+ can be established as in (2.16). On the other hand,
if we assume by contradiction that lim supt→−∞X(t)/t > c̃− and if X̃ : R → R denotes a function for
which (1.6) holds for the transition front v, then there is a sequence (tn)n∈N in R diverging to −∞ and such
that X(tn)− X̃(tn) → −∞ as n → +∞. Let ρ > 0 be any positive real number. It follows then from (1.7)
for X and (1.6) for X̃ that u(tn, X(tn)) < v(tn, X(tn)+ρ) for n large enough, whence u(tn, x) < v(tn, x+ρ)
for all x ≥ X(tn) by the criticality of u. Since u < 1 in R × R and since infx≤X(tn) v(tn, x + ρ) → 1

as n → +∞ by (1.6) for X̃, one infers that u(tn, ·) ≤ 2v(tn, · + ρ) in R for all n large enough. Hence,
for n large enough, u(t, x) ≤ min

(
2v(t, x + ρ), 1

)
for all t ≥ tn and x ∈ R by the maximum principle,

since min
(
2v(t, x + ρ), 1

)
is a generalized supersolution of (1.1) by the last hypothesis in (1.2). By let-

ting n → +∞, one concludes in particular that 0 < u(0, 0) ≤ 2v(0, ρ) and the limit ρ → +∞ leads to a
contradiction, since v(0,+∞) = 0.
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As a consequence of (2.20), by considering all fronts v given by Proposition 2.3, one derives
lim supt→±∞X(t)/t ≤ c±, with c± given by (2.19). Proposition 2.4 therefore implies that u has the desired
asymptotic past speed c− = 2

√
µ−, as well as the desired asymptotic future speed c+ = 2

√
µ+ in the

case µ− ≥ µ+.
Suppose now that µ− < µ+. In this case the future speed of u will not coincide with the critical

speed 2
√
µ+ for the limiting problem as t → +∞, and thus the spreading property given by Proposition 2.4

does not allow us to conclude. In order to show that u has the desired future speed in this case, we make
use of the following lower bound on the exponential decay of the transition front u:

∀ t ∈ R, ∀λ >
√
µ−, inf

x>0
eλxu(t, x) > 0. (2.21)

We postpone the proof of this estimate until the next subsection (see Corollary 2.8 below) and we complete
the proof of the limit

X(t)

t
→ c+ =

√
µ− +

µ+√
µ−

as t → +∞.

By hypothesis (1.3), for ε ∈ (0, 1), there exists Tε ∈ R such that f(t, s) ≥ (1 − ε)f+(s) for all t > Tε

and s ∈ (0, 1). For any given κ ∈ (0,
√

(1− ε)µ+), the homogeneous problem (2.12) admits a standard
traveling front φκ,ε(x− cκ,εt) connecting 0 and 1 with speed

cκ,ε = κ+
(1− ε)µ+

κ
.

The function φκ,ε(x − cκ,εt) is thus a subsolution to (1.1) for t > Tε, x ∈ R. It is also well known [2, 46]
that φκ,ε decays like e−κx as x → +∞. Consequently, for all choices of ε ∈ (0, 1) and κ satis-
fying

√
µ− < κ <

√
(1− ε)µ+, we deduce from (2.21) that u(Tε, x) > φκ,ε(x) for x larger than

some xκ,ε ∈ R. Hence, since infx≤xκ,ε u(Tε, x) > 0 by (1.6) and the continuity and positivity of u, there
exists δκ,ε ∈ (0, 1) such that u(Tε, ·) > δκ,εφκ,ε in R. Notice that δκ,εφκ,ε(x − cκ,εt) is also a subsolution
to (1.1) for t > Tε and x ∈ R, by the last hypothesis in (1.2). The parabolic comparison principle then
yields u(t, x) ≥ δκ,εφκ,ε(x− cκ,ε(t− Tε)) for all t > Tε and x ∈ R. This eventually implies

lim inf
t→+∞

X(t)

t
≥ cκ,ε = κ+

(1− ε)µ+

κ
(2.22)

for all 0 < ε < 1 and κ satisfying
√
µ− < κ <

√
(1− ε)µ+, from which the desired result follows by

letting κ → √
µ− and then ε → 0.

The convergence to the profile of the critical standard front for the homogeneous nonlinearities f−
as t → −∞ follows from the criticality property, analogously to the convergence as t → +∞ in the case
of critical future speed treated above. The same situation holds for the convergence as t → +∞ in the
case µ+ ≤ µ+. As mentioned after the statement of Theorem 1.3, in the case µ+ > µ− we derive the
following weaker result.

Proposition 2.5. In addition to the hypotheses of Theorem 1.3, assume that f+ is C2 and concave and

that µ+ > µ−. Then there exists a sequence (tn)n∈N diverging to +∞ and a bounded function ξ : R → R

such that the critical transition front u with asymptotic speeds c− = 2
√
µ− and c+ =

√
µ− + µ+/

√
µ− given

by Theorem 1.3 satisfies u(tn, X(tn) + ξ(tn) + ·) → φc+ in C2(R) as n → +∞.

Proof. We keep the same notation as above. Property (1.9) implies that the linear interpolation of the
function Z ∋ z 7→ X(z) is Lipschitz-continuous and that the difference between such function and X is
bounded on R. Hence, it is not restrictive to assume that u satisfies (1.6) with X Lipschitz-continuous. It
makes then sense to consider the a.e. defined derivative of X, which can be interpreted as an instantaneous
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speed of u. We will apply to the function X ′ a result quoted from [33] concerning its upper mean. We recall
that the upper mean of a function g ∈ L∞(R) is defined by

⌈g⌉ := lim
t→+∞

sup
τ∈R

1

t

∫ τ+t

τ
g(s)ds.

In order to focus on positive times, we actually define

c(t) :=

{
X ′(t) for a.e. t > 0

0 for t ≤ 0.

Applying Proposition 4.4 of [33] to the function t 7→ −c(−t), we infer the existence of a sequence (tn)n∈N
such that c(tn + ·) converges as n → +∞, in the L∞(R) weak-⋆ topology, to some function c̃ ∈ L∞(R) such
that (1/t)

∫ t
0 c̃(s)ds → ⌈c⌉ as t → −∞. Since

⌈c⌉ ≥ lim
t→+∞

1

t

∫ t

0
c(s)ds = lim

t→+∞
X(t)−X(0)

t
= c+ > 0,

the sequence (tn)n∈N necessarily diverges to +∞ as n → +∞. As n → +∞, (a subsequence
of) u(tn+·, X(tn)+·) converges locally uniformly in R×R to a solution 0 ≤ ũ ≤ 1 of the limiting equation with
nonlinearity f+. We claim that ũ is a transition front connecting 0 and 1 for that equation, satisfying (1.6)
with X̃(t) =

∫ t
0 c̃(s)ds. Indeed, for any given ε ∈ (0, 1), let M ≥ 0 be such that u(τ,X(τ) + x) ≥ 1 − ε

(resp. u(τ,X(τ) + x) ≤ ε) for all t ∈ R and x ≤ −M (resp. x ≥ M). Now, for any t ∈ R and x ≤ −M ,

ũ(t, X̃(t) + x) = lim
n→+∞

u
(
tn + t,X(tn) +

∫ t

0
c̃(s)ds+ x

)
= lim

n→+∞
u
(
tn + t,X(tn) +

∫ t

0
c(tn+s)ds+ x

)
.

But, for n large enough, one has X(tn) +
∫ t
0 c(tn + s)ds = X(tn + t) since tn → +∞, whence

u(tn + t,X(tn) +
∫ t
0 c(tn + s)ds + x) = u(tn + t,X(tn + t) + x) ≥ 1 − ε for n large enough. There-

fore, ũ(t, X̃(t) + x) ≥ 1− ε. Similarly, one can prove that ũ(t, X̃(t) + x) ≤ ε for all t ∈ R and x ≥ M .
As a consequence, the transition front ũ admits an asymptotic past speed equal to limt→−∞ X̃(t)/t = ⌈c⌉,

with ⌈c⌉ ≥ c+ =
√
µ− + µ+/

√
µ− > 2

√
µ+ (remember that 0 < µ− < µ+ here). We then know from

Theorem 1.7 of [19] that the transition front ũ also admits an asymptotic future speed c̃+ = limt→+∞ X̃(t)/t
which is larger than or equal to the past speed, namely, c̃+ ≥ ⌈c⌉. The reverse inequality is a consequence
of the definition of upper mean, and therefore ũ has past and future speeds both equal to ⌈c⌉. It follows
then from Remark 4.1 of [19] that ũ is a standard traveling front of the type ũ(t, x) = φ⌈c⌉(x−⌈c⌉t) for the
limiting equation with nonlinearity f+. Since φ⌈c⌉(−∞) = 1, φ⌈c⌉(+∞) = 0 and 0 < u < 1 is decreasing
in x, the (subsequence of) u(tn, X(tn) + ξ(tn) + ·) actually converges to φ⌈c⌉ uniformly in R, and then
in C2(R) by parabolic estimates.

It then only remains to show that ⌈c⌉ = c+, i.e., that ⌈c⌉ ≤ c+. Consider the same family (uκ)0<κ<
√
µ−

as in Proposition 2.1. For κ ∈ (0,
√
µ−), call

Xκ(t) :=

∫ t

0

(
κ+

µ(s)

κ

)
ds for all t ∈ R,

and let ξκ be a bounded function such that uκ(t,Xκ(t) + ξκ(t)) = 1/2 for all t ∈ R. It follows from
the monotonicity in x of uκ that uκ(t,Xκ(t) + ξκ(t) + x) ≥ 1/2 for all (t, x) ∈ R × R−. Moreover, let-
ting L ∈ R be such that u(t,X(t) + L) < 1/2 for all t ∈ R, the steepness property of the critical front u
yields uκ(t,Xκ(t) + ξκ(t) + x) ≥ u(t,X(t) + L+ x) for all (t, x) ∈ R× R+. Hence, for all τ ∈ R and x ∈ R,
2uκ(τ,Xκ(τ) + ξκ(τ) + x) ≥ u(τ,X(τ) + L+ x). The comparison principle then yields

2uκ(τ + t,Xκ(τ) + ξκ(τ) + x) ≥ u(τ + t,X(τ) + L+ x) for all τ ∈ R, (t, x) ∈ R+ × R.
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From this inequality and the fact that uκ and u fulfil (1.6)-(1.7) with Xκ and X respectively, one readily
deduces the existence of a positive constant C such that

X(τ + t)−X(τ) ≤ Xκ(τ + t)−Xκ(τ) + C =

∫ τ+t

τ

(
κ+

µ(s)

κ

)
ds+ C for all τ ∈ R, t ∈ R+.

As a consequence, recalling that c = 0 on R−, we derive ⌈c⌉ ≤ κ + µ+/κ, from which ⌈c⌉ ≤ c+ follows by
letting κ ր √

µ−.

2.2.4 Segment (AB): critical past speed and non-minimal future speed

It remains to consider the case κ− =
√
µ− and 0 < κ+ < min(

√
µ−,

√
µ+), that is, c− = 2

√
µ−

and c+ = κ+ + µ+/κ+ with 0 < κ+ <
√
µ. We define the front u as in the proof of Proposition 2.3,

taking as u1 the front with minimal past and future speeds of the previous case and as u2 the front given
by Proposition 2.1 with κ = κ+. Notice that u1 has strictly slower asymptotic past and future speeds
than u2. Moreover, by the criticality property, u1(0, x) ≤ u2(0, x) for x larger than some x0, whence there
is M ≥ 1 such that u1(0, x) ≤ Mu2(x, 0) for all x ∈ R. These are the properties that allow one to apply
the arguments of the first step in the proof of Proposition 2.3 and to conclude that u has the desired past
and future speeds.

Property (1.14) is also a consequence of the arguments in the proof of Proposition 2.3. More precisely,
we have seen there that |u(t, x) − u1(t, x)| → 0 as t → −∞ uniformly in x ∈ R, and thus the convergence
as t → −∞ in (1.14) follows because we know from the previous case that it is satisfied by u1. The
convergence as t → +∞ is proved in Step 3 of the proof of Proposition 2.3.

2.3 Exponential behaviour of supersolutions

In this subsection we derive a sharp lower bound on the exponential decay of supersolutions of homogeneous
equations, in the spirit of Lemma 3.1 in [36]. Let us mention that the arguments can be extended to higher
dimensional cases.

Theorem 2.6. Let u be a nonnegative classical supersolution of ut ≥ uxx + g(u) for t ≤ 0 and x ∈ R,

with g : R → R of class C1 such that g(0) = 0 and g′(0) > 0, and assume that there exists a func-

tion X : (−∞, 0] → R for which

inf
t≤0, x≤0

u(t, x+X(t)) > 0 and c := lim sup
t→−∞

X(t)

t
< +∞. (2.23)

Then, either c < 2
√

g′(0) and inft≤0, x∈R u(t, x) > 0, or c ≥ 2
√
g′(0) and

∀λ >
c+

√
c2 − 4g′(0)

2
, inf

x≥0
eλxu(0, x) > 0.

Proof. We distinguish the two cases. The interesting case is c ≥ 2
√

g′(0), the other one being a consequence
of the standard spreading result.

Case c < 2
√

g′(0). Call m := inft≤0, x≤0 u(t, x+X(t)) > 0, and let v be the solution of the Cauchy pro-
blem vt = vxx + g(v), t > 0, x ∈ R, with initial datum v(0, x) = m1(−∞,0](x), x ∈ R. Take γ ∈ (c, 2

√
g′(0)).

The spreading result [2] and the fact that v is nonincreasing in x, because so is its initial datum, imply

m′ := lim inf
t→+∞

(
inf
x≤γt

v(t, x)
)
> 0. (2.24)

For any s ≤ 0, the function v−s(t, x) := v(t − s, x − X(s)) lies below u at time t = s. Then, by the
comparison principle, we derive that, for all s ≤ t ≤ 0 and x ∈ R, u(t, x) ≥ v(t − s, x −X(s)). From this,
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since for fixed t ≤ 0 and x ∈ R, x−X(s) ≤ γ(t− s) for −s large enough, letting s → −∞ and using (2.24)
we get u(t, x) ≥ m′.

Case c ≥ 2
√
g′(0). Take λ > (c+

√
c2 − 4g′(0))/2 > 0. Let (ηn)n≥2 be the functions defined by

ηn(t, x) :=

(
1− x

ln(t+ 2n)

)λ ln(t+2n)

for t ≥ −n, 0 ≤ x < ln(t+ 2n).

For ε > 0 and n ≥ 2, calling for short ρ := 1− x/ ln(t+ 2n) ∈ (0, 1], we find that ηn satisfies in its domain
of definition

∂tηn − ∂xxηn − (c+ ε)∂xηn
ηn

=
λ

t+ 2n
(ln ρ+ ρ−1 − 1)− λ2ρ−2 +

λ

ln(t+ 2n)
ρ−2 + λ(c+ ε)ρ−1

≤ λρ−2

(
ρ− ρ2

t+ 2n
+

1

ln(t+ 2n)

)
− λ2ρ−2 + λ(c+ ε)ρ−1.

For any given n ≥ 2, there exists then hn > 0 independent of t ≥ −n and x ∈ [0, ln(t+ 2n)) such that

∂tηn − ∂xxηn − (c+ ε)∂xηn
ηn

≤ λ
c+ ε

ρ
− λ2 − λhn

ρ2
, t > −n, 0 ≤ x < ln(t+ 2n),

with hn → 0 as n → +∞. If hn < λ then the right-hand side above is increasing in ρ ∈ (0, 2(λ−hn)/(c+ε)].
Notice that 2λ/(c + ε) > 1 for ε > 0 small enough, because λ > c/2. Hence, for ε > 0 small
enough, 2(λ− hn)/(c+ ε) > 1 for n large and thus, since ρ ∈ (0, 1], under such conditions we find that

∂tηn − ∂xxηn − (c+ ε)∂xηn
ηn

≤ cλ− λ2 + λ(ε+ hn), t > −n, 0 ≤ x < ln(t+ 2n).

On the other hand, one has cλ− λ2 < g′(0), whence there exist k > 0 and ε > 0 small enough, and n0 ∈ N

large enough, such that, for all n ≥ n0, the function ηn satisfies

∂tηn − ∂xxηn − (c+ ε)∂xηn ≤ (g′(0)− k)ηn, t > −n, 0 ≤ x < ln(t+ 2n).

Notice that ηn is bounded by 1, and thus, for β > 0 small enough independent of n (large enough), the
function un defined by

un(t, x) :=

{
β ηn(t, x− (c+ ε)t) if t ≥ −n, 0 ≤ x− (c+ ε)t < ln(t+ 2n)

0 if t ≥ −n, x− (c+ ε)t ≥ ln(t+ 2n).

is a generalized subsolution of vt = vxx + g(v) in the domain −n < t < 0, x > (c + ε)t. We claim
that β can be chosen in such a way that, for n large enough, un lies below u on the parabolic boundary
of this (t, x)-domain. For the initial time t = −n, we see that un(−n, x) ≤ β × 1[−(c+ε)n,−(c+ε)n+lnn](x) for
every x ≥ −(c+ ε)n, whereas, at the boundary x = (c+ ε)t, un(t, (c+ ε)t) = β for all −n < t < 0. On the
other hand, by (2.23) there exists T < 0 such that

inf
t≤T, (c+ε)t≤x≤(c+ε)t+ln(−t)

u(t, x) > 0.

Lastly, inf−T≤t≤0 u(t, (c + ε)t) > 0 by the strong maximum principle, and thus the claim follows. We
can therefore apply the comparison principle and infer that, for n large enough, un(t, x) ≤ u(t, x) for
all −n ≤ t ≤ 0 and x ≥ (c+ ε)t. In particular,

∀x ∈ [0, ln(2n)), u(0, x) ≥ βηn(0, x) = β

(
1− x

ln(2n)

)λ ln(2n)

,

from which we eventually derive u(0, x) ≥ βe−λx for x ≥ 0, by letting n → +∞.
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Remark 2.7. One cannot expect to get in general a better lower bound for the exponential decay rate
of supersolutions than the one in Theorem 2.6. Indeed, if g is a positive constant, then for all c ≥ 2

√
g,

the function u defined by u(t, x) := e−λ(x−ct), with λ = (c +
√

c2 − 4g)/2, satisfies ut = uxx + gu. In-
stead, if one restricts to transition fronts, the result is far to be optimal: if g is a KPP-type nonlinearity
such that g(0) = g(1) = 0 and 0 < g(s) ≤ g′(0)s for all s ∈ (0, 1), standard traveling fronts φ(x − ct)
with speed c decay exponentially as x → +∞ with exponent (c −

√
c2 − 4g′(0))/2 in the sense that

limx→+∞(lnφ(x))/x = −(c−
√
c2 − 4g′(0))/2. This exponent coincides with our bound only in the critical

case c = 2
√

g′(0). The smallest bound
√
g′(0) in Theorem 2.6 is provided by the slowest traveling front,

i.e. the critical one, for which the bound is sharp. Then, as shown in Corollary 2.8 below, the property of
the critical front allows one to derive the same bound for all other transition fronts, but it is not sharp in
those cases.

Corollary 2.8. Under the assumptions (1.2) and (1.3), any solution 0 < u < 1 to (1.1) satisfies (2.21).

Proof. Suppose first that u is the “critical” transition front of [31], introduced in Section 2.2.3 for con-
structing a front with minimal past and future speeds. In particular, letting X be the function for
which u satisfies (1.6), the first condition in (2.23) holds by (1.6) and (1.7), and the second one holds
with c = 2

√
µ−. Moreover, by (1.3), for any 0 < ε < 1, there exists Tε ∈ R such that u is a supersolution

of ut = uxx + (1 − ε)f−(u) for t ≤ Tε and x ∈ R. Thus, for τ ≤ Tε, we can apply Theorem 2.6 to the
function u(· + τ, ·) and, since c = 2

√
µ− ≥ 2

√
(1− ε)f ′

−(0), we infer that infx≥0 e
λxu(τ, x) > 0 for any λ

such that

λ >
2
√
µ− +

√
4µ− − 4(1− ε)µ−

2
= (1 +

√
ε)
√
µ−.

It is easy to see that the property infx≥0 e
λxu(τ, x) > 0 for such a λ is preserved for τ > Tε, by comparing u

with the function k e−λx for k > 0 small enough, on the domain t ∈ (Tε, τ), x > 0. Indeed, such a function
is a subsolution of (1.1) and k > 0 can be chosen in such a way that this function lies below u on the
parabolic boundary ({Tε} × [0,+∞)) ∪ ([Tε, τ ]× {0}). Due to the arbitrariness of ε ∈ (0, 1), this concludes
the proof of the corollary in the case where u is the critical transition front.

Let now 0 < v < 1 be a solution to (1.1). Fix t ∈ R. Up to translating the critical transition front u
in space, it is not restrictive to assume that u(t, 0) = v(t, 0). Hence, the criticality property recalled in the
previous subsection yields v(t, x) ≥ u(t, x) for x ≥ 0, whence v satisfies (2.21) because u does.

2.4 Proof of (1.17)

In Theorem 1.3, we proved the existence of transition fronts connecting 0 and 1 for (1.1) and having
asymptotic past and future speeds c± given by (1.13). We prove here the stronger property (1.17), except
possibly when µ+ > µ− and the speeds c± satisfy c− = 2

√
µ− and c+ =

√
µ− + µ+/

√
µ−. Actually, in the

case where c± > 2
√
µ±, the limits (1.17) follow immediately from the definitions (2.3), (2.4) and (2.6) used

in the proof of Proposition 2.3. In the general case, which is treated here, the property will follow from the
convergence (1.14).

Let us only prove the second limit in (1.17), since the first one can be shown similarly. Let u be
a transition front constructed in Theorem 1.3 (in all cases except when µ+ > µ− and the speeds c±
satisfy c− = 2

√
µ− and c+ =

√
µ− + µ+/

√
µ−) and let ξ : R → R be a bounded function such

that u(t,X(t)+ ξ(t)+ ·) → φc+ in C2(R) as t → +∞. As done in Step 3 of the proof of Proposition 2.3, for
any sequence (tn)n∈N in R diverging to +∞, the functions (τ, x) 7→ u(tn + τ,X(tn) + ξ(tn) + x) converge,
up to extraction of a subsequence, locally uniformly in R×R to an entire solution 0 ≤ u∞(τ, x) ≤ 1 of (1.1)
with nonlinearity f+, such that u∞(0, x) = φc+(x). By uniqueness of the solution of the Cauchy problem
associated with this limiting equation, one infers that u∞(τ, x) = φc+(x − c+τ) for all τ > 0 and x ∈ R.
Since the limit is uniquely determined, it follows that, for any τ > 0,

u(t+ τ,X(t) + ξ(t) + x) → φc+(x− c+τ) as t → +∞ (2.25)
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locally uniformly in x ∈ R (and then uniformly in R, by (1.6), (1.9), φc+(−∞) = 1 and φc+(+∞) = 0).
This limit, together with (1.14) applied with t+ τ and the fact that the function φc+ is decreasing, implies
that, for any τ > 0, X(t+ τ)−X(t) + ξ(t+ τ)− ξ(t) → c+τ as t → +∞,2 whence

lim sup
t→+∞

∣∣X(t+ τ)−X(t)− c+τ
∣∣ ≤ 2‖ξ‖L∞(R). (2.26)

Assume now by contradiction that the second property in (1.17) does not hold. Since X is locally
bounded and since X(s)/s → c+ as s → +∞, this means that there exist ε > 0 and some sequences (tn)n∈N
and (τn)n∈N of positive real numbers diverging to +∞ and such that

∣∣∣∣
X(tn + τn)−X(tn)

τn
− c+

∣∣∣∣ ≥ ε for all n ∈ N. (2.27)

Choose now τ > 0 such that 2‖ξ‖L∞(R)/τ < ε/2. By (2.26), let T > 0 be such that

∣∣X(t+ τ)−X(t)− c+τ
∣∣ ≤ 2‖ξ‖L∞(R) +

ετ

2
for all t ≥ T,

and let n0 ∈ N such that tn ≥ T for all n ≥ n0. For such n, write τn = knτ+τ ′n with kn ∈ N and 0 ≤ τ ′n < τ .
It follows that, for all n ≥ n0,

∣∣X(tn + τn)−X(tn)− c+τn
∣∣

≤
∣∣X(tn + τn)−X(tn + knτ)− c+τ

′
n

∣∣+
kn−1∑

k=0

∣∣X(tn + (k + 1)τ)−X(tn + kτ)− c+τ
∣∣

≤
∣∣X(tn + knτ + τ ′n)−X(tn + knτ)− c+τ

′
n

∣∣+
(
2‖ξ‖L∞(R) +

ετ

2

)
kn.

Since the sequence (τ ′n)n≥n0 is bounded and since τn → +∞ and kn/τn → 1/τ as n → +∞, one infers
from (1.9) that

lim sup
n→+∞

∣∣∣∣
X(tn + τn)−X(tn)− c+τn

τn

∣∣∣∣ ≤
(
2‖ξ‖L∞(R) +

ετ

2

)
× 1

τ
=

2‖ξ‖L∞(R)

τ
+

ε

2
< ε,

the last inequality being due to the choice of τ . This contradicts (2.27) and the proof is thereby complete. �

3 A priori bounds and asymptotic limits of transition fronts

This section is chiefly devoted to the proof of Theorem 1.4 (done in Section 3.2) on the optimality of the
bounds (1.13) for the asymptotic past and future speeds c± as t → ±∞ of any transition front connecting 0
and 1 for (1.1). We also show the existence of the asymptotic speeds and the convergence to some asymptotic
profiles for any supercritical front. We first recall in Section 3.1 some useful results of [14, 19] on transition
fronts in the case of homogeneous concave nonlinearities f = f(u). Finally, Section 3.3 is devoted to the
proof of Theorem 1.7.

3.1 Transition fronts in the time-independent case

In this section, we focus on a particular time-independent version of (1.1). Namely, let g : [0, 1] → R

be any C2 concave function such that g(0) = g(1) = 0 and g(u) > 0 for all u ∈ (0, 1). Consider the
equation (1.1) with f(t, u) = g(u), that is

ut = uxx + g(u), t ∈ R, x ∈ R. (3.1)

2Notice that this limit also holds for τ < 0, by setting t
′ = t+ τ and writing t = t

′ + |τ |.
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For (3.1), standard traveling fronts ϕc(x − ct) such that ϕc(−∞) = 1 > ϕc > ϕc(+∞) = 0 exist if and
only if c ≥ c∗ := 2

√
g′(0), see [2, 22]. Furthermore, the functions ϕc are decreasing, unique up to shifts and

one can assume without loss of generality that they satisfy
{

ϕc(ξ) ∼ e−λcξ for c > c∗

ϕc∗(ξ) ∼ ξ e−λc∗ξ for c = c∗
as ξ → +∞, (3.2)

where

λc =
c−

√
c2 − 4g′(0)

2
for c ≥ c∗. (3.3)

Notice in particular that λc∗ =
√

g′(0) = c∗/2 =: λ∗. With the normalization (3.2), it is known
that ϕc(ξ) ≤ e−λcξ for all c > c∗ and for all ξ ∈ R. Lastly, let θ : R → (0, 1) be the unique solution
of θ′(t) = g(θ(t)), t ∈ R such that θ(t) ∼ eg

′(0)t as t → −∞.
The standard traveling fronts ϕc(±x−ct) are entire solutions ranging in (0, 1) and they are the keystones

in the construction of many other solutions. More precisely, following [14], let Ψ be the bijection defined by

Ψ : [−λ∗, λ∗] = [−
√

g′(0),
√

g′(0)] → X :=
(
R\(−c∗, c∗)

)
∪ {∞}

λ 6= 0 7→ λ+
g′(0)
λ

λ = 0 7→ ∞

and let us endow X with the topology induced by the image by Ψ of the Borel topology of [−λ∗, λ∗]. In
other words, a subset O of X is open if Ψ−1(O) is open relatively in [−λ∗, λ∗]. Now, let M be the set of all
nonnegative Borel measures µ on X such that 0 < µ(X ) < +∞. It follows then from Theorem 1.2 of [14]
and formula (30) of [14] that there is a one-to-one map

µ 7→ uµ

from M to the set of solutions 0 < u < 1 of (3.1). Furthermore, for each µ ∈ M, calling
M = µ

(
X\{−c∗, c∗}

)
, the solution uµ satisfies

max
(
ϕc∗
(
x− c∗t− c∗ lnµ(c∗)

)
, ϕc∗

(
− x− c∗t− c∗ lnµ(−c∗)

)
,

M−1

∫

R\[−c∗,c∗]
ϕ|c|
(
(sgn c)x−|c|t−|c| lnM

)
dµ(c) + M−1θ(t+lnM)µ(∞)

)

≤ uµ(t, x) ≤ ϕc∗
(
x− c∗t− c∗ lnµ(c∗)

)
+ ϕc∗

(
− x− c∗t− c∗ lnµ(−c∗)

)

+M−1

∫

R\[−c∗,c∗]
e−λ|c|((sgn c)x−|c|t−|c| lnM)dµ(c) + M−1eg

′(0)(t+lnM)µ(∞)

(3.4)

for all (t, x) ∈ R
2, under the convention that the terms involving M are not present if M = 0,

that µ(±c∗) = µ
(
{±c∗}

)
and µ(∞) = µ

(
{∞}

)
, and that ln 0 = −∞. The estimate (3.4) reflects diffe-

rent types of contributions weighted by µ: critical standard fronts, supercritical standard fronts and the
spatially homogeneous solution. The solutions uµ are decreasing (resp. increasing) with respect to x
if µ
(
(−∞,−c∗] ∪ {∞}

)
= 0, that is, if uµ is a measurable interaction of right-moving spatially decreasing

traveling fronts ϕc(x − ct) (resp. if µ
(
[c∗,+∞) ∪ {∞}

)
= 0, that is, if uµ is a measurable interaction of

left-moving spatially increasing traveling fronts ϕ|c|(−x−|c|t)). Lastly, we point out that these solutions uµ
almost describe the set of all solutions of (3.1). Indeed, on the one hand, it follows from [2] that any
solution 0 < u < 1 of (3.1) is such that max[−c|t|,c|t|] u(t, ·) → 0 as t → −∞ for every c ∈ [0, c∗), while,
on the other hand, the following almost-uniqueness result was proved in [14]: if a solution 0 < u(t, x) < 1
of (3.1) is such that

∃ c > c∗, max
[−c|t|,c|t|]

u(t, ·) → 0 as t → −∞, (3.5)

24



then there is a measure µ ∈ M such that u = uµ and the support of µ does not intersect the interval (−c, c).
For the one-dimensional equation (3.1), it is conjectured that any solution 0 < u(t, x) < 1 is of the type uµ,
even without (3.5).

In [19] (Theorems 1.11 and 1.14), we showed a necessary and sufficient condition for a solution of the
type uµ to be a transition front connecting 0 and 1 for problem (3.1), and we characterized the asymptotic
past and future speeds in this case:

Theorem 3.1. [19] Let g : [0, 1] → R be any C2 concave function such that g(0) = g(1) = 0 and g > 0 on

the interval (0, 1).
(i) Under the above notations, a solution uµ of (3.1) associated with a measure µ ∈ M is a transition front

connecting 0 and 1 if and only if the support of µ is bounded and is included in [c∗,+∞) = [2
√

g′(0),+∞).
(ii) Assume here that the support of µ is compactly included in [c∗,+∞) and let c− and c+ denote the

leftmost and rightmost points of the support of µ. Then uµ has asymptotic past and future speeds equal to c±
in the sense of (1.6) and (1.12). Furthermore, if c− > c∗, then there is a bounded function ξ : R → R such

that uµ(t,X(t) + ξ(t) + ·) → ϕc± in C2(R) as t → ±∞.

It has also been proved in [19] that, under the assumptions of part (ii) above, there holds
lim supt→−∞ |X(t)− c−t| < +∞ if µ(c−) := µ

(
{c−}

)
> 0 and X(t)− c−t → −∞ as t → −∞ if µ(c−) = 0,

while lim supt→+∞ |X(t) − c+t| < +∞ if µ(c+) := µ
(
{c+}

)
> 0) and X(t) − c+t → −∞ as t → +∞

if µ(c+) = 0. On the other hand, Theorem 3.1 also implies that not all solutions 0 < u(t, x) < 1 of (3.1)
such that u(t,−∞) = 1 and u(t,+∞) = 0 for all t ∈ R are transition fronts: namely, any solution of
the type u = uµ for which the support of µ is included in [c∗,+∞) but is not compact satisfies the
above limits (roughly speaking, for such solutions, the transition region between 0 and 1 is not uniformly
bounded in time). As another corollary of Theorem 3.1 (see Theorem 1.6 in [19]), it follows that tran-
sition fronts connecting 0 and 1 for (3.1) and having asymptotic past and future speeds c± exist if and
only if c∗ ≤ c− ≤ c+ < +∞. For further results and comments on the transition fronts for homogeneous
equation (3.1), we refer to [19].

To complete this subsection, we include an additional comparison result (see Proposition 2.1 in [19])
which has its own interest and will be used in particular in the proof of Theorem 1.4 in Section 3.2. It
provides uniform lower and upper bounds of a solution uµ of (3.1) on the left and right of its level sets,
when the measure µ ∈ M is compactly supported in [c∗,+∞). These bounds say that the uµ is steeper
than the standard front associated to any speed larger than its support.

Proposition 3.2. [19] Let g : [0, 1] → R be any C2 concave function such that g(0) = g(1) = 0
and g > 0 on the interval (0, 1). Let µ be any measure in M that is supported in [c∗, γ] = [2

√
g′(0), γ] for

some γ ∈ [c∗,+∞), and let 0 < uµ < 1 be the solution of (3.1) that is associated to the measure µ. Then,

for every (t, y) ∈ R
2, {

uµ(t, y + x) ≥ ϕγ

(
ϕ−1
γ (uµ(t, y)) + x

)
for all x ≤ 0,

uµ(t, y + x) ≤ ϕγ

(
ϕ−1
γ (uµ(t, y)) + x

)
for all x ≥ 0,

(3.6)

where ϕ−1
γ : (0, 1) → R denotes the reciprocal of the function ϕγ.

3.2 Proof of Theorem 1.4

In this section, f : R× [0, 1] → R is any function satisfying the assumptions of Theorem 1.4 and u denotes
any transition front connecting 0 and 1 for problem (1.1), satisfying (1.6) for some X : R → R. First of all,
it follows from (1.9) and Proposition 2.4 that

2
√
µ± ≤ c± := lim inf

t→±∞
X(t)

t
≤ lim sup

t→±∞

X(t)

t
< +∞. (3.7)
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The general strategy to prove Theorem 1.4 will be to compare u on some time-intervals of the type (−∞, τ ]
with the solution v of the homogeneous reaction-diffusion equation (3.1) with g = f−. Then we derive a uni-
form exponential lower bound for v, and hence for u, by applying some results of Section 3.1. Furthermore,
the results on the qualitative properties of solutions of (3.1) with g = f− will provide the exact exponential
decay rate of u(t, ·) at +∞ if lim inft→−∞X(t)/t > 2

√
µ−. Lastly, by comparing u, for large positive times,

with the solutions of some homogeneous reaction-diffusion equations with nonlinearities close to f+, we get
the bound (1.19) for c+, and some passages to the limits will yield (1.14) in the supercritical case.

Step 1: construction of a solution v of a time-independent equation

For every n ∈ N, let vn be the solution of the Cauchy problem

{
(vn)t = (vn)xx + f−(vn), t > −n, x ∈ R,

vn(−n, x) = u(−n, x), x ∈ R.
(3.8)

Since 0 < u < 1 in R
2 and f−(0) = f−(1) = 0, the maximum principle yields 0 < vn(t, x) < 1 for all n ∈ N

and (t, x) ∈ [−n,+∞) × R. From standard parabolic estimates, it follows that, up to extraction of a
subsequence, the functions vn converge locally uniformly in R

2 to a solution v of the homogeneous equation

vt = vxx + f−(v), t ∈ R, x ∈ R (3.9)

such that 0 ≤ v(t, x) ≤ 1 for all (t, x) ∈ R
2.

Step 2: comparisons between v and u

Let us recall here the existence of a continuous L1(−∞, 0) function ζ such that the assumption (1.18) holds.
Furthermore, since the C1(R × [0, 1]) function f vanishes on R × {0, 1} and since f− is positive in (0, 1)
and concave in [0, 1] (one has in particular f ′

−(0) > 0 > f ′
−(1)), it follows, as said in Remark 1.5, that

the function ζ− : t 7→ sups∈(0,1)
∣∣f(t, s)/f−(s) − 1

∣∣ is continuous. Therefore, even if it means changing ζ
into ζ− on the whole R, one can assume without loss of generality that there exists a nonnegative continuous
function ζ : R → R such that (1.18) holds for all t ∈ R, that is

(1− ζ(t)) f−(s) ≤ f(t, s) ≤ (1 + ζ(t)) f−(s) for all t ∈ R and s ∈ [0, 1], (3.10)

and ζ ∈ L1(−∞, τ) for all τ ∈ R. Let us now define

Θ(t) =

∫ t

−∞
ζ(τ)dτ for t ∈ R. (3.11)

Lemma 3.3. There holds

u(t, x) e−µ−Θ(t) ≤ v(t, x) ≤ u(t, x) eµ−Θ(t) for all (t, x) ∈ R
2. (3.12)

Proof. For every n ∈ N, let ϕn be the function defined in [−n,+∞) by ϕn(t) = exp
(
µ−
∫ t
−n ζ(τ)dτ

)
. For

the proof of the upper bound in (3.12), denote wn(t, x)=u(t, x)ϕn(t) for (t, x)∈ [−n,+∞)×R. Let us check
that the function wn is a supersolution for the equation (3.8) satisfied by vn in [−n,+∞)×R. First of all,
we observe that wn(−n, x) = u(−n, x) = vn(−n, x) for all x ∈ R, and that vn < 1 in [−n,+∞) × R. For
every (t, x) ∈ (−n,+∞)× R such that wn(t, x) < 1, there holds

(wn)t(t, x)−(wn)xx(t, x)−f−(wn(t, x)) = ut(t, x)ϕn(t)+u(t, x)ϕ′
n(t)−uxx(t, x)ϕn(t)−f−

(
u(t, x)ϕn(t)

)

= f
(
t, u(t, x)

)
ϕn(t) + µ− ζ(t)u(t, x)ϕn(t)− f−

(
u(t, x)ϕn(t)

)
.
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But, for such (t, x), one has f(t, u(t, x)) ≥ (1− ζ(t)) f−(u(t, x)) by (3.10), while

f−
(
u(t, x)ϕn(t)

)
≤ f−

(
u(t, x)

)
ϕn(t) and f−(u(t, x)) ≤ f ′

−(0)u(t, x) = µ−u(t, x)

since 0 < u(t, x) ≤ u(t, x)ϕn(t) < 1 and s 7→ f−(s)/s is nonincreasing on (0, 1). Therefore,

(wn)t(t, x)−(wn)xx(t, x)−f−(wn(t, x)) ≥ (1− ζ(t))f−(u(t, x))ϕn(t)+µ−ζ(t)u(t, x)ϕn(t)−f−(u(t, x))ϕn(t)

=
(
µ−u(t, x)− f−(u(t, x))

)
ζ(t)ϕn(t)

≥ 0

for every (t, x) ∈ (−n,+∞) × R such that wn(t, x) < 1. It follows then from the maximum principle
that wn(t, x) ≥ vn(t, x) for all (t, x) ∈ [−n,+∞) × R, that is vn(t, x) ≤ u(t, x) exp

(
µ−
∫ t
−n ζ(τ)dτ

)
for

all (t, x) ∈ [−n,+∞) × R. By passing to the limit as n → +∞ and using the definition (3.11), one infers
that v(t, x) ≤ u(t, x) eµ−Θ(t) for all (t, x) ∈ R

2, that is, the upper bound in (3.12) has been shown.
The proof of the lower bound in (3.12) uses a similar method. Namely, we set zn(t, x) = vn(t, x)ϕn(t)

for (t, x) ∈ [−n,+∞) × R and we will check that zn is a supersolution for the equation satisfied by u
in [−n,+∞)×R. First of all, we note that zn(−n, x) = vn(−n, x) = u(−n, x) for all x ∈ R and that u < 1.
Moreover, for every (t, x) ∈ (−n,+∞)× R such that zn(t, x) < 1, there holds

(zn)t(t, x)−(zn)xx(t, x)−f(t, zn(t, x))

= (vn)t(t, x)ϕn(t)+vn(t, x)ϕ
′
n(t)−(vn)xx(t, x)ϕn(t)− f

(
t, vn(t, x)ϕn(t)

)

= f−
(
vn(t, x)

)
ϕn(t) + µ−ζ(t) vn(t, x)ϕn(t)− f(t, vn(t, x)ϕn(t)).

But, as it was done for wn in the last paragraph,

f
(
t, vn(t, x)ϕn(t)

)
≤ (1 + ζ(t)) f−

(
vn(t, x)ϕn(t)

)

≤ f−
(
vn(t, x)ϕn(t)

)
+ ζ(t)µ− vn(t, x)ϕn(t)

≤ f−
(
vn(t, x)

)
ϕn(t) + ζ(t)µ− vn(t, x)ϕn(t),

whence (zn)t(t, x)− (zn)xx(t, x)− f(t, zn(t, x)) ≥ 0 for every (t, x) ∈ (−n,+∞)× R such that zn(t, x) < 1.
It follows then from the maximum principle that zn(t, x) ≥ u(t, x) for all (t, x) ∈ [−n,+∞) × R, that
is, vn(t, x) ≥ u(t, x) exp

(
−µ−

∫ t
−n ζ(τ)dτ

)
for all (t, x) ∈ [−n,+∞)×R. By passing to the limit as n → +∞

and using the definition (3.11), one concludes that v(t, x) ≥ u(t, x) e−µ−Θ(t) for all (t, x) ∈ R
2 and the proof

of Lemma 3.3 is thereby complete. �

Remark 3.4. One could wonder whether a comparison similar to that of Lemma 3.3 would hold or not for
the functions ũ := 1− u and ṽ := 1− v. Actually, such a comparison between ũ and ṽ is not clear. Indeed,
for instance, the function ṽ obeys ṽt = ṽxx + g−(ṽ) in R

2 where g−(s) = −f−(1 − s) on [0, 1]. But 0 is a
stable point of g− and the arguments used in the proof of Lemma 3.3 to compare u and v do not work as
such for ũ and ṽ. As a matter of fact, a comparison of the type (3.12) for 1 − u and 1 − v is not needed,
since only the exponential decay of u(t, x) and v(t, x) as x → +∞ will determine the asymptotic speeds
of u and v, as will be shown in the following steps.

Step 3: v is a transition front for (3.9) in (−∞, τ ]×R for all τ ∈R with the same family (X(t))t≤τ

Since 0 < u < 1 in R
2 and u(t,+∞) = 0 for every t ∈ R, it follows immediately from Lemma 3.3

that 0 < v(t0, x0) < 1 for at least a point (t0, x0) ∈ R
2. Since 0 ≤ v ≤ 1 in R

2, the strong maximum
principle actually implies that 0 < v(t, x) < 1 for all (t, x) ∈ R

2. The estimates (3.12) and the stability of 1
will then imply that v is a transition front connecting 0 and 1 for (3.9) with the same family (X(t)) as u in
any set of the type (−∞, τ ]× R, in the sense of the following lemma.
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Lemma 3.5. For every τ ∈ R, there holds
{

v(t,X(t) + x) → 1 as x → −∞
v(t,X(t) + x) → 0 as x → +∞

uniformly in t ∈ (−∞, τ ].

Proof. First of all, since the function Θ given in (3.11) is bounded in (−∞, τ ], it follows immediately
from (1.6) and Lemma 3.3 that v(t,X(t) + x) → 0 as x → +∞, uniformly in t ∈ (−∞, τ ].

In order to show the other part of the conclusion, let us assume on the contrary that there are ε > 0 and
a sequence (tn, xn)n∈N in (−∞, τ ] × R such that xn → −∞ as n → +∞ and v(tn, X(tn) + xn) ≤ 1 − ε for
all n ∈ N. Define, for all n ∈ N and (t, x) ∈ R

2, ṽn(t, x) = v(t+ tn, x+X(tn) + xn). Up to extraction of a
subsequence, the functions ṽn converge locally uniformly in R

2 to a solution v∞ of (3.9) such that 0 ≤ v∞ ≤ 1
in R

2 and v∞(0, 0) ≤ 1− ε. On the other hand, since xn → −∞ as n → +∞, it follows from (1.6) and (1.9)
that

u(t+ tn, x+X(tn) + xn) → 1 as n → +∞, locally uniformly in (t, x) ∈ R
2.

Since Θ is bounded in (−∞, τ ], whence Θ ≤ Aτ in (−∞, τ ] for some Aτ ∈ R, the first inequality in (3.12)
yields v∞(t, x) ≥ e−µ−Aτ for all (t, x) ∈ (−∞, 0] × R. One infers from the maximum principle that, for
every s < t ≤ 0 and x ∈ R, one has v∞(t, x) ≥ ρ(t − s), where ρ : R → (0, 1) denotes the solution of
the ordinary differential equation ρ′ = f−(ρ) in R with ρ(0) = e−µ−Aτ ∈ (0, 1). Since ρ(+∞) = 1, one
concludes, by passing to the limit as s → −∞, that v∞(t, x) ≥ 1 (and then = 1) for all (t, x) ∈ (−∞, 0]×R.
This contradicts v∞(0, 0) ≤ 1− ε < 1. Finally, the proof of Lemma 3.5 is complete. �

Step 4: completion of the proof of Theorem 1.4 in the case c− = 2
√
µ−

In this case, remembering (3.7), it only remains to show the second assertion in (1.19), namely

c+ := lim inf
t→+∞

X(t)

t
≥ κ+

µ+

κ

where κ = min
(√

µ+, (c− −
√

c2− − 4µ−)/2
)

= min
(√

µ+,
√
µ−
)

=
√
µ. In the case 0 < µ+ ≤ µ−,

then κ =
√
µ+, while c+ ≥ 2

√
µ+ = κ+ µ+/κ by Proposition 2.4. Hence, the proof is done in this case.

Consider now the case 0 < µ− < µ+. In other words, κ =
√
µ− and one shall show in this case

that c+ ≥ √
µ−+µ+/

√
µ−. Let ε be any real number such that 0 < ε < 1 and (1−ε)µ+ > µ−, and let Tε ∈ R

be such that f(t, s) ≥ (1 − ε)f+(s) for all (t, s) ∈ [Tε,+∞) × [0, 1]. One makes use of the estimate (2.21)
provided by Corollary 2.8, which, applied with t = Tε and λ = κ satisfying

√
µ− < κ <

√
(1− ε)µ+, allows

one to derive (2.22), as done in Section 2.2.3. The desired result follows by letting κ → √
µ− and then ε → 0

in (2.22). To sum up, the proof of Theorem 1.4 is complete in the case c− = 2
√
µ−.

Step 5: completion of the proof of Theorem 1.4 if c− > 2
√
µ−

In this case, one has to show that the asymptotic past and future speeds of u exist and are equal to c±, in
the sense that X(t) ∼ c±t as t → ±∞, and that the solution u converges to some well-identified profiles
along its level sets as t → ±∞. We assume throughout this subsection that c− > 2

√
µ− and that (1.20)

holds. The proof of Step 5 is itself divided into several substeps. Under the notations of Section 3.1, we first
identify a measure µ such that v = uµ for the equation (3.9), and we show some properties of the support
of µ. Then, we identify the leftmost point of the support of µ and we apply Theorem 3.1 to determine the
asymptotic past speed of u and its asymptotic behavior along its level sets. Lastly, we will compare u at
large positive times to a solution of the homogeneous equation (3.9) with nonlinearity f+ instead of f− and
we will again apply Theorem 3.1 to determine the asymptotic future speed of u.

Substep 5.1: identification and elementary properties of a measure µ such that v = uµ
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Since c− := lim inft→−∞X(t)/t > 2
√
µ−, property (1.6) implies that sup[ct,+∞) u(t, ·) → 0 as t → −∞ for

every 2
√
µ− < c < c−. Hence, sup[ct,+∞) v(t, ·) → 0 as t → −∞ from Lemma 3.3 and the fact that the

function Θ is bounded in, say, (−∞, 0]. In particular, v satisfies (3.5) with c∗ = 2
√
µ− = 2

√
f ′
−(0) and

thus, since it is a time-global solution of (3.9) and f− is a C2 concave function such that f−(0) = f−(1) = 0
and f− > 0 on (0, 1), it follows from Theorem 1.4 of [14] that, for problem (3.9), i.e. (3.1) with g = f−, v
can be represented as v = uµ with µ ∈ M supported in (−∞, c]∪ [c,+∞)∪ {∞} for every 2

√
µ− < c < c−.

Therefore, µ is supported in (−∞, c−] ∪ [c−,+∞) ∪ {∞} and, in this case, the inequalities (3.4) amount to

M−1

∫

(−∞,−c−]∪[c−,+∞)
ϕ−
|c|
(
(sgn c)x− |c|t− |c| lnM

)
dµ(c) +M−1θ−(t+ lnM)µ(∞)

≤ v(t, x) ≤ M−1

∫

(−∞,c−]∪[c−,+∞)
e
−λ−

|c|
((sgn c)x−|c|t−|c| lnM)

dµ(c) + M−1eµ−(t+lnM)µ(∞)

for all (t, x) ∈ R
2, where M = µ

(
(−∞, c−] ∪ [c−,+∞) ∪ {∞}

)
> 0 and the functions ϕ−

c (x − ct)

with c ≥ c∗− = 2
√
f ′
−(0) = 2

√
µ− denote the traveling fronts connecting 0 and 1 for (3.9) with the

normalization (3.2) and

λ−
c =

c−
√

c2 − 4µ−
2

(3.13)

in place of λc in (3.3). Furthermore, θ− : R → (0, 1) denotes the unique solution of (θ−)′(t) = f−(θ−(t))
in R such that θ−(t) ∼ eµ−t as t → −∞. Now, if µ

(
(−∞,−c−] ∪ {∞}

)
> 0, then Lebesgue’s dominated

convergence theorem implies that lim infx→+∞ v(t, x) ≥ M−1µ
(
(−∞,−c−]

)
+M−1θ−(t + lnM)µ(∞) > 0

for every t ∈ R, which is ruled out by Lemma 3.5. Therefore, µ
(
(−∞,−c−]∪{∞}

)
= 0, that is, the support

of µ is included in [c−,+∞) and

M−1

∫

[c−,+∞)
ϕ−
c

(
x− ct− c lnM

)
dµ(c) ≤ v(t, x) ≤ M−1

∫

[c−,+∞)
e−λ−

c (x−ct−c lnM) dµ(c) (3.14)

for all (t, x) ∈ R
2, with M = µ

(
[c−,+∞)

)
> 0.

The following lemma gives an exponential lower bound of u(t, x) and v(t, x) as x → +∞ in terms of the
support of µ. It will used several times in the sequel.

Lemma 3.6. If µ
(
[c,+∞)

)
> 0 for some c ≥ c−, then lim infx→+∞

(
eλ

−
c xu(t, x)

)
> 0 and

lim infx→+∞
(
eλ

−
c xv(t, x)

)
> 0 for every t ∈ R, where λ−

c is given in (3.13).

Remark 3.7. Lemma 3.6 improves Corollary 2.8 under the additional assumption that u is non-critical
as t → −∞, i.e. c− := lim inft→−∞X(t)/t > 2

√
µ−. Indeed the upper bound for the exponential decay

rate given by (2.21) is
√
µ−, whereas the one in Lemma 3.6 is λ−

c− = (c− −
√

c2− − 4µ−)/2, which is smaller

than
√
µ− because c− > 2

√
µ−.

Proof of Lemma 3.6. From Lemma 3.3, it is sufficient to show the conclusion for the function v. Let t ∈ R

be arbitrary. It follows from (3.14) that

eλ
−
c xv(t, x) ≥ M−1

∫

[c,+∞)
min

(
eλ

−
c xϕ−

c′(x− c′t− c′ lnM), 1
)
dµ(c′) for all x ∈ R.

For every c′ > c (≥ c− > 2
√
µ−), one has ϕ−

c′(x − c′t − c′ lnM) ∼ e−λ−
c′
(x−c′t−c′ lnM) as x → +∞

with 0 < λ−
c′ < λ−

c (≤ λc− <
√
µ−), whence min

(
eλ

−
c xϕ−

c′(x − c′t − c′ lnM), 1
)
→ 1 as x → +∞. On

the other hand, min
(
eλ

−
c xϕ−

c (x− ct− c lnM), 1
)
→ min

(
eλ

−
c (ct+c lnM), 1

)
as x → +∞. Finally, Lebesgue’s

dominated convergence theorem implies that

lim inf
x→+∞

(
eλ

−
c xv(t, x)

)
≥ M−1min

(
eλ

−
c (ct+c lnM), 1

)
µ
(
[c,+∞)

)
> 0,
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that is the desired conclusion. �

Next, we show that the measure µ is compactly supported in [c−,+∞).

Lemma 3.8. There is c̃+ ∈ [c−,+∞) such that the support of µ is included in [c−, c̃+]. Furthermore,

without loss of generality, c̃+ can be chosen as the rightmost point of the support of µ, in the sense

that µ
(
(c̃+,+∞)

)
= 0 and µ

(
[c′,+∞)

)
> 0 for every c′ < c̃+.

Remark 3.9. Notice that Lemma 3.8 does not follow immediately from Theorem 3.1, since one does
not know a priori that v = uµ is a transition front connecting 0 and 1 for (3.9). We point out that
Lemma 3.5 above only shows that the limits (0 and 1) of v(t,X(t) + x) as x → ±∞ are uniform in any
time-interval of the type (−∞, τ ] with τ ∈ R. But the uniformity of the limits may depend on τ in general.
Actually, with similar ideas as in the proof of Lemma 3.8, it is not complicated to show the existence of
solutions 0 < ṽ < 1 of (3.9) satisfying Lemma 3.5 for some family (X̃(t))t∈R and which are not transition
fronts. For instance, consider the function ṽ = uµ̃ associated to the measure µ̃ =

∑+∞
n=0 2

−nδc0+n, where c0
is any real number in [2

√
µ−,+∞). The solution ṽ satisfies Lemma 3.5 with, say, X̃(t) = c0t for all t ∈ R,

but inf(−∞,ct] ṽ(t, ·) → 1 as t → +∞ for every c ∈ R. Roughly speaking, the function ṽ has an infinite
asymptotic future speed. Because of (1.9), it cannot be a transition front for (3.9) in the sense of (1.6), for
any family (X(t))t∈R.

Proof of Lemma 3.8. Assume by way of contradiction that µ is not compactly supported. Pick
any c ∈ [c−,+∞). Then µ

(
[c,+∞)

)
> 0 and therefore it follows from Lemma 3.6, together with (1.6)

and the positivity and continuity of u, that for any T ∈ R, there is β ∈ (0, 1) such that

∀x ∈ R, u(T, x) ≥ min
(
β, β e−λ−

c x
)
. (3.15)

Notice that λ−
c ց 0 as c → +∞. Thus, for c large enough, we have that λ−

c <
√
µ+/2 =

√
f ′
+(0)/2,

whence equation (3.1) with g = f+/2 admits a standard traveling front ϕ̃(x − γct) connecting 0 and 1

satisfying ϕ̃(ξ) ∼ e−λ−
c ξ as ξ → +∞, where γc := λ−

c + µ+/(2λ
−
c ) → +∞ as c → +∞. By (1.3), there

exists T ∈ R such that f(t, s) ≥ f+(s)/2 for all (t, s) ∈ [T,+∞) × [0, 1]. This implies that ϕ̃(x − γct) is a
subsolution to (1.1) for t > T , and then the same is true for β̃ϕ̃(x− γct), for any β̃ ∈ (0, 1). Furthermore,
by (3.15), β̃ ∈ (0, 1) can be chosen in such a way that β̃ϕ̃(x− γcT ) ≤ u(T, x) for all x ∈ R. It then follows
from the maximum principle that u(t, γct) ≥ β̃ϕ̃(0) > 0 for all t > T , from which, owing to (1.6) or (1.7),
we derive c+ = lim inft→+∞X(t)/t ≥ γc. Since this inequality holds for all c large enough, letting c → +∞
we eventually get lim inft→+∞X(t)/t = +∞, which is ruled out by (3.7).

Finally, the support of µ is bounded and there is c̃+ ∈ [c−,+∞) as in Lemma 3.8, that is c̃+ is the
rightmost point of the support of µ. The proof of Lemma 3.8 is thereby complete. �

Substep 5.2: c− is the asymptotic past speed of u and u converges to ϕ−
c− along its level sets as t → −∞

Let us first show here that X(t)/t → c− as t → −∞. We already know by definition that
lim inft→−∞X(t)/t = c−. From part (i) of Theorem 3.1 and from Lemma 3.8, the solution v = uµ of (3.9) is

actually a transition front connecting 0 and 1 for this equation. In other words, there is a family (X̃(t))t∈R
of real numbers such that (1.6) holds for v and (X̃(t))t∈R. Furthermore, from part (ii) of Theorem 3.1,
the transition front v has some asymptotic past and future speeds, which are the leftmost and rightmost
points of the support of µ. Having in hand that the measure µ is supported in [c−, c̃+] ⊂ (2

√
µ−,+∞) from

Lemma 3.8, the leftmost point c̃− of the support of µ satisfies 2
√
µ− = c∗− < c− ≤ c̃− ≤ c̃+. Part (ii) of Theo-

rem 3.1 implies in particular that X̃(t)/t → c̃− as t → −∞ and that there is a bounded function ξ̃ : R → R

such that
v(t, X̃(t) + ξ̃(t) + x) → ϕ−

c̃−
(x) as t → −∞ uniformly in x ∈ R. (3.16)
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But 0 < inft∈R v(t, X̃(t)) ≤ supt∈R v(t, X̃(t)) < 1 from (1.7) applied to the transition front v,

whence 0 < lim inft→−∞ u(t, X̃(t)) ≤ lim supt→−∞ u(t, X̃(t)) < 1 by Lemma 3.3 and the fact that Θ(t) → 0
as t → −∞. Together with (1.6), one infers that

lim sup
t→−∞

∣∣X(t)− X̃(t)
∣∣ < +∞. (3.17)

Therefore, X(t)/t → c̃− as t → −∞. Remembering that c− = lim inft→−∞X(t)/t, one gets that c̃− = c−
and X(t)/t → c− as t → −∞. In other words, u has an asymptotic past speed, which is equal to c−.

Finally, setting
ξ(t) = X̃(t)−X(t) + ξ̃(t) for t ≤ 0, (3.18)

it follows from (3.17), the boundedness of ξ̃ and the local boundedness of X and X̃ that ξ is bounded
in (−∞, 0]. Furthermore,

u(t,X(t) + ξ(t) + x)− ϕ−
c−(x) = u(t, X̃(t) + ξ̃(t) + x)− v(t, X̃(t) + ξ̃(t) + x)

+ v(t, X̃(t) + ξ̃(t) + x)− ϕ−
c−(x)

→ 0 as t → −∞ uniformly in x ∈ R,

from (3.16) and Lemma 3.3, together with limt→−∞Θ(t) = 0. Standard parabolic estimates also imply that

u(t,X(t) + ξ(t) + ·) → ϕ−
c− in C2(R) as t → −∞. (3.19)

Substep 5.3: c+ is the asymptotic future speed of u

Here, we prove the existence of the asymptotic future speed of u. This speed, that will be equal to c+, will
be determined obviously by the limiting nonlinearity f+ (namely, by µ+ = f ′

+(0)), but also by the rightmost
point c̃+ of the support of µ. To do so, we will identify the exponential decay rate of u(t, x) and v(t, x)
as x → +∞ in terms of c̃+, for some suitably chosen times t.

Lemma 3.10. There holds

X(t)

t
→ c+ = κ̃+

µ+

κ̃
≥ κ+

µ+

κ
as t → +∞ (3.20)

with

0 < κ̃ = min
( c̃+ −

√
(c̃+)2 − 4µ−
2

,
√
µ+

)
≤ κ = min

(c− −
√

c2− − 4µ−

2
,
√
µ+

)
≤ √

µ+. (3.21)

Proof. The strategy consists in establishing lower and upper bounds of X(t)/t as t → +∞ by comparing u
at large time with some solutions of reaction-diffusion equations with nonlinearities of the type (1± ε)f+.
In the proof of the lemma, 0 < ε < 1 is arbitrary. From (1.3), there is Tε ∈ R such that, for all t ≥ Tε

and s ∈ [0, 1], (1− ε) f+(s) ≤ f(t, s) ≤ (1 + ε) f+(s).
Let us first prove the upper bound for lim supt→+∞X(t)/t. Lemma 3.3 yields u(Tε, x) ≤ v(Tε, x) e

µ−Θ(Tε)

for all x ∈ R. On the other hand, since v is a solution of (3.9) of the type v = uµ and
since the support of µ is included in [c−, c̃+] ⊂ [2

√
µ−,+∞), it follows from Proposition 3.2

that v(Tε, x) = uµ(Tε, x) ≤ ϕ−
c̃+

(
(ϕ−

c̃+
)−1(v(Tε, 0)) + x

)
for all x ≥ 0. Remember also that,

since c̃+ ≥ c− > 2
√
µ−, one has ϕ−

c̃+
(ξ) ≤ e

−λ−
c̃+

ξ
for all ξ ∈ R, where λ−

c̃+
= (c̃+ −

√
c̃2+ − 4µ−)/2.

Therefore, there is a real number γε > 0 such that u(Tε, x) ≤ min
(
γε e

−λ−
c̃+

x
, 1
)
for all x ∈ R. Let uε be the

solution of the Cauchy problem
{

uεt = uεxx + (1 + ε) f+(u
ε), t > 0, x ∈ R,

uε(0, x) = min
(
γε e

−λ−
c̃+

x
, 1
)
, x ∈ R.
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The maximum principle implies that 0 < u(t, x) ≤ uε(t− Tε, x) for all (t, x) ∈ [Tε,+∞)× R. But, by [46],
the function uε spreads to the right with the speed κε + (1 + ε)µ+/κε, where κε = min

(
λ−
c̃+
,
√
(1 + ε)µ+

)
.

In particular, sup[(κε+(1+ε)µ+/κε+η) t,+∞) u
ε(t, ·) → 0 as t → +∞ for every η > 0, whence

sup[
(κε+(1+ε)µ+/κε+η) (t−Tε),+∞

)u(t, ·) → 0 as t → +∞.

It follows then from (1.7) that X(t) −
(
κε + (1 + ε)µ+/κε + η

)
(t − Tε) → −∞ as t → +∞, whence

lim supt→+∞X(t)/t ≤ κε + (1+ ε)µ+/κε + η. Since η > 0 and ε > 0 can be arbitrarily small, one gets that

lim sup
t→+∞

X(t)

t
≤ κ̃+

µ+

κ̃
, (3.22)

where κ̃ = min
(
λ−
c̃+
,
√
µ+

)
> 0 is as in (3.21).

Let us now prove the lower bound of lim inft→+∞X(t)/t. For every δ > 0, set cδ = max(c−, c̃+−δ) (≥ c−).
Since c− and c̃+ are the leftmost and rightmost points of the support of µ, one has µ

(
[cδ,+∞)

)
> 0 for ev-

ery δ > 0 and Lemma 3.6 yields lim infx→+∞ eλ
−
cδ
xu(Tε, x) > 0. Since u(Tε,−∞) = 1 and u(Tε, ·) is positive

and continuous in R, it follows that there is a positive real number ρε such that u(Tε, x) ≥ min
(
ρε, ρε e

−λ−
cδ
x
)

for all x ∈ R. Let uε be the solution of the Cauchy problem
{

uεt = uεxx + (1− ε) f+(u
ε), t > 0, x ∈ R,

uε(0, x) = min
(
ρε, ρε e

−λ−
cδ
x
)
, x ∈ R.

The maximum principle implies that 1 > u(t, x) ≥ uε(t−Tε, x) for all (t, x) ∈ [Tε,+∞)×R. But, by [46], the
function uε spreads to the right with the speed κε,δ + (1− ε)µ+/κε,δ, where κε,δ = min

(
λ−
cδ
,
√

(1− ε)µ+

)
.

In particular, inf(−∞,(κε,δ+(1−ε)µ+/κε,δ−η) t] u
ε(t, ·) → 1 as t → +∞ for every η > 0, whence

inf(−∞,(κε,δ+(1−ε)µ+/κε,δ−η) (t−Tε)] u(t, ·) → 1 as t → +∞. It follows then from (1.7) that

X(t)−
(
κε,δ + (1− ε)µ+/κε,δ − η

)
(t− Tε) → +∞ as t → +∞,

whence lim inft→+∞X(t)/t ≥ κε,δ + (1 − ε)µ+/κε,δ − η. Since η > 0, δ > 0 and ε > 0 can be arbitrarily
small and since λ−

cδ
→ λ−

c̃+
as δ → 0, one gets that lim inft→+∞X(t)/t ≥ κ̃+ µ+/κ̃ with κ̃ > 0 as in (3.21).

Together with (3.22), one concludes that X(t)/t → κ̃+µ+/κ̃ as t → +∞. Since c+ was defined as the liminf
of X(t)/t as t → +∞, this means that c+ = κ̃ + µ+/κ̃. Furthermore, the inequalities 2

√
µ− < c− ≤ c̃+

yield 0 < λ−
c̃+

≤ λ−
c− = (c− −

√
c2− − 4µ−)/2 and 0 < κ̃ = min(λ−

c̃+
,
√
µ+) ≤ min(λ−

c− ,
√
µ+) = κ ≤ √

µ+,

where κ is as in (3.21). Finally, (3.20) holds and the proof of Lemma 3.10 is complete. �

Substep 5.4: u converges to a well identified profile ϕ+
c+ along its level sets as t → +∞

The proof is based on some comparisons between u and some solutions of the homogeneous equation (3.23)
below with the reaction term exactly equal to f+. A Liouville type result about the classification of solutions
of homogeneous equations which are asymptotically trapped between two shifts of a standard traveling front
will also be used, as in Step 3 of the proof of Proposition 2.3.

First of all, let 0 < ϕ+
c+(x−c+t) < 1 be a standard traveling front connecting 0 and 1 for the homogeneous

equation
wt = wxx + f+(w), (3.23)

with the speed c+ = κ̃ + µ+/κ̃ ≥ 2
√
µ+ = 2

√
f ′
+(0) as in (3.20)-(3.21). Up to normalization, one can

assume that, as ξ → +∞, ϕ+
c+(ξ) ∼ e−κ̃ξ if c+ > 2

√
µ+ while ϕ+

c+(ξ) ∼ ξ e−κ̃ξ = ξ e−
√
µ+ξ if c+ = 2

√
µ+.

For every t ∈ R, since u(t, ·) is continuous and converges to 0 and 1 at ±∞, the real number

X+(t) = max
{
x ∈ R; u(t, x) = ϕ+

c+(0)
}
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is well defined, and u(t,X+(t)) = ϕ+
c+(0). Denote

ξ(t) = X+(t)−X(t) for t > 0. (3.24)

The function ξ is bounded in (0,+∞), by (1.6). It will be the one used in the desired conclusion (1.14)
for t > 0, together with (3.18) and (3.19) for t ≤ 0.

Let us now introduce some auxiliary functions u+ and v+. From assumption (1.20), there holds, for
all t > 0 and s ∈ [0, 1], (1 − ζ̃(t)) f+(s) ≤ f(t, s) ≤ (1 + ζ̃(t)) f+(s). Set Θ̃(t) =

∫ t
0 ζ̃(τ) dτ for t ≥ 0 and

notice that

0 ≤ Θ̃(t) ≤ Θ̃∞ :=

∫ +∞

0
ζ̃(τ) dτ < +∞ for all t ≥ 0. (3.25)

Firstly, let u+ be the solution of the Cauchy problem
{

u+t = u+xx + f+(u
+), t > 0, x ∈ R,

u+(0, x) = u(0, x), x ∈ R.
(3.26)

As in the proof of Lemma 3.3, since s 7→ f+(s)/s is nonincreasing on (0, 1] and f ′
+(0) = µ+ > 0, one can

prove that

0 < u+(t, x) e−µ+Θ̃(t) ≤ u(t, x) ≤ u+(t, x) eµ+Θ̃(t) for all (t, x) ∈ [0,+∞)× R. (3.27)

Secondly, let v+ be the solution of the Cauchy problem
{

v+t = v+xx + f+(v
+), t > 0, x ∈ R,

v+(0, x) = v(0, x), x ∈ R,
(3.28)

where we recall that 0 < v < 1 solves (3.9). Setting α = e−µ−Θ(0) ∈ (0, 1], Lemma 3.3 then implies
that 0 < αv(0, ·) ≤ u(0, ·) ≤ min

(
α−1v(0, ·), 1

)
in R, that is, 0 < αv+(0, ·) ≤ u+(0, ·) ≤ min

(
α−1v+(0, ·), 1

)
.

Since s 7→ f+(s)/s is nonincreasing on (0, 1], it follows that α v+ is a subsolution and min
(
α−1v+, 1

)
is a

supersolution of the equation (3.26) satisfied by u+. Therefore, the maximum principle yields

0 < αv+(t, x) ≤ u+(t, x) ≤ min
(
α−1v+(t, x), 1

)
for all (t, x) ∈ [0,+∞)× R. (3.29)

Gathering (3.25), (3.27) and (3.29) together with the fact that u ranges in (0, 1), one infers that

0 < β v+(t, x) ≤ u(t, x) ≤ min
(
β−1v+(t, x), 1

)
for all (t, x) ∈ [0,+∞)× R, (3.30)

where β = α e−µ+Θ̃∞ = e−µ−Θ(0)−µ+Θ̃∞ ∈ (0, 1].
The following lemma establishes the exact decay rate of v(0, x) as x → +∞ (we point out that the same

lemma would actually hold at any fixed time t ∈ R). We recall that the solution 0 < v < 1 of (3.9) is of the
type v = uµ and that c̃+ ∈ [c−,+∞) denotes the rightmost point of the measure µ.

Lemma 3.11. We recall that λ−
c̃+

= (c̃+ −
√
c̃2+ − 4µ−)/2. For every x0 ∈ R, there holds

v(0, x+ x0)

v(0, x)
→ e

−λ−
c̃+

x0
as x → +∞. (3.31)

We point out that Proposition 3.2 and Lemma 3.6 immediately imply that v cannot have exponential
decay rate respectively smaller and larger than λ−

c̃+
as x → +∞, but this is not enough for applying the

results of Uchiyama [46] to v+. The proof of Lemma 3.11 uses the inequalities (3.4) applied to v = uµ. Since
it is a bit technical, we postpone it in the next subsection. We first complete the proof of Theorem 1.4,
that is the proof of (1.14) as t → +∞.
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As already mentioned in the proof of Theorem 3.1, the function v = uµ is continuously decreasing
with respect to x. In particular, v+(0, ·) = v(0, ·) is continuously decreasing in R, with v+(0,−∞) = 1
and v+(0,+∞) = 0. From the maximum principle, for every t ≥ 0, the function v+(t, ·) is continuous
and decreasing in R and converges to 0 and 1 at ±∞. Therefore, for every t ≥ 0, there is a unique real
number Y +(t) such that

v+
(
t, Y +(t)

)
=

1

2
. (3.32)

Owing to the definition of v+ in (3.28), it follows then from Lemma 3.11 above and Theorems 8.1, 8.2
and 8.5 of [46] that

sup
x∈[−Y +(t),+∞)

∣∣v+
(
t, Y +(t) + x

)
− ϕ+

c+(x0 + x)
∣∣→ 0 as t → +∞, (3.33)

where x0 = (ϕ+
c+)

−1(1/2) and c+ = κ̃ + µ+/κ̃ with 0 < κ̃ = min
(
λ−
c̃+
,
√
µ+

)
≤ √

µ+. Further-

more, Y +(t)/t → c+ as t → +∞. Thus, since 0 < v+ < 1 is decreasing with respect to x and ϕ+
c+(−∞) = 1,

the convergence (3.33) holds uniformly in x ∈ R, that is

sup
x∈R

∣∣v+
(
t, Y +(t) + x

)
− ϕ+

c+(x0 + x)
∣∣→ 0 as t → +∞. (3.34)

Let (tp)p∈N be any sequence of real numbers in [0,+∞) such that tp → +∞ as p → +∞. For every p ∈ N

and (t, x) ∈ [tp,+∞) × R, set v+p (t, x) = v+
(
tp + t, Y +(tp) + x

)
. Up to extraction of a subsequence, the

functions v+p converge in C1,2
loc (R

2) as p → +∞ to a solution 0 ≤ v+∞ ≤ 1 of (3.23) in R
2.

Lemma 3.12. One has v+∞(t, x) = ϕ+
c+(x− c+t+ x0) for all (t, x) ∈ R

2.

Proof. Since v+p (0, 0) = v+
(
tp, Y

+(tp)
)
= 1/2 for all p ∈ N, there holds v+∞(0, 0) = 1/2 and 0 < v+∞ < 1

in R
2 from the strong maximum principle. For every t ∈ R and p large enough so that tp + t ≥ 0, one has

v+
(
tp+t, Y +(tp+t)+Y +(tp)−Y +(tp+t)

)
=v+(tp+t, Y +(tp)

)
=v+p (t, 0) → v+∞(t, 0) ∈ (0, 1)

as p → +∞, while v+
(
tp + t, Y +(tp + t) + Y +(tp) − Y +(tp + t)

)
− ϕ+

c+

(
x0 + Y +(tp) − Y +(tp + t)

)
→ 0

as p → +∞, from (3.34). Therefore,

x0 + Y +(tp)− Y +(tp + t) → (ϕ+
c+)

−1(v+∞(t, 0)) as p → +∞. (3.35)

Using again (3.34), with (3.35), one infers that, for every (t, x) ∈ R
2 (and tp + t ≥ 0)

v+p (t, x)=v+
(
tp+t, Y +(tp+t)+Y +(tp)−Y +(tp+t)+x

)
→ ϕ+

c+

(
(ϕ+

c+)
−1(v+∞(t, 0))+x

)

as p → +∞, whence
v+∞(t, x) = ϕ+

c+

(
(ϕ+

c+)
−1(v+∞(t, 0)) + x

)
. (3.36)

As a consequence, for every s < t ∈ R and x ∈ R, it follows from the uniqueness of the bounded solu-
tions of the Cauchy problem associated to (3.23) that v+∞(t, x) = ϕ+

c+

(
(ϕ+

c+)
−1(v+∞(s, 0)) + x − c+(t − s)

)
,

whence (ϕ+
c+)

−1(v+∞(t, 0)) = (ϕ+
c+)

−1(v+∞(s, 0))− c+(t− s). Finally,

(ϕ+
c+)

−1(v+∞(t, 0)) = (ϕ+
c+)

−1(v+∞(0, 0))− c+t = (ϕ+
c+)

−1
(1
2

)
− c+t = x0 − c+t for all t ∈ R,

and the desired conclusion of Lemma 3.12 follows from (3.36). �

Now, call, for p ∈ N and (t, x) ∈ [−tp,+∞) × R, up(t, x) = u
(
tp + t, Y +(tp) + x

)
. Each function up

satisfies (up)t = (up)xx + f(tp + t, up) in [−tp,+∞)× R. It follows then from standard parabolic estimates

and (1.3) that, up to extraction of a subsequence, the functions up converge in C1,2
loc (R

2) to a classical
solution 0 ≤ u∞ ≤ 1 of (3.23) in R

2.
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Lemma 3.13. There is a real number x∞ such that u∞(t, x) = ϕ+
c+(x− c+t+ x∞) for all (t, x) ∈ R

2.

Proof. It follows from (3.30) that 0 < β v+p (t, x) ≤ up(t, x) ≤ min
(
β−1v+p (t, x), 1

)
for all p ∈ N

and (t, x) ∈ [−tp,+∞)× R. Therefore,

0 < β v+∞(t, x) ≤ u∞(t, x) ≤ min
(
β−1v+∞(t, x), 1

)
for all (t, x) ∈ R

2, (3.37)

by passing to the limit as p → +∞. Since infR2 v+∞ = 0 by Lemma 3.12, the function u∞ cannot be
identically equal to 1. Finally, 0 < u∞ < 1 in R

2 from the strong maximum principle. Furthermore,
Lemma 3.12 and (3.37) imply that infx−c+t≤0 u∞(t, x) > 0 and, as in the proof of Lemma 3.5, one can then
show that u∞(t, x) → 1 as x− c+t → −∞. On the other hand, it also follows from Lemma 3.12 and (3.37)
together with ϕ+

c+(ξ) ∼ e−κ̃ξ if c+ > 2
√
µ+ (resp. ϕ+

c+(ξ) ∼ ξ e−κ̃ξ if c+ = 2
√
µ+) as ξ → +∞, that there

is A ≥ 0 such that ϕ+
c+(x − c+t + A) ≤ u∞(t, x) ≤ ϕ+

c+(x − c+t − A) for all (t, x) ∈ R
2 with x − c+t ≥ 0.

As a consequence, as in Step 3 of the proof of Proposition 2.3, by combining Proposition 4.3 in [32] and
Theorem 3.5 of [4] (see also Lemma 8.2 of [16], adapted here to the homogeneous case), the conclusion of
Lemma 3.13 follows, for some real number ξ∞ ∈ [−A,A]. �

We are finally able to complete the proof of the limit (1.14) as t → +∞, that is the conver-
gence of u to ϕ+

c+ along its level sets as t → +∞. Remember that the function ξ was defined

by (3.24) for t > 0. In particular, u
(
tp, X(tp) + ξ(tp)

)
= u

(
tp, X

+(tp)
)

= ϕ+
c+(0) for every p ∈ N,

while u
(
tp, Y

+(tp)
)
= up(0, 0) → u∞(0, 0) = ϕ+

c+(x∞) ∈ (0, 1) as p → +∞, from Lemma 3.13. There-
fore, (1.6) implies that the sequence (X(tp) + ξ(tp)− Y +(tp))p∈N is bounded, whence

up
(
0, X(tp) + ξ(tp)− Y +(tp)

)
− u∞

(
0, X(tp) + ξ(tp)− Y +(tp)

)
→ 0 as p → +∞.

But, for all p ∈ N,
{

up
(
0, X(tp) + ξ(tp)− Y +(tp)

)
= u

(
tp, X(tp) + ξ(tp)

)
= ϕ+

c+(0),

u∞
(
0, X(tp) + ξ(tp)− Y +(tp)

)
= ϕ+

c+

(
X(tp) + ξ(tp)− Y +(tp) + x∞

)
.

One infers that X(tp) + ξ(tp)− Y +(tp) + x∞ → 0 as p → +∞. As a consequence,

u
(
tp, X(tp) + ξ(tp) + x) = up

(
0, X(tp) + ξ(tp)− Y +(tp) + x

)
−→

p→+∞
u∞(0, x− x∞) = ϕ+

c+(x)

from Lemma 3.13, and the convergence holds locally uniformly with respect to x. Furthermore,
since u

(
tp, X(tp) + x

)
→ 1 (resp. 0) as x → −∞ (resp. x → +∞) uniformly in p ∈ N

by (1.6), since ξ : (0,+∞) → R is bounded and since ϕ+
c+(−∞) = 1 and ϕ+

c+(+∞) = 0, one gets

that u
(
tp, X(tp) + ξ(tp) + x

)
→ ϕ+

c+(x) as p → +∞ uniformly in x ∈ R. But the limit does not de-
pend on the sequence (tp)p∈N converging to +∞. From the compactness arguments used in the above proof,
one concludes that u

(
t,X(t) + ξ(t) + x

)
→ ϕ+

c+(x) as t → +∞ uniformly in x ∈ R, and standard parabolic

estimates also imply that the convergence holds in C2(R).
Finally, by defining ξ : R → R by (3.18) in (−∞, 0] and by (3.24) in (0,+∞), the function ξ is bounded

and the conclusion (1.14) holds with φc±(x) = ϕ±
c±(x). The proof of Theorem 1.4 is thereby complete. �

3.2.1 Proof of Lemma 3.11

We recall from Substeps 5.1 and 5.2 above that 0 < v = uµ < 1 obeys (3.9), where the measure µ ∈ M is
supported in [c−, c̃+] ⊂ (2

√
µ−,+∞), and c− and c̃+ are the leftmost and rightmost points of the support

of µ. Here, M = µ
(
[c−, c̃+]

)
> 0 and the inequalities (3.4) amount to

M−1

∫

[c−,c̃+]
ϕ−
c

(
x−c lnM

)
dµ(c) ≤ v(0, x) ≤ M−1

∫

[c−,c̃+]
e−λ−

c (x−c lnM) dµ(c) (3.38)
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for all x ∈ R. If c− = c̃+, then µ = M δc− and v(0, x) = ϕ−
c−

(
x− c− lnM

)
for all x ∈ R, hence the desired

conclusion (3.31) is immediate since ϕ−
c−(ξ) ∼ e−λ−

c−
ξ = e

−λ−
c̃+

ξ
as ξ → +∞.

Let us now consider in the sequel the case c− < c̃+. We first show that, for every c′ ∈ (c−, c̃+),

v(0, x) ∼ M−1

∫

[c′,c̃+]
e−λ−

c (x−c lnM) dµ(c) as x → +∞. (3.39)

To do so, let c′ be arbitrary in the open interval (c−, c̃+) and let c′′ be such that c− < c′ < c′′ < c̃+. It
follows from (3.38) that

M−1

∫

[c′,c̃+]
ϕ−
c

(
x−c lnM

)
dµ(c)

︸ ︷︷ ︸
=:I1(x)

≤v(0, x)≤M−1

∫

[c−,c′)
e−λ−

c (x−c lnM)dµ(c)

︸ ︷︷ ︸
=:I2(x)

+M−1

∫

[c′,c̃+]
e−λ−

c (x−c lnM)dµ(c)

︸ ︷︷ ︸
=:I3(x)

(3.40)

for all x ∈ R. We shall show that v(0, x) ∼ I3(x) as x → +∞. Since λ−
c ≥ λ−

c′ > λ−
c′′ > 0 for all c ∈ [c−, c′),

one gets from one hand that I2(x) = O(e−λ−
c′
x) = o(e−λ−

c′′
x) as x → +∞, while, from the other, that

lim inf
x→+∞

(
eλ

−
c′′

xI3(x)
)
≥ lim inf

x→+∞

(
eλ

−
c′′

xM−1

∫

[c′′,c̃+]
e−λ−

c (x−c lnM)dµ(c)

)
≥ M−1

∫

[c′′,c̃+]
eλ

−
c c lnMdµ(c),

which is positive because µ
(
[c′′, c̃+]

)
> 0 by definition of c̃+. As a consequence, I2(x) = o(I3(x)) as x → +∞

and
I2(x) + I3(x) ∼ I3(x) as x → +∞. (3.41)

As far as the left-hand side of (3.40) is concerned, we claim that

∀ η > 0, ∃Aη ∈ R, ∀x ≥ Aη, ∀ c ∈ [c′, c̃+], ϕ−
c (x) ≥ (1− η) e−λ−

c x. (3.42)

Let us assume temporarily this claim and finish the proof of Lemma 3.11. It follows from (3.42) that, for
every η > 0, there holds I1(x) ≥ (1 − η) I3(x) for x large enough. Together with (3.40) and (3.41), one
infers that v(0, x) ∼ I3(x) as x → +∞, that is (3.39).

In the final step, let x0 ∈ R be fixed. We want to show that v(0, x+ x0)/v(0, x) → e
−λ−

c̃+
x0

as x → +∞.
Let ε ∈ (0, 1) be arbitrary. Since the map c 7→ λ−

c is continuous on [2
√
µ−,+∞), it follows that there

is c′ ∈ (c−, c̃+) such that (1 − ε) e
−λ−

c̃+
x0 ≤ e−λ−

c x0 ≤ (1 + ε) e
−λ−

c̃+
x0

for all c ∈ [c′, c̃+]. From (3.39), there
is A ∈ R such that, for all x ≥ A,

(1− ε)M−1

∫

[c′,c̃+]
e−λ−

c (x−c lnM)dµ(c) ≤ v(0, x) ≤ (1 + ε)M−1

∫

[c′,c̃+]
e−λ−

c (x−c lnM)dµ(c)

and

(1− ε)M−1

∫

[c′,c̃+]
e−λ−

c (x+x0−c lnM)dµ(c) ≤ v(0, x+ x0) ≤ (1 + ε)M−1

∫

[c′,c̃+]
e−λ−

c (x+x0−c lnM)dµ(c).

Putting together the previous three displayed formulas leads to

(1− ε)2

1 + ε
e
−λ−

c̃+
x0

v(0, x) ≤ v(0, x+ x0) ≤
(1 + ε)2

1− ε
e
−λ−

c̃+
x0

v(0, x) for all x ≥ A.

Since ε ∈ (0, 1) was arbitrary, the desired conclusion (3.31) follows and the proof of Lemma 3.11 is com-
plete. �
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Proof of (3.42). More generally, we fix any two real numbers a and b such that 2
√
µ− < a ≤ b. We

recall that, for every c ∈ (2
√
µ−,+∞), ϕ−

c (x) ∼ e−λ−
c x as x → +∞, where λ−

c = (c −
√
c2 − 4µ−)/2

solves (λ−
c )

2− cλ−
c +µ− = 0, and we want to show that, for every η > 0, there exists a real number Aη such

that
ϕ−
c (x) ≥ (1− η) e−λ−

c x for all c ∈ [a, b] and x ≥ Aη. (3.43)

In other words, we want to show that the asymptotic exponential decay of ϕ−
c at +∞ is uniform with

respect to c ∈ [a, b].
To do so, notice first that, for every c ∈ [a, b], 0 < λ−

b ≤ λ−
c ≤ λ−

a <
√
µ− < λ̃c := (c +

√
c2 − 4µ−)/2.

Since, for every c ∈ [a, b], λ−
c < λ̃c are the two roots of the equation X2 − cX + µ− = 0, there are α ∈ (0, 1)

and β > 0 such that λ−
c < (1 + α)λ−

c < λ̃c for all c ∈ [a, b] and

(1 + α)2 (λ−
c )

2 − c (1 + α)λ−
c + µ− ≤ −β for all c ∈ [a, b]. (3.44)

Now, since f− is of class C2([0, 1]) with f−(0) = 0 and f ′
−(0) = µ−, there is s0 ∈ (0, 1) such

that f−(s) ≥ µ−s− s1+α for all s ∈ [0, s0]. Next, it is straightforward to check that there is a positive real
number B such that

β B ≥ 1 and uc(x) := max
(
e−λ−

c x −B e−(1+α)λ−
c x, 0

)
≤ s0 for all c ∈ [a, b] and x ∈ R. (3.45)

For all c ∈ [a, b] and x ∈ R such that uc(x) > 0, there holds 0<uc(x)=e−λ−
c x−Be−(1+α)λ−

c x≤min(s0, e
−λ−

c x),
whence

u′′c (x) + c u′c(x) + f−(uc(x)) = −µ−e−λ−
c x −B

(
(1 + α)2(λ−

c )
2 − c(1 + α)λ−

c

)
e−(1+α)λ−

c x + f−(uc(x))

≥ −µ−e−λ−
c x +B

(
µ− + β

)
e−(1+α)λ−

c x + f−(uc(x))
≥ −µ−uc(x) + u1+α

c (x) + f−(uc(x))

≥ 0

from (3.44) and (3.45). In other words, since f−(0) = 0, the functions uc are subsolutions of the equa-
tions (ϕ−

c )
′′ + c(ϕ−

c )
′ + f−(ϕc) = 0 satisfied by the functions ϕ−

c .
In this paragraph, c is a fixed real number in [a, b]. We want to show that uc(x) ≤ ϕ−

c (x) for all x ∈ R.

Notice that both functions uc and ϕ−
c have the same exponential decay, namely e−λ−

c x, as x → +∞, but
one cannot directly apply the maximum principle as x → +∞ since f ′

−(0) = µ− > 0. However, we are

going to use a sliding method. Remember that uc(x) ≤ min
(
e−λ−

c x, s0
)
for all x ∈ R, that ϕ−

c (x) ∼ e−λ−
c x

as x → +∞, and that the positive continuous function ϕ−
c converges to 1 (> s0) at −∞. Therefore, there

is x0 > 0 such that uc(x) ≤ ϕ−
c (x− x0) for all x ∈ R. Define

x∗ = min
{
x′ ≥ 0, uc(x) ≤ ϕ−

c (x− x′) for all x ∈ R
}
.

The real number x∗ is well defined, with 0 ≤ x∗ ≤ x0, and uc(x) ≤ ϕ−
c (x − x∗) for all x ∈ R. As-

sume, by contradiction, that x∗ > 0. Then there are some sequences (xp)p∈N in (0, x∗) and (yp)p∈N
in R such that xp → x∗ as p → +∞ and uc(yp) > ϕ−

c (yp − xp) for all p ∈ N. Since x∗ > 0

and uc(x) ≤ e−λ−
c x ∼ ϕ−

c (x) as x → +∞, one infers that lim supp→+∞ yp < +∞. Furthermore,
lim infp→+∞ yp > −∞ since uc(−∞) = 0 < 1 = ϕ−

c (−∞). Therefore, the sequence (yp)p∈N is bounded and
converges, up to extraction of a subsequence, to a real number y∞. It follows that uc(y∞) ≥ ϕ−

c (y∞ − x∗),
while uc(x) ≤ ϕ−

c (x − x∗) for all x ∈ R (hence, uc(y∞) = ϕ−
c (y∞ − x∗) > 0). But uc is a subsolution

of the equation satisfied by ϕ−
c . It follows from the strong maximum principle that uc(x) = ϕ−

c (x − x∗)
for all x belonging to any interval (z1, z2) containing y∞ and where uc is positive. By definition of uc,
there is x− ∈ (−∞, y∞) such that uc(x) > 0 on (x−, y∞] with uc(x−) = 0. It follows by continuity
that ϕ−

c (x− − x∗) = uc(x−) = 0, which is a contradiction since ϕ−
c is positive in R. Consequently, x∗ = 0

and uc(x) ≤ ϕ−
c (x) for all x ∈ R.

Finally, for all c ∈ [a, b] and x ∈ R, there holds ϕ−
c (x) ≥ e−λ−

c x(1−B e−αλ−
c x), where α > 0 and B defined

in (3.44) and (3.45) are independent of c ∈ [a, b]. Since λ−
c ≥ λ−

b > 0 for all c ∈ [a, b], the conclusion (3.43)
follows immediately. The proof of the claim (3.42) is thereby complete. �
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3.3 Proof of Theorem 1.7

Let f and u be as in Theorem 1.7. In order to show that u(t, x) has a exponential decay rate as x → +∞,
the method is, as in the proof of Theorem 1.4, to compare u with a solution v of (3.9). By using (1.21),
it will follow that v is of the type v = uµ for some measure µ ∈ M. Since such solutions uµ turn out to
have an exponential decay rate λ ≥ 0 as x → +∞, so does u. Lastly, we distinguish the two cases λ > 0
and λ = 0 and we show in the former that u is then a transition front connecting 0 and 1 and we identify
its asymptotic past and future speeds by comparison arguments.

First of all, observe that Steps 1 and 2 of the proof of Theorem 1.4 can be reproduced word by word,
since they did not use the fact that u was a transition front connecting 0 and 1. Therefore, by defining the
sequence (vn)n∈N and the function v as there, there is then a solution 0 < v ≤ 1 of (3.9) such that (3.12)
holds, that is,

u(t, x) e−µ−Θ(t) ≤ v(t, x) ≤ u(t, x) eµ−Θ(t) for all (t, x) ∈ R
2, (3.46)

where Θ (and ζ) are as in (3.11) (and (3.10)). Since Θ is bounded in, say, (−∞, 0], it follows then from
the assumption (1.21) that max[−c|t|,c|t|] v(t, ·) → 0 as t → −∞ with c > 2

√
µ− = 2

√
f ′
−(0) (whence, in

particular, v(t, x) < 1 for all (t, x) ∈ R×R, from the strong maximum principle). Furthermore, Theorem 1.4
of [14] implies that the solution v of (3.9) is then of the type v = uµ for some measure µ ∈ M (associated
with the function f−) whose support satisfies

supp(µ) ⊂ (−∞,−c] ∪ [c,+∞) ∪ {∞}. (3.47)

As a consequence, one infers from Theorem 1.9 of [19] applied to the function vτ defined in R × R

by vτ (t, x) := v(t + τ, x) for an arbitrary τ ∈ R that λτ := − limx→+∞(ln v(τ, x))/x exists in [0,
√
µ−).

Furthermore, as explained after the statement of Theorem 1.9 in [19], the real numbers λτ do not depend
on τ ∈ R. Finally, by using (3.46), there is λ ∈ [0,

√
µ−) such that −(lnu(t, x))/x → λ as x → +∞ for

all t ∈ R. We will then consider separately the cases λ > 0 and λ = 0.
Case 1: λ > 0. In this case, Theorem 1.9 of [19] implies that v = uµ is a transition front connecting 0

and 1 for (3.9), with a function Xv : R → R satisfying (1.6). We get then from part (i) of Theorem 3.1 and
from (3.47) that the support of µ is a compact subset of [c,+∞) (⊂ (2

√
µ−,+∞)). Furthermore, by part (ii)

of Theorem 3.1, the transition front v has then an asymptotic past speed c− ∈ [c,+∞) ⊂ (2
√
µ−,+∞) and

an asymptotic future speed c̃+ ∈ [c−,+∞). On the other hand, by (1.6) and (1.7) applied with Xv and v,
the past speed c− satisfies

c− = sup
{
γ ≥ 0, lim

t→−∞
max

[−γ|t|,γ|t|]
v(t, ·) = 0

}
, (3.48)

while Lemma 3.11 yields limx→+∞ v(0, x+x0)/v(0, x)=e
−λ−

c̃+
x0

for all x0 ∈ R with λ−
c̃+

=(c̃+−
√

c̃2+ − 4µ−)/2.

Since one already knows that ln v(0, x) ∼ −λx as x → +∞, one gets λ = λ−
c̃+
, and v(0, x+x0)/v(0, x) → e−λx0

as x → +∞ for all x0 ∈ R.
Define now X(t) = Xv(t) for all t ≤ 0. One has limt→−∞X(t)/t = c− ≥ c > 2

√
µ− and, by (3.46)

and (3.48), there holds c− = sup
{
γ ≥ 0, limt→−∞max[−γ|t|,γ|t|] u(t, ·) = 0

}
. By using again (3.46) and by

interchanging the roles of u and v in the proof of Lemma 3.5, it also follows that
{

u(t,X(t) + x) → 1 as x → −∞
u(t,X(t) + x) → 0 as x → +∞

uniformly in t ∈ (−∞, 0]. (3.49)

As in Substep 5.4 of the proof of Theorem 1.4, one can then define u+(t, x) and v+(t, x)
for (t, x) ∈ [0,+∞) × R as in (3.26) and (3.28) and notice that, as in (3.30), there is β ∈ (0, 1] such
that

0 < β v+(t, x) ≤ u(t, x) ≤ min
(
β−1v+(t, x), 1

)
for all (t, x) ∈ [0,+∞)× R. (3.50)

The function v+(0, ·) = v(0, ·) = uµ(0, ·) is continuously decreasing in R with v+(0,−∞) = 1, v+(0,+∞) = 0
and we know that limx→+∞ v+(0, x + x0)/v

+(0, x) = e−λx0 for all x0 ∈ R. Therefore, by defining Y +(t)
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for t ≥ 0 as in (3.32), we get from [46] as in Substep 5.4 of the proof of Theorem 1.4 that Y +(t)/t → c+
as t → +∞ and that (3.34) holds, that is,

sup
x∈R

∣∣v+
(
t, Y +(t) + x

)
− ϕ+

c+(ξ0 + x)
∣∣→ 0 as t → +∞, (3.51)

where ξ0 = (ϕ+
c+)

−1(1/2) and ϕ+
c+(x− c+t) is a standard traveling front connecting 0 and 1 for (3.23), with

speed

c+ = min(λ,
√
µ+) +

µ+

min(λ,
√
µ+)

.

Set X(t) = Y +(t) for t > 0. Let us finally prove that u is a transition front connecting 0 and 1 for (1.1)
with the function X : R → R (remember that we already know that (3.49) holds). Let ε > 0 be arbitrary.
By (3.50) and (3.51), there are Tε > 0 and Mε > 0 such that

0 < u(t,X(t) + x) ≤ ε for all t ≥ Tε and x ≥ Mε. (3.52)

Using again (3.50) and (3.51) and arguing as in the proof of Lemma 3.5, one gets the existence of T ′
ε > 0

and M ′
ε > 0 such that

1− ε ≤ u(t,X(t) + x) < 1 for all t ≥ T ′
ε and x ≤ −M ′

ε. (3.53)

Since u(0,−∞) = 1 and u(0,+∞) = 1 as a particular consequence of (3.49), standard parabolic estimates
imply that u(t,−∞) = 1 and u(t,+∞) = 0 locally uniformly in t ∈ R. On the other hand, Y +(t) (= X(t)
for t > 0) is locally bounded in [0,+∞) since v+(t,−∞) = 1 and v+(t,+∞) = 0 locally uniformly
in t ≥ 0. These properties together with (3.52) and (3.53) imply that u(t,X(t) + x) → 1 as x → −∞
and u(t,X(t) + x) → 0 as x → +∞, uniformly in t ≥ 0. Thanks to (3.49), one infers that u is a transition
front connecting 0 and 1 for (1.1), with the function X : R → R satisfying (1.6). It also follows from the
previous properties of Xv and Y + that X(t)/t → c± as t → ±∞, where c± are given as in (1.22). Finally,
by Theorem 1.4, (1.14) holds with φc± = ϕ±

c± , for some bounded function ξ : R → R. The proof is therefore
complete in the case λ > 0.

Case 2: λ = 0. We know in this case that (lnu(τ, x))/x → 0 as x → +∞ for every τ ∈ R. Sup-
pose by contradiction that u is a transition front connecting 0 and 1 for (1.1). Take τ large enough so
that f(t, s) ≥ f+(s)/2 for all (t, s) ∈ [τ,+∞)× [0, 1]. For any γ >

√
2µ+ =

√
2f ′

+(0), consider the standard
traveling front ϕ̃γ(x− γt) connecting 0 and 1 for the equation (3.1) with g = f+/2. Since ϕ̃γ decays expo-
nentially at +∞, therefore faster than u(τ, ·), and u(τ, ·) is positive, continuous and tends to 1 at −∞, we
can find β ∈ (0, 1) such that βϕ̃γ(x−γτ) ≤ u(τ, x) for all x ∈ R. Furthermore, βϕ̃γ(x−γt) is a subsolution
to (1.1) for t > τ . It then follows from the maximum principle that u(t, γt) ≥ βϕ̃(0) > 0 for all t > τ , from
which, owing to (1.6) or (1.7), we derive lim inft→+∞X(t)/t ≥ γ. Since this is true for all γ >

√
2µ+, we

obtain a contradiction with (3.7). Therefore, u is not a transition front connecting 0 and 1 and the proof
of Theorem 1.7 is thereby complete. �
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