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A consistency-specificity trade-off to select source
behavior in information fusion

Frédéric Pichon, Sébastien Destercke, Thomas Burger

Abstract—Combining pieces of information provided by sev-
eral sources without or with little prior knowledge about the
behavior of the sources is an old yet still important and rather
open problem in belief function theory. In this paper, we propose
an approach to select the behavior of sources based on a very
general and expressive fusion scheme, that has the important
advantage of making clear the assumptions made about the
sources. The selection process itself relies on two cornerstones
that are the notions of specificity and consistency of a knowledge
representation, and that we adapt to the considered fusion
scheme. We illustrate our proposal on different examples and
show that the proposed approach actually encompasses some
important existing fusion strategies.

Index Terms—Dempster-Shafer theory, Information fusion,
Consistency, Specificity, Conflict.

I. INTRODUCTION

Determining, from information provided by multiple
sources, the actual value taken by an ill-known variable x
defined on a space X is a central problem in many informa-
tion systems, commonly known as information fusion. As
previously argued in [41], [32], [10], the task of information
fusion necessarily involves making some (possibly uncertain)
assumptions about the relation between the sources of infor-
mation and about their behavior (e.g., their relevance and
truthfulness [32]). A main concern in information fusion is
thus to find, or to select, assumptions to make about the
source behaviors for the fusion result to be sensible.

Two situations can be distinguished with respect to this
problem: either one has some strong knowledge of the source
behaviors, inherited from past experiences, or one has only
vague or no knowledge about such behaviors. In the former
case, depending on the form of the prior experience, i.e.,
data or expert knowledge, one may resort to some learning
procedures [27], [14], [9] or multicriteria aggregations [7],
[33] to estimate the behavior of the sources. When there is
no or little prior experience with the sources, which is the
case treated in this paper, then the selection of an appropriate
assumption about source behaviors needs to be based on
other considerations.
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To tackle this problem, we propose a practical scheme that
relies on the theoretical framework introduced by Pichon et
al. [32] in the belief function theory [35], [42]. The problem
of information fusion has indeed received a lot of attention
within this theory [41] that allows for a flexible modeling of
uncertainty. Pichon et al. [32] framework proposes to model
source possible behaviors by generic sets of hypotheses, and
provides a very expressive way of performing information
fusion. It also has the advantage of making transparent the
assumptions made about the sources, thus resulting in very
readable and interpretable rules.

Yet, the framework remains theoretical, and does not
propose any practical means to apply it nor ways to select a
particular assumption. To make such a selection, we propose
to base the selection on two criteria formalizing the two
primary features one may seek regarding one’s knowledge
about x: to make it, first, as specific as possible and, second,
as consistent as possible.

Indeed, a fusion result is all the better if it satisfies both
criteria. On the one hand, a specific but poorly consistent
knowledge is not desirable, as it cannot be trusted: in
belief function theory, it is usual to question the fusion
results of the (unnormalized) Dempster’s rule [4], [35],
which assumes all sources to be truthful and relevant [32],
when the inconsistency (conflict) [8] resulting from it is too
high. How to deal with this inconsistency is itself a hard
problem, as shows the literature on conflict management
(e.g., [41], [23]). On the other hand, a consistent but poorly
specific result is also not desirable, as it is indecisive: this
explains why some rules that makes weaker assumptions
about the sources, such as the disjunctive rule [11], [39] that
corresponds to assuming that at least one source is relevant,
despite ensuring better consistency, are seldom used. Note
that the goals of consistency and specificity are somehow
antagonists, as the more informative the sources are, the more
likely they will be conflicting about x true value. Let us
remark also that the need to balance between consistency
and informativeness of knowledge is present in other fields
facing similar issues: for instance, to deal with inconsistency
in a logical knowledge base [15], [16], Grant and Hunter
propose a stepwise procedure to improve consistency while
minimizing information loss.

Our contribution may be summarized as follows: we define
the notion of specificity and consistency by relying on the
notion of specialization between belief functions and by
extending recent works on conflict [8] to Pichon et al. [32]
framework. We do this for the cases of single (Section III)
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and multiple (Section IV) sources. We then propose (Sec-
tion V) a practical yet generic fusion scheme to find source
assumptions that lead to a good consistency-specificity trade-
off of the final result. To our knowledge, this scheme is
the first to propose a practical way to apply Pichon et al.
[32] theoretical results, and one of the few that explicitly
exploits the consistency-specificity trade-off. The scheme is
then illustrated in two ways: we propose (Section VI) various
instances of sets of assumptions from which the selection
can be done, connecting them to existing fusion strategies
and shedding some new light on those strategies; we apply
(Section VII) our fusion scheme to a nuclear safety problem,
in which rule interpretability is as important as the fusion
result. Background material is recalled in Section II.

II. PRELIMINARIES

A. Basics of belief functions

Belief functions have been originally introduced by Demp-
ster [4], mainly to model imprecise observations in statistical
inferences. In this view, belief functions usually describe
some imprecisely known probability distribution of a random
variable. Shafer [35] then extended the theory so that belief
functions could also model uncertainty related to ill-known
but possibly fixed (deterministic) quantities. This interpre-
tation, unrelated to probabilities and statistics, was taken
over by Smets and Kennes [42] in the so-called Transferable
Belief Model. In this paper, we consider this latter interpre-
tation, called singular in [8], where beliefs concern a fixed
quantity. This is most often the case in information fusion
problems, where one searches a unique true value of some
variable of interest.

Accordingly, we assume the beliefs held by an agent about
the actual value taken by a variable x defined on a finite
domain X , to be modeled using belief functions and to be
represented using associated mass functions. A mass function
mX on X is defined as a mapping from the power set 2X to
[0, 1] satisfying

∑
A⊆X m

X (A) = 1. The mass mX (A) may
be understood as the amount of belief given to the assumption
that the agent knows that the value of the variable of interest
lies somewhere in set A, and nothing more specific [13].

From the mass function are usually defined two uncer-
tainty measures, the belief and plausibility measures, which
respectively read for an event A ⊆ X :

Bel(A) =
∑
∅6=B⊆A

mX (B) and Pl(A) =
∑

B∩A6=∅

mX (B).

That is, Bel is the sum of masses of sets that implies A,
Pl the sum of masses of sets that are consistent with A.
The contour function [35] plX : X → [0, 1] associated to a
mass function mX is defined by plX (x) = PlX ({x}). The
focal sets of a mass mX are the subsets A of X such that
mX (A) > 0. We will denote by F the set of focal sets
of mX . The classical notion of set E is modeled by the
categorical mass m(E) = 1. Besides, a mass function mX

is called Bayesian if its focal sets are singletons.

B. Comparing informative contents

The most natural way to compare the informative content
of two sets E1, E2 is to say that E1 is more informative
than E2 if E1 ⊂ E2. This can be extended in several ways
to compare the informative content of mass functions in
terms of specificity [13]. In a singular interpretation, the most
sensible extension is arguably the notion of specialization,
that we use here.

Definition 1 (Specialization). A mass function mX1 defined
on X with F1 = {E1, . . . , Eq} is said to be a special-
ization of another mass function mX2 defined on X with
F2 = {F1, . . . , Fp} if and only if there exists a non-negative
matrix W = [wij ] of size q × p such that

for i = 1, . . . , p,

q∑
j=1

wij = mX1 (Ei),

for j = 1, . . . , q,

p∑
i=1

wij = mX2 (Fj)

wij > 0⇒ Ei ⊆ Fj .

This relation is denoted by mX1 v mX2 and by mX1 @ mX2 if
there is at least a pair i, j such that wij > 0 and Ei ⊂ Fj .

This can be seen as a transfer of mass from each Ei to
supersets Fj , wij denoting the part of m1(Ei) transferred
to Fj . In other words, mX1 is a specialization of mX2 if the
mass of any focal set Fj of mX2 can be redistributed among
subsets of Ei in mX1 . Let us recall that we have [11]

mX1 v mX2 ⇒ plX1 (x) ≤ plX2 (x), ∀x ∈ X . (1)

C. Source behavioral states

Pichon et al. [32] framework integrating source behaviors
is the following. Assume an agent wants to know the actual
value taken by x based on testimonies provided by several
sources of information identified as si, 1 ≤ i ≤ K. These
testimonies can be of several forms: a value xi ∈ X , a set
Ai ⊆ X , a probability distribution pi on X , or in the most
general form a mass function mXi on X . To interpret those
testimonies, the agent must have some knowledge (or make
some assumptions) about the behavioral state (referred to as
meta-knowledge in [32]) of the sources.

In the approach of Pichon et al., the possible elementary
behavioral states of a source si are formalized as a set
Hi = {hi1, . . . , hiN}. The set of elementary joint states on
sources is therefore the Cartesian product HK := ×Ki=1Hi.
The state space Hi can be very general [32] and may include
being unreliable, lying, etc. Two common assumptions for
which we will use specific notations are the assumptions
that a source si is relevant (Ri) or not (¬Ri), and truthful
(T i) or not (¬T i). Together, they form the space of possible
states Hi = {(T i, Ri), (T i,¬Ri), (¬T i, Ri), (¬T i,¬Ri)}.
Like the testimonies provided by the sources, the meta-
knowledge of the agent can be of several forms, the most
general one being a mass function defined over HK .
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We can now detail how the notions of consistency in-
troduced in [8] and of specificity (specialization) can be
extended to include source behaviors, and how to then use
these extensions to select an assumption about the sources.

III. CONSISTENCY AND SPECIFICITY: SINGLE SOURCE

A. Crisp testimony and sure meta-knowledge

The simplest situation is a source s delivering a testimony
of the form x ∈ A with A ⊆ X , and being known to be
in a state h ∈ H, with H the state space of the source.
The testimony x ∈ A should then be modified according
to this state [32]. This transformation can be encoded by
a multivalued mapping ΓA : H → X , where ΓA(h)
indicates how to interpret the piece of information x ∈ A
for each possible state h of the source. For instance, if
H = {(T,R), (T,¬R), (¬T,R), (¬T,¬R)} are the possible
states of the source, we have for all A ⊆ X

ΓA(R, T ) = A, ΓA(¬R, T ) = X ,
ΓA(R,¬T ) = Ac, ΓA(¬R,¬T ) = X , (2)

with Ac the complement of A. Eqs. (2) translate that if s
is not relevant, it does not bring any information, while if
it is not truthful, it declares the opposite of what it knows
to be true [29]. If the knowledge about the source state is
imprecise and given by H ⊆ H, then the transformation is
the image ΓA(H) :=

⋃
h∈H ΓA(h) of H by ΓA.

To measure consistency, we extend the work of Destercke
and Burger [8], where any piece of knowledge x ∈ A
about a variable x is considered consistent if A 6= ∅, and
inconsistent otherwise. This extends easily to the current
framework, a transformed testimony yielding a consistent
piece of knowledge on X when ΓA(H) 6= ∅, in which
case x ∈ A is said H-consistent, and an inconsistent piece
of knowledge when ΓA(H) = ∅. We can then extend the
measure of consistency of x ∈ A introduced in [8], to
measure H-consistency of a testimony x ∈ A as the degree
φH : 2X → {0, 1} such that:

φH(A) =

{
1 if ΓA(H) 6= ∅,
0 if ΓA(H) = ∅.

In some way, this consistency measure evaluates whether H
is a valid assumption on the source when it provides the
testimony x ∈ A. Consider, for instance, the assumption h =
(R,¬T ) corresponding to a relevant and lying source. This
assumption will be considered invalid only when the source
provides the certainly true testimony x ∈ X , as ΓX (h) = ∅
and φh(X ) = 0.

Meta-knowledge can also be characterized in terms of
specificity: a piece of meta-knowledge H1 ⊆ H will be said
at least as meta-specific as another piece of meta-knowledge
H2 ⊆ H when ΓA(H1) ⊆ ΓA(H2) for any A ⊆ X , and
we will denote it H1 vH H2. For example, the assumption
(R, T ) is at least as meta-specific as the assumption (¬R, T ).
In general, this only induces a partial order over possible
states, as for instance none of the two assumptions (R, T )

and (R,¬T ) is more meta-specific than another. Note that
we have the relation

H1 ⊆ H2 ⇒ H1 vH H2, (3)

since H1 ⊆ H2 ⇒ ΓA(H2) = ΓA(H1)∪(
⋃
h∈H2\H1

ΓA(h))
and thus ΓA(H2) ⊇ ΓA(H1). We also have

H1 vH H2 ⇒ φH1
(A) ≤ φH2

(A), (4)

since either ΓA(H1) 6= ∅ thus ΓA(H2) 6= ∅ (definition of
vH) and then φH1

(A) = φH2
(A), or ΓA(H1) = ∅ and thus

φH1(A) = 0⇒ φH1(A) ≤ φH2(A), ∀ ΓA(H2).

Remark 1. Relation (4) clearly indicates that reaching both
consistency and specificity are somewhat opposite goals.

B. Uncertain testimony and meta-knowledge
More generally, both the testimony and the meta-

knowledge of the agent may be uncertain. Let mX be the
uncertain testimony and mH the uncertain meta-knowledge.
The knowledge of the agent on X is then given by the mass
function m[mH]X defined for all B ⊆ X as [32]:

m[mH]X (B) =
∑
H⊆H

mH(H)
∑

A:ΓA(H)=B

mX (A). (5)

This definition is rather general and cover numerous cases,
such as Shafer’s discounting rule [35], as explained in [32].

The results of the previous section can be extended to this
general setting: following [8], the mass function modeling the
empty set (m[mH]X (∅) = 1) can be associated to a complete
inconsistent knowledge and a mass function m[mH]X whose
focal sets have a non-empty intersection can be associated to
a totally consistent knowledge. That is, the testimony mX is
totally consistent under meta-knowledge mH if and only if⋂

A∈F
H∈FH

ΓA(H) 6= ∅, (6)

where F and FH denote the sets of focal sets of mX and
mH, respectively. A mass function mX is then said mH-
consistent if and only if (6) holds. Lemma 1 characterizes
mH-consistent testimonies in terms of the contour function.

Lemma 1.
⋂

A∈F
H∈FH

ΓA(H) 6= ∅ ⇔ ∃x ∈

X such that pl[mH]X (x) = 1, where pl[mH]X is the
contour function associated to m[mH]X obtained from (5).

Proof. This follows directly from Lemma 1 of [8], when one
recognizes that subsets ΓA(H) ⊆ X , such that A ∈ F and
H ⊆ FH, are the focal sets of m[mH]X .

A source is thus mH-consistent if it allows us to conclude
that at least one value of x is totally plausible under meta-
knowledge mH. Following [8], this characterization of mH-
consistency suggests the following definition:

Definition 2 (mH-consistency measure). The measure φmH :
MX → [0, 1] of mH-consistency, whereMX denotes the set
of all mass functions on X , reads:

φmH(mX ) = max
x∈X

pl[mH]X (x). (7)
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Equation (7) is relatively easy to evaluate. Indeed, in (5),
the quantity

∑
A:ΓA(H)=Bm

X (A) is the mass allocated to
B ⊆ X when the source is assumed to be in some state
H ⊆ H, i.e., we have

m[H]X (B) =
∑

A:ΓA(H)=B

mX (A).

Equation (5) can thus be rewritten:

m[mH]X (B) =
∑
H⊆H

mH(H)m[H]X (B). (8)

As Eq. (8) is a convex mixture of mass functions (each
m[H]X is weighted by mH(H) which is positive and sums
up to one), and as the plausibility measure of a convex
mixture is the convex mixture of plausibility measures,
computing Eq. (7) only requires to compute the weighted
average of the contour functions of m[H]X for all H ∈ FH.

Remark 2. Many generalizations of Shannon entropy (see
[20, Ch. 3] for a review) have been defined for belief
functions, such as the degree of dissonance [20, Sec. 6.5.],
which corresponds to a mean value of conflict or inconsis-
tency between the focal sets of a mass function. Using them
instead of Def. 2 is tempting, however it should be noticed
that most of them would not reach extremal values when⋂

A∈F
H∈FH

ΓA(H) 6= ∅ nor when m[mH]X (∅) = 1.

Remark 3. The more classical consistency measure m(∅)
is also considered in [8]. We will not consider it here, as
(1) it is argued in [8] that this measure is less adapted to a
singular interpretation, (2) estimating m(∅) usually requires
heavier computations, hence is of less practical interest and
(3) most results presented here adapt easily to m(∅).

Meta-specificity may also be generalized to this setting:

Definition 3 (Meta-specificity). An uncertain piece of meta-
knowledge mH1 is said to be at least as meta-specific as
another uncertain piece mH2 when m[mH1 ]X v m[mH2 ]X

for any mX ∈MX . This is denoted by mH1 vH mH2 .

We may then show that in the general case we have
relations extending (3) and (4); in particular that consistency
and specificity are also at odds as shown by Proposition 2:

Proposition 1. Let mH1 ,m
H
2 ∈ MH such that mH1 v mH2 .

We have mH1 vH mH2 .

Proof. Consider a focal set A of a mass mX and a focal
set Hj of mH2 . The mass mX (A)mH2 (Hj) is then affected
to ΓA(Hj). Now, considering the states Hi of mH1 , we have
that a fraction wij > 0 of the mass mX (A)mH1 (Hi) affected
to ΓA(Hi) will be transferred to ΓA(Hj), and ΓA(Hi) ⊆
ΓA(Hj) since Hi ⊆ Hj by definition.

Proposition 2. Let mH1 ,m
H
2 ∈MH such that mH1 vH mH2 .

We have φmH1 (mX ) ≤ φmH2 (mX ) for all mX ∈MX .

Proof. From the definition of vH, we have m[mH1 ]X v
m[mH2 ]X for all mX ∈ MX , which from (1) implies
pl[mH1 ]X (x) ≤ pl[mH2 ]X (x) for all x ∈ X .

The notions introduced in this section, and in particular
Proposition 2, are illustrated in Example 1.

Example 1 (Inspired from Example 1 of [32]). Let X =
{x1, x2, x3, x4, x5} be an ordered space and consider mX

such that mX ({x1, x2}) = 0.3, mX ({x4, x5}) = 0.3 and
mX ({x3}) = 0.4. Now consider the following assumptions:
• h1 “reliable” such that ΓA(h1) = A;
• h3 “unreliable” such that ΓA(h3) = X ;
• and h2 “approximately reliable” such that if A =
{xi, xi+1, . . . , xj} then ΓA(h2) = {xi−1}∪A∪{xj+1}
with x0 = x6 = ∅ and meaning that the source is
not totally reliable neither totally unreliable, but it is
somewhere between these two extremes.

We have h1 vH h2 vH h3 while φh1
(mX ) =

0.4, φh2
(mX ) = 1, φh3

(mX ) = 1.

This example allows us to lay bare some preliminary ideas
on source behavior selection with a consistency-specificity
trade-off. As observed, assumptions h2 and h3 are the most
desirable in terms of consistency, since they both yield a
totally consistent state of knowledge. However, as the state of
knowledge obtained under h2 is more specific (informative)
than the one obtained under h3, h2 appears preferable. This
will be developed at length in Section V.

IV. CONSISTENCY AND SPECIFICITY: MULTIPLE SOURCES

Let us now consider the main case where multiple sources
si, i = 1, . . . ,K provide information, each as a mass func-
tion mXi . As recalled in the Introduction, the main problem
in such a case is to combine these pieces of information in
a sensible way. Since we focus in this paper on the problem
of finding appropriate source behaviors, the sources will be
assumed to rely on distinct evidences [38], [41], a usual
assumption when merging belief functions.

Many combination rules have been proposed for belief
functions [41]: the most usual is the unnormalized Demp-
ster’s rule (or conjunctive rule), which applies when sources
are assumed to rely on distinct evidences and are both
relevant and truthful. It is denoted here by ∩©. The mass
mX1 ∩©2 resulting from its application on mX1 and mX2 is:

mX1 ∩©2 (A) =
∑

B∩C=A

mX1 (B)mX2 (C) , ∀A ⊆ X . (9)

The disjunctive rule ∪© [11], [39] is obtained by simply
replacing ∩ with ∪ in (9). Both the conjunctive and dis-
junctive rules can be given a clear interpretation in terms
of source behavior assumptions [32]. In this section, we
extend our characterization of consistency and specificity to
the theoretical results of Pichon et al. [32].

A. General case: uncertain testimonies and meta-knowledge

To simplify notations, we consider that all source si share
the same1 possible state space H = {h1, ..., hN}. For any
state h = (h1, . . . , hk) ∈ HK we define a mapping for

1The extension to particularized state spaces Hi is straightforward.
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any A = (A1, . . . , AK) ⊆ XK as ΓA(h) =
⋂K
i=1 ΓAi(h

i).
ΓA(h) represents the information on X deduced from testi-
monies (A1, . . . , AK) provided by sources s1, . . . , sK when
they are in states (h1, . . . , hK) [32]. For non-elementary
hypotheses H ⊆ HK , we keep the previous notation, i.e.,
ΓA(H) := ∪h∈HΓA(h), ∀H ⊆ HK , ∀A ⊆ XK .

If we have some joint meta-knowledge mH
K

over HK
and if sources s1, . . . , sK deliver distinct testimonies mXi ,
i = 1, . . . ,K, then the combined mass function m[mH

K

]X

defined by (10) represents what can be inferred about x from
mX = (mX1 , ...,m

X
K) [32]:

m[mH
K

]X (B) =
∑

H⊆HK
mH

K

(H)
∑

A⊆XK
ΓA(H)=B

[
K∏
i=1

mXi (Ai)

]
,

(10)
the product

∏K
i=1m

X
i (Ai) coming from the distinctness

assumption.
An interesting feature of using meta-knowledge is that all

Boolean operators on sets A = (A1, . . . , AK) ⊆ XK can
be obtained through particular assumptions on the behavior
of the sources [32]. As a result, Equation (10) covers all
combination rules based on Boolean operators. For instance,
consider the assumption HK

r onHK meaning the sources are
truthful and “r-out-of-K” of them are relevant (an assumption
that is common in interval analysis [17]). This amounts to

ΓA(HK
r ) =

⋃
A⊆{A1,...,AK},|A|=r

(∩A∈AA) . (11)

When applying HK
r to Eq. (10), the conjunctive and disjunc-

tive rules are retrieved when r = K and r = 1, respectively.
Keeping the same definition of complete inconsistent and

consistent knowledge as in Section III-B, the counterpart of
Lemma 1 suggests to use the following equation as a degree
of mH

K

-consistency for the collection mX

φmHK (mX ) = max
x∈X

pl[mH
K

]X (x), (12)

where pl[mH
K

] is the contour function of (10). Eq. (12)
extends the conflict measure defined by Destercke and
Burger [8] to any combination rule that can be obtained
from (10), in particular to all rules based on Boolean op-
erators. In addition, we have again that if mH

K

1 vH mH
K

2 ,
then φ

mH
K

1
(mX ) ≤ φ

mH
K

2
(mX ) for mX .

Those powerful results, i.e., the extension of the conflict
measure to any combination rule and the duality between
specificity and consistency are heavily used in Section V
where we introduce a method to select source behaviors.

B. Computation of the consistency degree

Equation (10) can be rewritten as

m[mH
K

]X (B) =
∑

H⊆HK
mH

K

(H)m[H]X (B), (13)

with m[H]X the mass function representing the knowledge
inferred on X when the sources are assumed to be in some

state H ⊆ HK , defined by

m[H]X (B) =
∑

A⊆XK ;ΓA(H)=B

[
K∏
i=1

mXi (Ai)

]
.

Hence, the computation of (12), which can be resource
demanding, may be simplified as in the single source case,
using the convexity property of plausibility measures. How-
ever, there are cases where it is easier to compute (13) and
thus even easier to compute (12) than merely using this
convexity property. In particular, when all focal elements of
mH

K

are behavior-separable (or b-separable).

Definition 4 (Behavior-Separability). A subset H ⊆ HK is
said b-separable iff H = H↓1 × . . . × H↓K (where H↓i is
the projection of H ⊆ HK on the ith source state space).

Proposition 3. When each focal set of mH
K

is b-separable,
Equation (13) can be rewritten as:

m[mH
K

]X (B)=
∑

H⊆HK
mH

K

(H)
[
∩©K
i=1m[H↓i]X

]
(B) (14)

where m[H↓i]X denotes mXi transformed according to H↓i.

Proof. Let H be a b-separable assumption on the sources.
Such b-separable meta-knowledge H satisfies the property
of so-called meta-independence in [32]. Therefore, from [32,
Theorem 1], we have

m[H]X (B) =
[
∩©K
i=1m[H↓i]X

]
(B). (15)

If each focal set of a piece of meta-knowledge mH
K

is b-
separable, it is direct to obtain (14) from (13) and (15).

That is, to compute m[mH
K

]X we first transform each
mXi according to H↓i, apply unnormalized Dempster’s rule
to them and compute the weighted sum according to mH

K

.
We can therefore make use of efficient algorithms to compute
Dempster’s rule result [43].

This property simplifies the computation of the consis-
tency measure (12) as follows. Consider the meta-knowledge
mH

K

(H) = 1 with H b-separable and let pl[H]X be the
corresponding contour function. Furthermore, let pl[H↓i]X

denote the contour function obtained by transforming mXi
according to meta-knowledge H↓i. We have:

pl[H]X (x) =

K∏
i=1

pl[H↓i]X (x). (16)

Now, let mH
K

be a piece of meta-knowledge with b-
separable focal sets, we have then

pl[mH
K

]X (x) =
∑

H⊆HK
mH

K

(H) ·
K∏
i=1

pl[H↓i]X (x).

In other words, when each focal set of a piece of meta-
knowledge is b-separable, computing consistency mea-
sure (12) only requires to compute contour functions and to
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take their weighted averaged products (hence not necessitat-
ing any combination). However, let us stress that in general,

φmHK (mX ) 6=
∑
H

mH
K

(H)φH(mX ), (17)

even in the case where the focal sets of mH
K

are b-separable,
as shown by Example 2.

Example 2. Let mX = (mX1 ,m
X
2 ) with X = {x1, x2} and

mX1 ({x1}) = 0.2,mX1 ({x2}) = 0.3,mX1 (X ) = 0.5 and
mX2 ({x1}) = 0.4,mX2 ({x2}) = 0.2,mX2 (X ) = 0.4. Fur-
thermore, sources s1 and s2 are assumed to be truthful and
to have the following joint behavior in terms of relevance:
with mass 0.7 s1 is relevant and s2 is not, and with mass
0.3 s2 is relevant and s1 is not. Let mH

2

denote such meta-
knowledge on the sources:

mH
2

(H1 = {((R, T ), (¬R, T ))}) = 0.7,

mH
2

(H2 = {((¬R, T ), (R, T ))}) = 0.3.

We have [32] m[mH
2

]X = 0.7 ·mX1 + 0.3 ·mX2 . Computing
the contour function associated to m[mH

2

]X , we find:

pl[mH
2

]X (x1) = 0.7 · plX1 (x1) + 0.3 · plX2 (x1) = 0.73,

pl[mH
2

]X (x2) = 0.7 · plX1 (x2) + 0.3 · plX2 (x2) = 0.74,

and thus φmH2 (mX ) = 0.74. On the other hand, we have

mH
2

(H1) · φ{H1}(m
X ) +mH

2

(H2) · φH2
(mX ) (18)

= 0.7 · 0.8 + 0.3 · 0.8 = 0.8.

Such a behavior can be easily explained by the fact that
the sum operator of (17) and the maximum operator of (12)
do not distribute over each other.

V. SOURCE BEHAVIOR SELECTION APPROACH

When only little knowledge about the sources is available,
it is not possible to estimate their behavior using learning
procedures or multicritera aggregations (see Section I), as
information to do so is lacking. In such a case, a strategy is
to consider a set of sensible behavior assumptions – hence
a set of readable rules – to choose from, together with
selection criteria. We provide guidelines to define such a set
and selection criterion, based on previous section materials.
Roughly speaking, we specify a set of behavior assumptions
inducing decreasingly specific results, and take a minimal
consistency threshold as a simple, single selection parameter
to pick an assumption from this set. This leads to a general,
yet practical and sensible, approach to select the behavior of
the sources in poorly informed cases. Instances of Section VI
illustrate the approach.

A. Initial meta-knowledge

We propose to consider a basic initial assumption mH
K

1

such that mH
K

1 (h) = 1, with h ∈ HK and ΓA(h↓i) = A for
all A ⊆ X and i = 1, ...,K, i.e., an assumption that induces
no transformation of the testimonies provided by the sources.

This assumption corresponds to not altering in any way the
initial information, i.e., we accept the testimonies as they are.
Most importantly, this assumption is the most classical one
in information fusion in general and in belief function theory
in particular, as it corresponds to unnormalized Dempster’s
rule. Hence, mH

K

1 is a natural default meta-knowledge.
Equation (12) gives an assessment of whether the assump-

tion mH
K

1 applies to the current testimonies. As is classically
advocated in belief function theory, we propose that assump-
tion mH

K

1 should be used to combine the testimonies if the
consistency derived from Eq. (12) induced by mH

K

1 is high
enough, that is if it is above some threshold τ , and that mH

K

1

should be rejected as a valid assumption if the consistency is
too low, i.e., below τ . In this latter case, other assumptions
leading to higher consistency should be sought.

B. A specificity ordering approach

To define other assumptions that will result in more
consistent results after merging, we use the counterpart of
Proposition 2 in the multiple source case: choosing a meta-
knowledge mH

K

2 such that mH
K

1 vH mH
K

2 will ensure a
consistency increment. This leads us to propose the following
two-step strategy to select the meta-knowledge to be used:

1) define a collection of meta-knowledge mH
K

=
(mH

K

1 , ...,mH
K

M ) such that for any 1 ≤ j < M ,
mH

K

j @H mH
K

j+1, and with mH
K

1 as defined above;
2) test each mH

K

j iteratively with j = 1, . . . ,M , until
φ
mH

K
j

(mX ) ≥ τ .

This ensures that, at each iteration from j to j+1, specificity
will decrease since mH

K

j @H mH
K

j+1 and consistency will
increase since φ

mH
K

j
(mX ) ≤ φ

mH
K

j+1
(mX ), the process

stopping whenever one thinks the result is consistent (trust-
worthy) enough. In other words, this strategy gradually
decreases specificity until a satisfactory consistency level
is reached. Once a collection is defined (some interesting
instances are given in Section VI), the only parameter to set
is τ (any value over 0.5 seems reasonable, with 0.8 being a
good compromise).

In itself, this idea is not entirely new, as it already appears
in Dubois and Prade [12], where the foundations of source
behavior assumptions are laid bare. More recently, one can
find specificity-based comparisons of combination rules in
[37], or strategies relaxing specificity to gain consistency
[22], [21]. Yet, to our knowledge this is the first proposal
to provide a so generic formal procedure allowing one to
select interpretable fusion rules and to rely on consistency
measured through contour functions.

Remark 4. The construction of mH
K

should be based on
common-sense and readability: pieces of meta-knowledge
mH

K

j should have a clear semantic given the application,
and the space H should be of reduced size, e.g., H =
{(T,R), (T,¬R), (¬T,R), (¬T,¬R)}.
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TABLE I
MASS FUNCTIONS RESULTING FROM THE THREE DIFFERENT

ASSUMPTIONS.

A mX1 mX2 mX3 m[H3
1 ]
X m[H3

2 ]
X m[H3

3 ]
X

∅ 0 0 0 0 0 0.36
{x1} 0.5 0 0 0 0.06 0.2
{x1, x2} 0 0.2 0 0 0.04 0.04
{x3} 0 0 0.6 0 0 0.24
{x1, x3} 0 0 0 0 0.24 0
X 0.5 0.8 0.4 1 0.66 0.16

VI. PRACTICAL INSTANCES

Before providing a real world case study in Section VII,
we provide three peculiar instances illustrating the approach
that are of practical and theoretical interest: the first one uses
imprecise pieces of meta-knowledge; the second one is based
on Bayesian pieces of meta-knowledge; and the third one
explores an interesting link between our approach and the α-
conjunctions [40]. Whenever possible, we relate to classical
fusion strategies that our approach subsumes.

A. r-out-of-K relevant sources

The collection is defined by mH
K

j (HK
K−j+1) = 1, with

HK
K−j+1 being the assumption that all the sources are

truthful and r = K − j + 1 out of them are relevant (see
Eq. (11)). This collection satisfies our need:

Proposition 4. If mH
K

j (HK
K−j+1) = 1, then mH

K

j vH
mH

K

j+1 for 1 ≤ j < K.

Proof. For each j ∈ {1, . . . ,K − 1} and each h ∈ HK
K−j+1

(h is a joint state assuming that the K sources are truthful
and that K− j+1 specific sources are relevant), there exists
an assumption h′ ∈ HK

K−j , such that

ΓA(h) ⊆ ΓA(h′) (19)

for all A ⊆ XK . Since ΓA(HK
K−j+1) = ∪h∈HKK−j+1

ΓA(h)

and ΓA(HK
K−j) = ∪h′∈HKK−jΓA(h′) for all A ⊆ XK , we

have, using (19), ΓA(HK
K−j+1) ⊆ ΓA(HK

K−j) for all A ⊆
XK , i.e., HK

K−j+1 is as least as meta-specific as HK
K−j .

Example 3. Consider the mass functions mX1 , mX2 and
mX3 on X = {x1, x2, x3} in the left part of Table I.
Assume they were received from three distinct sources. Let
mH

3

= (mH
3

1 ,mH
3

2 ,mH
3

3 ) = (H3
3 , H

3
2 , H

3
1 ) be three pieces

of meta-knowledge we want to test on these sources. mH
3

1

corresponds to the use of the unnormalized Dempster’s
rule, while mH

3

3 corresponds to the use of the disjunctive
rule. mH

3

2 corresponds to the assumption H3
2 that the three

sources are truthful and that two of them are relevant, but
we do not know which ones.

The right part of Table I presents the mass functions on
X resulting from the three different assumptions. We have
φH3

1
(mX ) = 1, φH3

2
(mX ) = 1 and φH3

3
(mX ) = 0.4, hence

our approach suggests to use H3
2 to combine the pieces of

information in this example.

Note that the assumption “r-out-of-K” is not b-separable
in general. However, this assumption treats all sources in
the same way, which seems interesting in absence of meta-
knowledge about each individual source.

B. Partially relevant sources

Another interesting case is when we consider H =
{R,¬R} (relevant or not) and a vector p = (p1, . . . , pK)
such that mH(Ri) = pi, mH(¬Ri) = 1 − pi and where
mH

K

is obtained by considering the stochastic product
of probabilities p1, . . . , pK . In such case, the assumption
mH

K

amounts to discounting each source si according to
reliability rate 1 − pi and then combining the discounted
sources using the conjunctive rule [32]. If we define a
set p1, . . . ,pM of such vectors with pji ≥ pj+1

i with the
inequality strict for at least one i, we get corresponding
pieces of meta-knowledge mH

K

1 , . . . ,mH
K

M that satisfy the
property described by Proposition 5 below, the proof of
which requires Lemmas 2 and 3.

Lemma 2. [6, Proposition 2] The conjunctive rule is mono-
tonic with respect to v, i.e., for all mass functions mX1 and
mX2 on X such that mX1 v mX2 , we have

mX1 ∩©m
X
3 v mX2 ∩©mX3 , ∀mX3 .

Lemma 3. Let mXk , m
′X
k (k = 1, . . . ,K) be 2K mass

functions on X such that mXk v m
′X
k . We have

∩©K
k=1m

X
k v ∩©K

k=1m
′X
k . (20)

Proof. Since mXk v m
′X
k , k = 1, . . . ,K, Equation (20)

holds for K = 1. Assume now that (20) holds for K = N .
To prove this lemma, it suffices then to show that (20) holds
for K = N + 1. From Lemma 2, we have

∩©N
k=1m

X
k v ∩©N

k=1m
′X
k

⇒ ( ∩©N
k=1m

X
k ) ∩©mXN+1 v ( ∩©N

k=1m
′X
k ) ∩©mXN+1, (21)

as well as

mXN+1 v m
′X
N+1

⇒ ( ∩©N
k=1m

′X
k ) ∩©mXN+1 v ( ∩©N

k=1m
′X
k ) ∩©m

′X
N+1. (22)

Eq. (21) and (22) lead to ∩©N+1
k=1 m

X
k v ∩©N+1

k=1 m
′X
k

Proposition 5. Let mH
K

j , j = 1, . . . ,M, be the mass func-
tions defined using p1, . . . ,pM . We have mH

K

j vH mH
K

j+1,
for 1 ≤ j < M .

Proof. Let m[pji ] denote the mass function mXi on X dis-
counted according to reliability rate 1− pji (see [35], [39]).
If pji ≥ p

j+1
i , then it is immediate that

m[pji ] v m[pj+1
i ]. (23)

From Lemma 3 and Equation (23), we obtain

∩©K
i=1m[pji ] v ∩©K

i=1m[pj+1
i ]. (24)

As shown in [32], we have

∩©K
i=1m[pji ] = m[mH

K

j ]X , (25)
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TABLE II
MASS FUNCTIONS RESULTING FROM THREE RELIABILITY VECTORS OF

EXAMPLE 4.

A mX1 mX2 mX3 m[p3]X m[p2]X m[p1]X

∅ 0 0 0 0.04 0.18 0.36
{x1} 0.5 0 0 0.26 0.26 0.2
{x1, x2} 0 0.2 0 0.08 0.06 0.04
{x3} 0 0 0.6 0.08 0.18 0.24
X 0.5 0.8 0.54 1 0.32 0.16

with mH
K

j the meta-knowledge obtained by taking the
stochastic product of probabilities pj1, . . . , p

j
K . Finally, from

(24) and (25), we have m[mH
K

j ]X v m[mH
K

j+1]X .

A useful feature of such mH
K

is that the pieces of meta-
knowledge mH

K

j are b-separable, and therefore φ
mH

K
j

(mX )

can be computed efficiently using the results of Section IV-B.
In practice, we will have p1 = 1 (a vector of 1s), and

specifying p2, . . . ,pM can be done in two main ways:
by directly giving them, or by specifying their decreasing
rate according to, e.g., expert opinions. For example, the
statement ”s` is less reliable than sk” implies that p` should
decrease more quickly than pk.

Example 4. Consider the same three masses mXi , i =
1, . . . , 3 as in Example 3, and the fact that according to some
experts, the third source is likely to be far less reliable than
the two others. This could be modeled by the successive vec-
tors p1 = (1, 1, 1), p2 = (0.8, 0.8, 0.6), p3 = (0.6, 0.6, 0.4)
and so on (until pM = (0, 0, 0)), to which are associated the
meta-knowledges mH

K

i , i = 1, . . . , 3.
Table II summarizes the obtained results (showing only the

focal elements). We have φp1(mX ) = 0.4, φp2(mX ) = 0.64
and φp3(mX ) = 0.88, hence if we fix τ = 0.8, then p3 is
selected. Note that the resulting masses are quite different
from those obtained in Example 3.

As indicate the next remarks, existing fusion schemes
already use this idea.

Remark 5. The sequential discounting approaches proposed
in [19]2, [34], and [45] and based, respectively, on the de-
grees of dissent, falsity and disagreement, can all be included
in the present approach. For instance, if we associate pji with
the discounting rate used at step j in Schubert’s sequential
discounting [34], then m[mH

K

j ]X is nothing else but the
mass function on X obtained at step j in Schubert’s scheme,
showing that it is included in our approach.

Remark 6. Consider K input data oi in RN , i = 1, . . . ,K
with outputs in space X . To predict the output of a new data
o, the evidential k-nearest neighbor method [5] first orders
oi, i = 1, . . . ,K by increasing distance to o. Without loss
of generality, let us assume that data are indexed such that

2Klein and Colot [19] approach amounts basically to an iterative use of
Martin et al. approach [26], which is one of the methods (see also, e.g.,
[24]) to estimate the reliability of a source from its dissimilarity from the
other ones.

d(o, oi) ≤ d(o, oi+1) with d some distance. Let f(d(o, o′))
be some discounting function that increases with d (we refer
to [5] for details). Then, if we define pji as

pji = (1− f(d(o, oi)))× δ({i ≤ K − j + 1})

with δ({i ≤ K − j + 1}) the indicator function of {i ≤
K − j + 1} (= 1 if i ≤ K − j + 1, 0 else), m[mH

N

j ]X is
the mass function obtained by the evidential k-nn rule with
k = K− j+ 1. Using Proposition 5, we have that the lower
k is, the less specific is the prediction of the output, and
therefore the higher its consistency, that is choosing k in the
evidential k-nn rule can be seen as choosing a consistency-
specificity trade-off.

C. Similarly untruthful sources

In [40], Smets introduces a family of combination rules,
the α-conjunctions, depending on a parameter α ∈ [0, 1].
This family represents the set of associative, commutative
and linear operators for belief functions with the vacuous
mass (m(X ) = 1) as neutral element. Let mX1 and mX2 be
two mass functions on X and let mX1 ∩©α2 denote the mass
function resulting from the α-conjunction of mX1 and mX2 .
We have, for all D ⊆ X [30]:

mX1 ∩©α2 (D) =
∑

(A∩B)∪(A∩B∩C)=D

mX1 (A)mX2 (B)mXα (C) , (26)

where mXα (A) = α|A|(1− α)|A|, ∀A ⊆ X . (27)

Similarly to the assumption ”r-out-of-K” that allows one to
go from the unnormalized Dempster’s rule to the disjunctive
rule as a function of r, the α-junctions also allows one to
move between two rules based on Boolean operators as α
decreases: it includes the unnormalized Dempster’s rule (for
α = 1) and the so-called equivalence rule [29] (for α = 0),
based on the operator A∩B = (A∩B)∪ (A∩B) expressing
logical equivalence.

Smets derived these rules in [40] from axiomatic require-
ments, but admitted that they lacked a clear interpretation
for α ∈ (0, 1). Recently, in [29], such an interpretation was
provided in terms of truthfulness of the sources: it was shown
that they correspond to assuming that either both3 sources tell
the truth or they commit the same lie4 with some particular
mass depending on α. Let mH

2

α denote this meta-knowledge
on the sources (we refrain from providing the definition of
mH

2

α since it is not needed in this paper; see [29] for the
definition). We may then show Proposition 6 concerning
mH

2

α , using Lemmas 4 and 5.

Lemma 4. [6, Proposition 2] Disjunctive rule is monotonic
with respect to v.

3The interpretation in [29] was only provided for the case where K = 2.
4In [29], different forms of lack of truthfulness are considered besides

the crudest one, that is, telling the opposite of what one knows.
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Lemma 5. Let mXk , m
′X
k , k = 1, . . . ,K be 2K mass

functions on X such that mXk v m
′X
k , k = 1, . . . ,K. Let

0 ≤ vk ≤ 1, such that
∑K
k=1 vk = 1. We have

mXΣ =

K∑
k=1

vk ·mXk v
K∑
k=1

vk ·m
′X
k = m

′X
Σ . (28)

Proof. Let FΣ = ∪Ki=1Fi with Fi the focal sets of mXi
denote the set of focal elements of all mXi , i = 1, . . . ,K.
Similarly, let us denote F ′Σ = ∪Ki=1F

′

i the set of focal
elements of all m

′X
i , i = 1, . . . ,K. We also know that for

each k ∈ {1, . . . ,K}, there is a matrix W k = [wkij ] satisfying
Definition 1. Now, for any Ei ∈ FΣ, we can write

mXΣ (Ei) =

K∑
k=1

vkm
X
k (Ei) =

K∑
k=1

vk

q∑
j=1

wkij =

q∑
j=1

K∑
k=1

vkw
k
ij

The last equality following by distributing the vk over∑q
j=1 w

k
ij . Similarly, for any Fj ∈ F

′

Σ, we can write

m
′X
Σ (Fi) =

K∑
k=1

vkm
′X
k (Fj) =

K∑
k=1

vk

p∑
i=1

wkij =

p∑
i=1

K∑
k=1

vkw
k
ij

From the above equality, the matrix WΣ with elements wΣ
ij

satisfies the two first conditions of Definition 1, and we also
have wΣ

ij > 0 only if Ei ⊆ Fj , since wkij = 0 when Ei 6⊆
Fj for any k ∈ {1, . . . ,K}. This means that WΣ satisfies
Definition 1.

Proposition 6. mH
2

α vH mH
2

α′ holds with 1≥α≥α′≥0.

Proof. Equation (26) can be equivalently rewritten:

mX1 ∩©α2 (D) =
∑
A,B

mX1 (A)mX2 (B)mXα (D|A,B) , (29)

with mXα (·|A,B) the mass function defined ∀ D ⊆ X as:

mXα (D|A,B) =
∑

(A∩B)∪(A∩B∩C)=D

mXα (C) , (30)

where mXα is the mass function defined by (27).
We may remark that mXα (·|A,B) is actually the mass

function obtained on X after combining by ∩©α the (certain)
testimonies x ∈ A and x ∈ B, i.e., we have

mXα (·|A,B) = A ∩©αB.

From the definition (30) of mXα (·|A,B), we can furthermore
remark that A ∩©αB can be obtained by combining mXα with
the information x ∈ A ∩ B using the conjunctive rule,
and then combining the result of this combination with the
information x ∈ A ∩ B using the disjunctive rule, i.e., we
have: A ∩©αB = (mXα ∩©(A ∩B)) ∪©(A ∩B). Now, as shown
by Lemma F.1 of [28], we have

mXα = ∩©x∈Xm
X
α,x, (31)

with mXα,x the mass function defined by mXα,x({X\x}) = α
and mXα,x(X ) = 1− α.

Let 1 ≥ α ≥ α′ ≥ 0. We have clearly, ∀x ∈ X ,
mXα,x v mXα′,x. From Lemma 3 and Equation (31), we may

TABLE III
MASS FUNCTIONS RESULTING FROM THE THREE DIFFERENT

HYPOTHESES.

A mX1 mX2 m[α = 0]X m[α = 0.5]X m[α = 1]X

∅ 0 0 0 0.09 0.18
{x1} 0.2 0 0.2 0.17 0.14
{x2} 0.4 0 0.22 0.25 0.28
{x1, x2} 0 0.3 0.12 0.12 0.12
{x3} 0 0.3 0.12 0.12 0.12
{x1, x3} 0 0 0.06 0.03 0
{x2, x3} 0 0 0.12 0.06 0

X 0.4 0.4 0.16 0.12 0.16

then conclude that mXα v mXα′ . Using Lemmas 2 and 4, we
find

(mXα ∩©(A ∩B)) ∪©(A ∩B) v (mXα′ ∩©(A ∩B)) ∪©(A ∩B),

that is, we have

A ∩©αB v A ∩©α
′
B, ∀A,B. (32)

Using Lemma 5 together with Equations (29) and (32), we
can prove that

mX1 ∩©
αmX2 v mX1 ∩©α

′
mX2 , ∀mX1 ,mX2 , (33)

and thus mH
2

α vH mH
2

α′ .

Thanks to Proposition 6, one may define a collection mH
2

based on mH
2

α , with α decreasing, that satisfies our proposed
source behavior selection approach. An example of such a
collection is provided in Example 5.

Example 5. Consider the two mass functions mX1 and mX2
on X = {x1, x2, x3} in the left part of Table III. Let mH

2

=

(mH
2

1 ,mH
2

0.5 ,m
HK
0 ) be three meta-knowledge we want to

test on these sources, corresponding respectively to α = 1,
α = 0.5 and α = 0. The right part of Table III presents
the mass functions on X resulting from the three different
assumptions. We have φα=0(mX ) = 0.62, φα=0.5(mX ) =
0.59 and φα=1(mX ) = 0.56. Depending on the chosen value
for τ , different meta-knowledge can be selected.

The above results provide practical means to exploit α-
conjunctions. This may be regarded as important, as despite
the fact that α-conjunctions represent an important theoret-
ical family of combination rules, they are seldom exploited
in practice. As shown by our results, these rules can be used
to design new strategies to deal with conflicting situations in
a principled and meaningful manner. Yet, we must note that
the appeal of these rules with respect to conflict resolution is
limited, as Proposition 6 which means that for all mX1 ,m

X
2 ,

mX1 ∩©
αmX2 v mX1 ∩©α

′
mX2 , 1 ≥ α ≥ α′ ≥ 0.

does not extend to the general case of K > 2 sources, i.e.,
we do not have in general:

∩©α K
k=1 m

X
k v ∩©α′ K

k=1 m
X
k , 1 ≥ α ≥ α′ ≥ 0,

as shown by Example 6 below. Hence, it is not possible to use
α-conjunction meta-knowledge to more than two sources in
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the present framework, unless we relax the assumption of the
first step that meta-knowledges mH

K

j of the collection must
form a complete order with respect to vH. In Section VI-D,
we suggest some ways to deal with this case, considering
partial rather than complete orders.

Example 6. Consider three mass functions mXi , i ∈ {1, 2, 3}
on X = {x1, x2} defined by mX1 (∅) = mX2 (∅) = 1,
and mX3 ({x1}) = 1. Let 1 > α > α′ = 0. We have
(mX1 ∩©

α′mX2 )(X ) = 1, and thus ((mX1 ∩©
α′mX2 ) ∩©α

′
mX3 ) =

mX3 . Besides, we have

(mX1 ∩©
αmX2 )(A) = mXα (A) , ∀A ⊆ X .

According to (26), the quantity

(mX1 ∩©
αmX2 )({x1})mX3 ({x1})mXα (X ) = mXα ({x1})mXα (X )

is transfered to X . Therefore, we have

((mX1 ∩©
αmX2 ) ∩©αmX3 )(X ) ≥ mXα ({x1})mXα (X ).

Since mXα ({x1})mXα (X ) > 0 and

((mX1 ∩©
α′mX2 ) ∩©α

′
mX3 )(X ) = mX3 (X ) = 0,

mX1 ∩©
αmX2 ∩©

αmX3 cannot be a specialization of
mX1 ∩©

α′mX2 ∩©
α′mX3 .

D. Considering Partially ordered mH
K

Although general enough to include many existing fusion
strategies, as well as to propose new ones, the approach
described so far still relies on assumptions that we may want
to question or to relax. In this section, we extend the previous
proposal by considering that pieces of meta-knowledge that
are of interest may be only partially ordered; hence the
mass functions resulting from their applications may also
be partially ordered with respect to specialization, and the
problem of selecting a meta-knowledge and its associated
assumption then becomes more complex.

The approach to select the source behavior proposed
in Section V requires to choose a particular collection
mH

K

= (mH
K

1 , ...,mH
K

M ) of totally ordered pieces of meta-
knowledge. This total order easily allows us getting a unique
solution, i.e., the one for which φ

mH
K

j
(mX ) ≥ τ .

However, in some cases, we may want to define a collec-
tion mH

K

= (mH
K

1 , ...,mH
K

M ) that is only partially ordered
with respect to meta-specificity, that is we may have i, j
with mH

K

i 6@H mH
K

j and mH
K

j 6@H mH
K

i . In such a case,
we can have min{φ

mH
K

j
(mX ), φ

mH
K

i
(mX )} ≥ τ (both

assumptions have sufficient consistency) with m[mH
K

i ]X 6v
m[mH

K

j ]X and m[mH
K

j ]X 6v m[mH
K

i ]X , in which case the
consistency-specificity trade-off cannot be used any more.

As an example, consider two sources mX1 and mX2 such
that H = {R,AR,NR}, where R stands for reliable, AR
for approximately reliable (see Example 1) and NR for non-
reliable. We can then consider the collection of certain pieces
of meta-knowledge where each source can be in one state.
Such partial order is illustrated on Fig. 1.

mH
K

1 = {R1} × {R2}

mH
K

2 =

{AR1} × {R2}
mH

K

3 =

{R1} × {AR2}

mH
K

4 =

{NR1} × {R2}
mH

K

5 =

{AR1} × {AR2}
mH

K

6 =

{R1} × {NR2}

mH
K

7 =

{NR1} × {AR2}
mH

K

8 =

{AR1} × {NR2}

mH
K

9 = {NR1} × {NR2}

@
H @H

@
H @H

@
H @H

@H

@
H

@
H@H

@H

@
H

Fig. 1. Illustration of partially ordered collection mH
K

A possible procedure to deal with such partially ordered
collection of hypotheses is the following: first retrieve the set
C ⊆mH

K

of pieces of meta-knowledge such that

C =
{
mH

K

i |φ
mH

K
i

(mX ) ≥ τ∧ 6 ∃mH
K

j , j 6= i

s.t. (φ
mH

K
j

(mX ) ≥ τ ∧m[mH
K

j ]X @ m[mH
K

i ]X )
}

C corresponds to the pieces of meta-knowledge that induce
sufficient consistency and that are incomparable with respect
to specialization. According to Figure 1, we could have
for example the set C = {mHK3 ,mH

K

4 } but not M =

{mHK3 ,mH
K

5 } as mH
K

3 @H mH
K

5 . The next step is to select
an element from C. We see at least three ways to do so:

First, the most obvious is to select the element in C with
the highest degree of mH-consistency. As any element in C
has a consistency greater than τ while being minimal w.r.t.
specificity, such selection makes sense.

Second, if the previous strategy is not applicable be-
cause at least two elements have very close degree of mH-
consistency, one may use some information measures [20],
[2] refining the specialization partial ordering (see e.g., [1])
to compare the induced specificity of the elements in C.

A last strategy is to consider an additional criteria on top
of consistency and specificity, for instance a minimal change
principle (see, for example [25], [15], [16]), favoring the
piece of meta-knowledge whose fusion result is the closest
to the original testimonies. This change may be measured,
e.g., by some distances between belief functions [18].

VII. APPLICATION TO CASE STUDY

Our case study concerns the analysis of results issued
from BEMUSE international exercise [3]. It consisted in
comparing results of uncertainty analysis performed on
nuclear computer codes to estimate (among other things)
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
E m E m E m E m E m E m E m E m E m E m

[x4, x5] .25 [x5, x6] .5 [x4, x5] .25 [x4, x5] .25 [x4, x5] .25 [x4, x5] .5 [x3, x5] .25 {x4} .5 [x3, x4] .25 [x5, x6] .75
[x3, x5] .25 [x4, x6] .25 [x3, x5] .5 [x3, x5] .25 [x3, x5] .25 [x3, x6] .25 [x2, x5] .25 [x3, x4] .25 [x3, x5] .25 X .25
[x2, x6] .25 X .25 X .25 X .5 [x2, x5] .25 X .25 [x2, x6] .25 X .25 [x2, x5] .25
X .25 X .25 X .25 X .25

TABLE IV
FOCAL SETS AND ASSOCIATED MASSES OF BEMUSE PARTICIPANTS FOR PCT2. THE DOMAIN X = {x1, . . . , x6} IS A UNIFORM DISCRETIZATION OF

THE INTERVAL [592, 1228), i.e., xi , i = 1, . . . , 6, CORRESPONDS TO THE INTERVAL [592 + (i− 1) · 1228−592
6

, 592 + i · 1228−592
6

).

pl x1 x2 x3 x4 x5 x6
r = 8 0.001 0.008 0.216 1 1 0.031
r = 9 0 0.001 0.0511 0.625 0.813 0.004
r = 10 0 0 0.005 0.125 0.188 0

TABLE V
r-OUT-OF-K STRATEGY, WITH K = 10 AND r ∈ {10, 9, 8}.

peak temperatures during transient conditions of nuclear
power plant. Ten participants gave analysis results that were
compared to measurements coming from the experiment L2-
5 performed on the loss-of-fluid test (LOFT) facility, to test
their assessment abilities.

The final results of all these uncertainty analysis are
usually difficult to combine and analyze. Moreover, given
the lack (and cost) of experimental data together with the
complexity of the phenomena involved, there are no reliable
means to know the source reliabilities. Also, another aspect
of such exercises is that the analysis of the results is as im-
portant as the results themselves; it enhances the importance
of performing a readable and interpretable merging (if only
to be able to explain the results to non-computer scientists).

We focus on the most important of the measured variables,
i.e., the second peak clad temperature (PCT2), a critical
value of the reactor. The different values are summarized
in Table IV, where focal elements are presented as intervals
(i.e., [xi, xj ] with i < j represents the set {xi, xi+1, . . . , xj},
unless it is a singleton. We applied r-out-of-K strategy,
with K = 10; the results on the contour fonction (for
r ∈ {10, 9, 8}) are displayed in Table V. The value φH10

10
'

0.2 shows that the sources are globally disagreeing, but the
values φH10

9
' 0.81 and φH10

8
' 1 show that assuming

9 out of 10 sources to be reliable ensures an important
agreement, and that assuming 8 out of 10 sources to be
reliable ensures a totally coherent answer. As a conclusion,
our method allows delivering results with the three following
desirable properties: (1) They are consistent; (2) They are
informative (x4, x5 are definitely more plausible); (3) They
can be provided through a readable format (for instance, the
end-user receiving a message such as “A fully consistent
result can be obtained by assuming that 8 sources out of
the 10 available are reliable”).

VIII. CONCLUSION

When little is known about the sources, that is when one
does not have access to observed (training) data or to very
accurate expert assessments, then traditional source behavior

estimation approaches cannot be used. We have proposed a
practical and sensible method to select a source behavior
assumption, and thus incidentally an interpretable rule, in
such poorly informed environment.

Our approach relies on a general framework for modeling
source behavior [32]. It proposes to pick, from a set of sen-
sible behavior assumptions allowed by this latter framwork,
the assumption that achieves the best trade-off between speci-
ficity and consistency. Of particular interest is the fact that we
have extended the notions of inconsistency [8] and specificity
to this framework, in order to introduce our approach. It
should also be noticed that, up to now, Pichon et al. [32]
framework has remained mainly theoretical, and this is a
first proposal to apply it. We have illustrated our approach by
different practical instances, and have provided an illustrative
case-study extracted from a real-world problem. In addition,
we have related the instances to classical fusion strategies,
showing that our framework is quite general and subsumes
some existing proposals.

Our method also opens some interesting related questions,
which fall outside the scope of the paper.

First, while we allowed behaviors to be dependent, e.g.,
s1 is truthful iff source s2 is, information was assumed to
be distinct. It would be interesting to address the case of
non-distinctness, as in [8]. However, while formally this can
be easily done, studying the interplay of meta-knowledge
(in)dependency and of source (non)-distinctness is non-
trivial; we leave this interesting topic for further researches.

It would also be interesting to take advantage of extra
information, if such information is available. One means is
to extend the current framework so that it integrates other
approaches such as Smets expert system [41] or Mercier
et al. [27] contextual discounting. Another issue is how to
take account of previous experiences or data concerning the
sources. Solving such issues would mean bridging the gap
between two extremes: no knowledge on the sources (our
approach) and a refined knowledge on the sources issued
from learning or experts [27], [14], [9].

Finally, the spirit of our approach, which proposes to
lower the inconsistency of fusion results by modifying source
behavior assumptions, is quite different from techniques
redistributing the resulting mass m(∅) to non-empty focal
sets [44], [36]. An interesting future work would be to make
a general practical or theoretical comparison of the perfor-
mances of these different approaches, yet it is not entirely
clear how such generic and systematic comparisons (i.e., not
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relying on very specific examples) could be done, as the two
kinds of techniques rely on different basic assumptions.
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“Investissements d’Avenir” call), and in part by the Prospec-
tom project of the Mastodons 2012 challenge (CNRS).

REFERENCES

[1] J. Abellán and S. Gomez. Measures of divergence on credal sets.
Fuzzy Sets and Systems, 157:1514–1531, 2006.

[2] J. Abellán and S. Moral. Difference of entropies as a non-specificity
function on credal sets. Int. J. of General Systems, 34:201–214, 2005.
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