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1 Abstract

Many recent observations of pulsars and magnetars can be interpreted in terms of neu-
tron stars (NS) with multipole electromagnetic fields. As a first approximation, we
investigate the multipole magnetic and electric fields in the environment of a rotating
star when this environment is deprived of plasma. We compute a multipole expansion
of the electromagnetic field in vacuum for a given magnetic field on the conducting
surface of the rotating star. Then, we consider a few consequences of multipole fields
of pulsars. We provide an explicit form of the solution. For each spherical harmonic
of the magnetic field, the expansion contains a finite number of terms. A multipole
magnetic field can provide an explanation for the stable sub-structures of pulses, and
they offer a solution to the problem of current closure in pulsar magnetospheres. This
computation generalises the widely used model of a rotating star in vacuum with a
dipole field. It can be especially useful as a first approximation to the electromagnetic
environment of a compact star, for instance a neutron star, with an arbitrarily magnetic
field.

2 Introduction

Dipole magnetic fields have two important properties that contribute to their success in
the modelling of a pulsar magnetosphere: dipole fields dominate higher order multipole
fields at large distances from the neutron star, and they are computationally simpler.
Mostly based on the consideration of spin-up lines in the P− Ṗ diagram, Arons (1993)
showed that low-altitude magnetic fields of pulsars are dominated by their dipole com-
ponent, the non-dipole component not exceeding 40% of the dipole field. However,
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several observations tend to show that multipole magnetic fields cannot be neglected in
every pulsar.

Gotthelf et al. (2013) measured period derivatives for the pulsar PSR J0821-4300
. It is a central compact object (CCO) in a supernova remnant. They found exception-
ally weak dipole magnetic field components for a young neutron star, about 1010 G.
Antipodal surface hot spots with different temperatures and areas were deduced from
the X-ray spectrum and pulse profiles. Such non-uniform surface temperature appears
to require strong crustal magnetic fields, probably toroidal or quadrupolar components
much stronger than the external dipole.

The pulsar J2144-3933, with a period of 8.51 s, is beyond the death-line in the
P−Bs diagram and according to standard emission models. The pulsar should not emit
radio-waves. Death-line models strongly depend on magnetic field lines curvatures.
For a given surface magnetic dipole field strength, pulsars with strong multipolar field
components have a highly curved field near the stellar surface that might permit the
radio emission of the pulsar J2144-3933 (Young et al. 1999). Indeed, Harding & Mus-
limov (2011) has shown that a simply offset dipole field can increase the pair-cascade
efficiency, and lower the death-line in the P − Ṗ diagram.

Multi-wavelength observations of intermittent radio emissions from rotation-powered
pulsars beyond the pair-cascade death line, of the pulse profile of the magnetar SGR
1900+14 after its 1998 August 27 giant flare and of the X-ray spectral features of PSR
J0821-4300 and SGR 0418+5729, suggest that the magnetic fields of non-accreting
neutron stars are not purely dipolar and may contain higher order multipoles (Mas-
trano et al. 2013).

Güver et al. (2011) analysed upper bound on the spin-down rate and the high signal-
to-noise ratio XMM-Newton spectra of the soft gamma-ray repeater SGR 0418+5729.
They found a low surface magnetic field in comparison to other magnetars: 1014 G. In
connection to the spin-down limits, this implies a significantly multipole structure of
the magnetic field.

Most attempts to model the pulses profiles of pulsars are based on dipole magnetic
fields. But some features of these profiles resist the models. Let us consider, for in-
stance, the brightest pulsar A of the two pulsars binary system PSR J0737-3039. The
radio pulse profiles of PSR J0737-3039A consist of two peaks shown in Fig. 1 (Kramer
& Stairs 2008). Geometrical models have been produced with best-fit one and two pole
models (Ferdman et al. 2013), two Poles Caustics (TPC), Outer Gap (OG) (Guillemot
et al. 2013) and a retarded vacuum dipole polar cap (Perera et al. 2014). With these
models, one can reconstruct the main angles defining the orbital plane, rotation axis
and magnetic inclination of the pulsar, as well as the general shape of the pulses. For
instance Ferdman et al. (2013) could reconstruct a Gaussian fit, and Perera et al. (2014)
considered pulse width at four intensity levels. All these models involve a dipole mag-
netic field. They found that the two peaks are more likely to be associated with the two
poles. But the peaks (especially the less intense one) show sub-structures that do not
enter into their models. The sub-structures (a spiky plateau above the 75% intensity
level before the main maximum, and a plateau at the 10 % level after the main maxi-
mum) occupy a significant proportion of the total phase angle. It is quite possible that
these sub-structures are associated with multipole components of the electromagnetic
environment of the neutron star.
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Another example can be seen in the gamma rays profile of the Vela pulsar revealed
by the Fermi-LAT telescope (Abdo et al. 2009) displayed in Fig. 2. Again, this profile
contains large sub-structures. It also exhibits shorter sub-structures, which are visible
in the enlarged insets. Here again, multipole components might be a cause of pulses
sub-structures.

As recalled by Perera et al. (2014), in general, pulsar magnetosphere models are
constructed at the following two limits: (a) a vacuum limit (Deutsch 1955), and (b)
a force-free magnetohydrodynamics (MHD) limit with a plasma-filled magnetosphere
(Spitkovsky 2006). However, a true magnetosphere operates between these two lim-
its. We could expect that the MHD solutions are more realistic, but Harding & Mus-
limov (2011) found that the rotating dipole magnetosphere in vacuum, in many cases,
provides better fits to observed gamma rays pulse profiles than the force-free magne-
tosphere. This is for instance what they found for Vela. This shows that the vacuum
magnetosphere is still a useful approximation in pulsar physics.

Considering this general remark and the possible relevance of multipole electro-
magnetic fields to pulsar models, we present an analytically exact model of the vac-
uum magnetosphere where the neutron star magnetic field is expanded in multipole
components.

Suitable boundary conditions are taken into account for an oblique rotator with a
conducting surface. This algorithm allows us to describe electromagnetic fields with
l,m quantum numbers as high as 100 (l ≥ m). This algorithm is a generalisation of the
one described by Deutsch (1955) for a simple magnetic dipole (l = 1).

In section 3, we present the method of resolution of the Maxwell equations and
their boundary conditions. In the section 4, we present the parallel solutions (m = 0)
for any value of l. Section 5 contains the general solution of the Maxwell equation with
the required boundary conditions for given quantum numbers l,m m ≥ 1. The numbers
m > 0 correspond to the perpendicular case, i.e. where the axis of the mutipole is
orthogonal to the axis of the neutron star. Thanks to the linearity of the Maxwell
equation, the general solution is a linear combination of the perpendicular and parallel
solutions. The matching conditions are applied in section 6. Details of the analytical
calculations are presented in appendices A-B.

After this derivation, two applications of multipoles are suggested. The first con-
cerns the problem of the pulsar current closure, and the second concerns the pulse
profile of pulsars such as PSR J0737-3039A and Vela.

3 Methods

Vectors are expanded in spherical coordinates of axis z parallel to the angular velocity
vectorΩ of the neutron star.

Following Bonazzola et al. (2007) let us define the components of the magnetic
field as the usual radial component Br, and two scalar fields, η and µ, such that

Bθ = ∂θη −
1

sin θ
∂φµ,

Bφ = +
1

sin θ
∂φη + ∂θµ. (1)
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Figure 1: Pulse profiles of PSR J0737-3039A at various radio frequencies. From
(Kramer & Stairs 2008).
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Figure 2: Vela broadband (E = 0.1 - 10 GeV) pulse profile. Two pulse periods are
shown. The dashed line shows the background level, as estimated from a surrounding
annulus during the off-pulse phase. Insets show the pulse shape near the peaks and in
the off-pulse region (from Abdo et al. 2009 ).
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The magnetic fields, and µ and η, are also related through the relations

∇2
θφη = ∂θBθ +

cos θ

sin θ
Bθ +

1

sin θ
∂φBφ,

∇2
θφµ = ∂θBφ +

cos θ

sin θ
Bφ −

1

sin θ
∂φBθ

=
1

sin θ
[∂θ(Bφ sin θ) − ∂φBθ]. (2)

The magnetic field associated with µ, noted BT M is transverse/toroidal (i.e. BT M
r = 0)

as well as the electric derived from η, noted ET E (i.e. ET E
r = 0), defining the poloidal

electromagnetic field. The magnetic and electric field B, E around a magnetised spin-
ning star B, can be considered the sum of the poloidal field (BT E , ET E) and a toroidal
field (BT M , ET M ),

B = BT E + BT M , E = ET E + ET M . (3)

The vector ~B and ~E must be solutions of the Maxwell equations in the vacuum

1

c

∂B

∂ t
= −∇ ∧ E,

1

c

∂E

∂ t
= ∇ ∧ B,

∇ · B = 0, ∇ · E = 0. (4)

The Maxwell equations (4) expressed in term of Br and of the coefficients µ and η
become

(
∂2

∂r2
+

2

r2
+

4

r

∂

∂r
)Br + ∇

2
θ,φBr −

1

c2

∂

∂t
Br = 0, (5)

∂2
r2µ +

2

r
∂rµ +

1

r2
∇2
θ,φµ + k2µ = µS (6)

∂2
r2η +

2

r
∂rη +

1

r2
∇2
θ,φη + k2η +

2

r2
Br = ηS (7)

where

∇2
θ,φ = ∂2

θ2
+ cot θ∂θ +

1

sin2 θ
∂2
φ2

=
1

sin θ
[∂θ(sin θ ∂θ) +

1

sin θ
∂2
φ2 ] (8)

is the angular Laplacian. When it is time dependent, the electric field is deduced from
η and µ through the Faraday equation and the relations

(∇ × ~B)r =
1

r
∇2
θ,φµ

(∇ × ~B)θ =
1

r sin θ
[∂φBr − (I + r∂r)∂φη − sin θ(I + r∂r)∂θµ]

(∇ × ~B)φ =
1

r sin θ
[− sin θ∂θBr + sin θ(I + r∂r)∂θη

−(I + r∂r)∂φµ]. (9)
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After separation of the variables, it is found that the angular solution of Eqs. 5-6 can be
expanded in spherical harmonic functions Ym

l
(θ, φ) = Pm

l
(cos θ)eimφ, where Pm

l
(cos θ)

are the associated Legendre functions. The scalars r, θ, φ, are the spherical coordinates
the z axis being the star spin axis.

Two cases must be treated separately, depending on m. When m = 0, the solution is
axially symmetric, and not time dependent. The parts depending on r in Eqs. (5-7) are
simple differential equations with elementary solutions. When m , 0, the solution is
time dependent, and the parts of Eqs. 5-7 that depend on r can be converted into Bessel
equations of the normalised variable x = mωr/c.

We solve the T M and T E solutions separately. The T E solution is derived from η
and has a finite radial magnetic component Br given by Eq. (5). This equation is solved
directly (see the following sections). Then, using the divergence of the magnetic field

∇ · ~B =
∂

∂r
Br +

2

r
Br +

1

r
∇2
θ,φη, (10)

and the fact that with a Ym
l

angular dependence ∇2
θ,φη = −l(l + 1)η, we find η. Then,

from Eq. (1),

Bθ =
1

l(l + 1)

(

x
∂2Br

∂x∂θ
+ 2
∂Br

∂θ

)

,

Bφ =
im

l(l + 1) sin θ

(

x
∂2Br

∂x∂φ
+ 2
∂Br

∂φ

)

. (11)

The T M magnetic field is derived from µ. The field µ is found directly by resolution
of Eq. (6).

The computation of the electric field is different in the cases m = 0 and m , 0,
which is detailed in sections 4 and 5. The outgoing solution of the Maxwell Eqs.(4)
must also satisfy the boundary conditions (BC)

E × n =

[

1

c
(Ω × R) ∧ B

]

× n (12)

at the surface of the star, where n is the unit vector orthogonal to the surface of the star,
and R is the radial vector connecting the centre of the star to the point of interest on its
surface.

Let be R the radius of the spherical neutron star (NS). Inside of the NS r ≤ R, the
magnetic field is generated by internal currents. Let be B<

rlm
(r, θ, φ) the l,m component

of the spectral decomposition of B. The electric field E< inside the NS is

E<r = Ω
r

c
B<θ sin θ, E<θ = −Ω

r

c
B<r sin θ, E<φ = 0. (13)

The matching conditions are (See Eq.(12))

B>r (R, θ, ϕ) = B<r (R, θ, ϕ), E>θ (R, θ, ϕ) = E<θ (R, θ, ϕ), (14)

and
E>φ (R, θ, ϕ) = 0, (15)

where E> is the field in the vacuum.
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4 Axially symmetric solutions and their matching con-

ditions

In this section, we compute the multipole electromagnetic field around a rotating neu-
tron star satisfying axially symmetric BC In terms of spherical harmonics, they corre-
spond to m = 0. When m = 0, there is a finite T M solution derived from Eq. (6), but
the curl of this magnetic field is finite too. This means that there is either a time varying
electric field, or an electric current density. Because m = 0, a time varying electric field
is discarded. Since we are looking for a vacuum solution, a current density is discarded
too. Therefore, only a T E electromagnetic field is retained in the axially symmetric
case m = 0.

Following the method exposed in section 3, it is found that the components of the
vacuum T E magnetic field are:

Br = B0
l

(

R

r

)l+2

P0
l (θ),

Bθ = −B0
l

1

l + 1

(

R

r

)l+2 d P0
l
(θ)

d θ
,

Bφ = 0, (16)

where P0
l
(θ) = P0

l
(cos θ) andP0

l
is the Legendre polynomial of order l. If the interior of

the rotating star is a perfect conductor, the internal electric field ~E vanishes in the co-
rotating frame. Consequently, the electric field in the inertial frame is ~E< = (~Ω∧~r)∧ ~B
and

E<r = +Ω
r

c
sin θ B<θ , E<θ = −Ω

r

c
sin θB<r . (17)

The value of B<r (R) , E<θ (R) and E<φ (r) at the surface of the star r = R determine the
boundary condition for the external field. Outside the star ( r ≥ R), the electric field
must be the gradient of an harmonic potential Φ (No charge in the vacuum, steady
magnetic field)

Φ =
∑

l′

Cl′

r(l′+1)
P0

l′ (θ) (18)

and its component Eθ must match the components Eθ inside the star:

Eθ(R) =
1

R

∂Φ

∂ θ
= −Ω

R

c
sin θ B0

l0 P0
l . (19)

This imposes a series of constraints on the coefficients Cl′ . The relation

d

dθ

[

P0
l+1(θ) − P0

l−1(θ)
]

= −(2l + 1)P0
l (θ) sin θ (20)

is deduced from the derivative of Eq. 8.914.2 in Gradshteyn et al. (2007) and the differ-
ential equation defining the Legendre functions (Eq. 8.820, same reference). Equation
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(20) is used to deduce the values of the Cl′ coefficients from Eq. (19). Finally,

Φ =
B0

l0

2 l + 1

[

(

R

r

)l+2

P0
l+1(θ) −

(

R

r

)l

P0
l−1(θ)

]

Ω
R2

c
−

Q

r

Er = =
B0

l0

2l + 1

[

(l + 2)P0
l+1

(

R

r

)l+3

− l P0
l−1

(

R

r

)l+1]

Ω
R

c
+

Q

r2

Eθ =
−B0

l0

2 l + 1













dP0
l+1

dθ

(

R

r

)l+3

−
dP0

l−1

dθ

(

R

r

)l+1












Ω
R

c

Eφ = 0. (21)

We have added in Φ and Er the effect of a possible global electric charge Q of the NS.

5 The non-axially symmetric solutions

The solutions corresponding to magnetic fields with an inclination i = 90o over the z

axis correspond to m , 0. They are developed in this section.
The T E solution includes a magnetic field with a finite radial component Br. The

solution of Eq. (5) is

Br =

∞
∑

l=1

∑

−l≤m≤l















C
(1)
lm

h
(1)
l

(x)

x
+C

(2)
lm

h
(2)
l

(x)

x















Plm(cos θ)eim(φ−Ωt), (22)

where Ω = ‖Ω‖, c is the light velocity,* Pm
l

(θ) = Pm
l

(cos θ), and Pm
l

is the associated
Legendre polynomial of order l,m. The function hl(x) is the spherical Hankel function

hl(x) =

√

π

2x
H1

l+1/2(x) (23)

where H(1)l+1/2(x) is the Bessel function of semi-integer order l + 1/2 and

x = m
rΩ

c
, ϕ = φ −Ω t. (24)

C
(1)
lm

and C
(2)
lm

are constant numbers. Because the solutions involving h2
l

are associated
with an incoming wave, we do not keep them, and for simplicity, we use the notation
hl for h

(1)
l

.
For the T M solution, µ is derived from Eq. (6). Considering only a single l,m term,

µ = σl,mC′lmhl(x)Ylm(θ, φ), (25)

where C′
lm

is a constant number. The electric field is derived from the Faraday equation
and Eqs. 9. The solutions for the T M and T E components of the electric and magnetic
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field are:

BT E
r; lm(r, θ, φ, t) = AT E

lm

hl(x)

x
P m

l (θ) eimϕ (26)

BT E
θ; lm(r, θ, φ, t) =

AT E
lm

l(l + 1)

(

1

x

d

dx
(x hl(x))

)

dP m
l

(θ)

dθ
eimϕ

BT E
φ; lm(r, θ, φ, t) = i

mAT E
lm

l(l + 1)

(

1

x

d

dx
(x hl(x))

)

P m
l

(θ)

sin θ
eimϕ

ET E
r; lm(r, θ, φ, t) = 0 (27)

ET E
θ; lm(r, θ, φ, t) = −m AT E

lm

hl(x)

l(l + 1)

P m
l

(θ)

sin θ
eimϕ

ET E
φ; lm(r, θ, φ, t) = −i AT E

lm

hl(x)

l(l + 1)

dP m
l

(θ)

dθ
eimϕ

BT M
r; lm(r, θ, φ, t) = 0 (28)

BT M
θ; lm(r, θ, φ, t) = +mAT M

lm

hl(x)

l(l + 1)

P m
l

(θ)

sin θ
eimϕ

BT M
φ; lm(r, θ, φ, t) = +i AT M

lm

hl(x)

l(l + 1)

dP m
l

(θ)

dθ
eimϕ

ET M
r; lm(r, θ, φ, t) = AT M

lm

hl(x)

x
P m

l (cos θ) eimϕ (29)

ET M
θ; lm(r, θ, φ, t) =

AT M
lm

l(l + 1)

(

1

x

d

dx
(x hl(x))

)

dP m
l

(θ)

dθ
eimϕ

ET M
φ; lm(r, θ, φ, t) = i

m AT M
lm

l(l + 1)

(

1

x

d

dx
(x hl(x))

)

P m
l

(θ)

sin θ
eimϕ.

6 Matching conditions for the non-axially symmetric

solutions

Let be B<
r; lm

(R)Pm
l

(θ)e(imϕ) the l,m component of the internal field B<r at the surface
of the star. Taking into account the elementary expression of the external magnetic
field given by Eq.(26) , the matching conditions described by Eq.(3) determine the
coefficient AT E

lm
in Eq.(26). We have

AT E
lm = B<r; lm(R)

xs

hl(xs)
(30)

where xs = mΩR/c. Note that the above B.C. is not sufficient to determine the magnetic
field uniquely: in fact, an arbitrary toroidal component BT M defined by BT M

r = 0 can
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be added to the poloidal component in a such a way that the electric counterpart ET M

allows us to satisfy the boundary conditions

ET E
φ (R, θ, φ, t) + ET M

φ (R, θ, φ.t) = 0.

This equation reads

Eφ(R, θ, φ, t) =
∑

lm

−AT E
lm

hl(xs)

l(l + 1)

dPm
l

(θ)

dθ
eimϕ (31)

+
∑

l′m′

m′ AT M
l′m′

l′(l′ + 1)

(

1

x

d

dx
(x hl′ (x))

)

r=R

Pm′

l′
(θ)

sin θ
eim′ϕ = 0.

The details of its resolution are given in Appendix A. Only two coefficients AT M
l′m′

remain
in the right-hand side of Eq. (31); they are

AT M
l+1 m = AT E

l m

hl(xs)

Dl+1

(l − m + 1)(l + 2)

m(2l + 1)
(32)

and

AT M
l−1 m = −AT E

lm

hl(xs)

Dl−1

(l + m)(l − 1)

m(2l + 1)
, (33)

where the coefficient Dl is defined in Eq. (44). Finally, the r and θ component of the
total electric field Elm are:

Er,lm(r, θ, φ) = AT M
l+1 m

hl+1(x)

x
Pm

l+1(θ)ei mϕ

+AT M
l−1 m

hl−1(x)

x
Pm

l−1(θ) ei mϕ,

Eθ,lm = −mAT E
lm

hl(x)

l(l + 1)

Pm
l

(θ)

sin θ
eimϕ

+
AT M

l+1 m

(l + 1)(l + 2)

(

1

x

d

dx
(xhl+1(x))

)

dPm
l+1(θ)

dθ
ei mϕ

+
AT M

l−1 m

l(l − 1)

(

1

x

d

dx
(xhl−1(x))

)

dPm
l−1(θ)

dθ
eim ϕ,

Eφ,lm = −i AT E
lm

hl(x)

l(l + 1)

dPm
l

(θ)

dθ
ei mϕ (34)

+i
mAT M

l+1 m

(l + 1)(l + 2)

(

1

x

d

dx
(xhl+1(x))

)

Pm
l+1(θ)

sin θ
eimϕ

+i
m AT M

l−1m

l(l − 1)

(

1

x

d

dx
(xhl−1(x))

)

Pm
l−1(θ)

sin θ
ei mϕ.

The electric field computed above, satisfies the boundary condition Eφ,lm(R, θ, φ, t) =0.
It is shown in section B that they also fit the boundary condition given by Eq.(14)
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The magnetic counterpart B is given by (See Eq. 28, Eq. 29, Eq. 29)

Br,lm(r, θ, φ, t) = AT E
lm

hl(x)

x
Pm

l (θ) ei mϕ,

Bθ,lm(r, θ, φ, t) =
AT E

lm

l (l + 1)

(

1

x

d

dx
(xhl))

)

dPm
l

(θ)

dθ
ei mϕ

+AT M
l+1 m

m

(l + 1)(l + 2)
hl+1(x)

Pm
l+1(θ)

sin θ
ei mϕ

+AT M
l−1 m

m

l (l − 1)
hl−1(x)

Pm
l−1(θ)

sin θ
ei mϕ,

Bφ,lm(r, θ, φ, t) = i
mAT E

lm

l (l + 1)

(

1

x

d

dx
(xhl(x))

)

Pm
l

(cos θ)

sin θ
eimϕ (35)

+i AT M
l+1,m

hl+1

(l + 1)(l + 2)

d Pm
l+1(cos θ)

d θ
ei mϕ

+iAT M
l−1,m

hl−1(x)

(l − 1) l

d Pm
l−1(cos θ)

dθ
ei mϕ.

For l = 1, m = 1 we obtain the result given in Deutsch (1955).

7 A pulsar that extracts electrons from one pole and

protons from the other

With dipole pulsar magnetosphere, the open field lines above the two opposite poles
present vertical electric fields and Goldreich-Julian currents of the same sign. There-
fore, the particles that are extracted from the two poles of the neutron star have the same
electric charge. With pulsar dipole magnetosphere model ending with a wind, there is a
continuous flux of emitted particles, and it is necessary to close the currents, otherwise
the neutron star would accumulate electric charges. Charge accumulation cannot be
indefinite, and it is generally assumed that the wind particles (of both positive and neg-
ative charges) come from pair creations. The pairs need a continuous flux of primary
particles, however, and the question of charge neutrality, i.e. current closure, remains
with the primary particles.

Static pulsar electrospheres (Pétri et al. 2002b) are models that do not involve
charge circulation. Unfortunately, they do not create a wind either, and they are not
expected to radiate. Aligned electrospheres have a dome of charged particles of one
sign above each pole, and an equatorial belt of particles of the opposite sign. In that
configuration, a dicotron instability can develop. The dicotron effect tends to modu-
late the shape of the equatorial belt, and it can expel some of its particles (Pétri et al.
2002a). Then, particles of the two signs can be ejected from the neutron star, and this
solves the problem of charge neutrality and current closure.

12



In the present section, we present an alternative to electrospheres and dicotron in-
stability that solves the charge neutrality problem. It consists of a neutron star with
a multipole magnetic field. For simplicity, we consider only an aligned dipole and a
quadrupole component.

We have

Br = B0

[

(

R

r

)3

cos θ +
α

2
(3 cos θ2 − 1)

(

R

r

)4]

(36)
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(37)

where α characterises the quadrupole component amplitude.
The radial electric field is

Er = +Ω̃B0

[

1

2
(3 cos θ2 − 1)

(

R

r

)4]

+
Q

R2

(

R

r

)2

(38)

+ Ω̃B0

[

+
2

5
α

(

(5 cos θ3 − 3 cos θ )
(

R

r

)5

− cos θ
(

R

r

)3)]

where Ω̃ = ΩR/c and Q is an integration constant depending on the total charge of the
star.

In what follows, we consider a dynamical process: the electrons are extracted and
accelerated from the north pole (Ω̃B0 < 0) and at time t = 0, Q(t) = 0.

Electrons are accelerated above the star surface and they create electron-positron
pairs. The vacuum electric field is then progressively screened by the pairs. If the
protons remain attached in the vicinity of the star, the magnetosphere charges as long
as the electrons are extracted and accelerated. Then, the total electric charge Q of
the star increases. Figure 3 illustrates the evolution of the radial electric field at the
two poles. It is shown that if Q increases (beware of signs, the normalised charge
decreases) the radial electric fields on the north pole is less negative, and those on the
south pole becomes more positive. Provided that α > 5/2, a finite range of values of
Q (highlighted by a grey rectangle) allows for radial electric fields of opposite signs at
the opposite poles.

Fig. 4 shows a numerical example of superimposed and aligned dipole and quadrupole
fields. The only finite multipole components are characterised by the coefficients (here
purely real) AT E

1,0 =-1, and AT E
2,0 =-2.5 and the total electric charge is Q = 0.5 C. The

electromagnetic field is computed on a spherical grid extending from the star surface
to a distance of 716.2 star radii (15 light cylinder radii). The figure only represents the
area very close to the star, where the quadrupole component is noticeable. The mag-
netic field has the intensity 105 T on the surface, and the dipole angle with the rotation
axis is null. The period of rotation of the star is 10 ms, which corresponds to a rota-
tion frequency 628 s−1 and to a light cylinder radius 0.47 106 m. We can see (colour
code) the radial electric field Er on the left-hand side as well as magnetic field lines.
Because of the quadrupole component, the radial electric field does not have the same
value on the two poles. Its high negative value on the north pole is appropriate for the
acceleration of electrons out of the star. On the north pole, the positive electric field
can accelerate positive ions.
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Figure 3: Normalised radial electric field Er as a function of the normalised electric
charge Q at the north pole (thick continuous line) and south pole (thick dashed line).
The grey area represent the domain where particles of opposite charges can be extracted
from opposite poles.
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Figure 4: A dipole field AT E
1,0 =-1, and a quadrupole field AT E

2,0 =-2.5, and a total electric
charge Q = 0.5. The colour code represents the radial electric field Er plotted on the
NS surface (within the circle that delimits the surface) and in a meridian plane perpen-
dicular to the line of sight (outside the circle that delimits the NS surface). Magnetic
field lines with a foot on the surface in the same meridian plane are plotted as well.
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Figure 5: Goldreich-Julian density nGJ with the same mutipole components as in Fig.
4.
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In comparison to Q = 0 (not shown on a figure), the radial electric field amplitude
with Q = 0.5 is reduced (but still negative) in the north pole and more positive in the
south pole, where protons can be accelerated. Then, the ability of the proton to create
pairs is increased, while those of the electron to create pairs remain high. When pairs
are created above the two opposite poles, a stationary regime is attained where both
electrons and protons are extracted from the star, the total charge reaches an asymptotic
value Q0, and the pulsar can be active. Of course, in this regime, and especially if
the NS surface is hot, the Goldreich-Julian density is an important marker of primary
charge extraction. We can see on Fig. 5 that the Goldreich-Julian density nGJ = ∇ ·
(

~B × ~VΩ
)

/4π c also has opposite signs at opposite poles (VΩ is the rotational velocity).
Of course, above the pair creation fronts, the electromagnetic field cannot corre-

spond to the vacuum model derived in this paper. But this model is useful below the
pair creation front, where the flux of primary particles is not expected to induce currents
that could significantly change the magnetic field topology.

With this example, we do not argue that multipole fields are the most common
solution to the pulsar current closure problem, but they represent at least one possibility.

At the opposite limit to vacuum approximation, the force-free equations of a mag-
netosphere were solved in a way that resolves the current system closure. This was
done in 2D for an axially symmetric pulsar magnetosphere (Contopoulos et al. 1999;
Gruzinov 2005, 2007) and for a 3D dissipative force-free magnetosphere where the
magnetic axis is not necessarily aligned with the rotation axis (Spitkovsky 2006; Kalapotharakos
& Contopoulos 2009). Those models are based on a dipole magnetic field at the NS
surface. The current closes through an equatorial current sheet where the current is op-
posite to that carried in the open field lines regions. Since force-free equations do not
include the plasma transport equations (no explicit equation of density and momentum,
for instance), the force-free models do not say much about the nature of the particles
that carry currents. It is generally argued that the equatorial return current is carried by
electrons that were launched in open field line regions, as well as by positrons moving
to the opposite direction, which result from pair creation cascades initiated by primary
accelerated electrons.

At a large distance from the NS, a vacuum solution associated with a multipolar
electromagnetic field is not different from that associated with a dipole field. This
probably holds with a plasma filled magnetosphere. Force-free magnetosphere associ-
ated with a surface multipole field might be very analogous to those with dipole fields at
distances larger than a fraction of the light-cylinder radius, but the current sheet could
be different near the star. As we will see in the next section, this can affect the pulse
shape.

8 Pulse shape

In the standard model of the magnetosphere, the strong electric field at the surface of
the star r = R extract and accelerate electrons from the crust at relativistic energy.
The current density is J ∼ enGJc where nGJ is the Goldreich-Julian density. Those
primary electrons follow the lines of the magnetic field ~B radiate high-energy γ rays
via curvature radiation, and the gamma rays produce electron positron pair via the
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Figure 6: Values of the Goldreich-Julian density on the NS surface at the foot of the
last open magnetic field lines for a dipole magnetic field of inclination i = 40 deg.
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Figure 7: Values of the Goldreich-Julian density on the NS surface at the foot of the
last open magnetic field lines for the multipole magnetic field described in Table 1. The
line drawn on the star surface corresponds to the foot (on northern hemisphere) of the
last open field lines.
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Figure 8: Values of the Goldreich-Julian density on the NS surface at the foot (on
northern hemisphere) of the last open magnetic field lines for the same multipole as in
Fig. 8.
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Table 1: Complex values of the finite AT E
l,m

coefficients for the multipole field used as
an example in section 8. For other values of l,m, the coefficients are null.

l m AT E
l,m

1 0 0.766E+00+i 0.000E+00,
1 1 0.643E+00+i 0.000E+00,
11 9 0.255E-24+i -0.126E-23,
11 10 0.456E-24+i -0.120E-23,
12 7 0.594E-27+i -0.246E-27,
12 8 0.128E-26+i -0.630E-26,
12 9 0.128E-26+i -0.630E-26,
12 10 0.600E-26+i -0.230E-26,

magnetic field ~B, if ~B is strong enough, or by γ rays and crust thermal background
x-ray mechanism. Electron positron pairs are supposed to generate the observed radio
high energy emission. The main consequence of this mechanism is that the observed
pulse shapes depends strongly on the Goldreich-Julian density at the surface of the star.

As mentioned in the introduction, the most often invoked heuristic models to ex-
plain pulse shapes are the polar cap model, the slot gap and caustics models, and the
outer gap model. In most of these models, a critical area where nGJ determines the
pulse shape is the curve drawn on the NS surface that corresponds to the feet of the
last open field lines. Figure 6 shows nGJ at the NS surface at the feet of the last open
magnetic field lines for a dipole field with an inclination i = 40 deg. Its variations
are very simple, symmetric, with a single maximum and a single minimum. Multi-
pole components are now added to this dipole field. Their coefficients are displayed
in Table 1. The Goldreich-Julian density nGJ on the NS surface is displayed in Fig.
7. We can see the inclined dipole structure and the superimposition of smaller scale
structures with a significant azimuthal modulation. The line corresponding to the feet
of the last open field lines is displayed (for the northern hemisphere). The values of
nGJ are displayed in Fig. 8 as a function of the abscissa along the line. We can see that
it is more complex than the dipole profile in Fig. 6. The curve has secondary extrema
and it shows a higher range of values. Without entering into the detail of pulse shape
theories (it is not the topics of the present paper), we can expect that the multipole field
can be associated with irregular pulse shapes like those displayed in Figs. 1 and 2.

9 Conclusion

We have developed an analytical formalism allowing us the most general solution for
an electromagnetic field in vacuum fulfilling the boundary conditions on the surface of
a rotating magnetised star. This solution, based on an expansion on spherical harmon-
ics is the linear combination of two types of contributions : axially symmetric fields
(azimuthal number m = 0) given by Eqs. Eq. (16, 21), and non-axially symmetric
fields (m , 0) given by Eq. (34, 35).
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Of course, NS are well known to extract plasma in their immediate vicinity, there-
fore this solution cannot be used as is. Nevertheless, we showed in section 7 that the
presence of a quadrupole component of the magnetic field can solve the problem of the
current closure in the pulsar magnetosphere. As suggested in section 8, this formalism
can also be useful in modelling the observed pulse shapes in pulsars emission.

This solution can be used as a benchmark for codes solving the electromagnetic
field equations in the surrounding of a rotating magnetised star.

Pétri (2013) has built numerical solutions of the electromagnetic field surrounding a
star with a dipole field in the context of general relativity. Our model does not include
gravitational effects, but it is possible that a numerical solution can be developed as
well. The present solution can be used as a test when strong gravitational effects are
neglected.

Moreover, the vacuum electromagnetic solution can be the first step in an iterative
process to find more suitable pulsar models, where a plasma is (numerically) progres-
sively introduced into the NS environment.

A Derivation of the AT M
l′m′

coefficients

The coefficients AT M

l‘m
′ are computed by taking the proprieties of the associated Legendre

functions into account. We obtain: (Eq. 8.733,1 in Gradshteyn et al. 2007)

− sin2 θ
dPm

l
(θ)

d(cos θ)
= l cos θ Pm

l (θ) − (l + m) Pm
l−1(θ) (39)

or equivalently

+ sin θ
dPm

l
(θ)

dθ
= l cos θ Pm

l (θ) − (l + m) Pm
l−1(θ). (40)

By using the expression (Eq.(8.731,2) in Gradshteyn et al. (2007))

(2 l + 1) cos θ Pm
l = (l − m + 1)Pm

l+1 + (m + l)Pm
l−1, (41)

and Eq.(40) reads

sin θ
dPm

l

dθ
=

l (l − m + 1)

2l + 1
Pm

l+1 −
(l + 1)(l + m)

2l + 1
Pm

l−1. (42)

By replacing the above value of sin θ d Pm
l

(cos θ)/d θ in Eq.(31) we obtain

AT E
lm

hl(xs)

l (l + 1)

1

(2l + 1)

[

l (l − m + 1)Pm
l+1 − (l + 1)(l + m)Pm

l−1

]

=
∑

l
′
,m
′

m
′

AT M

l′m
′

l
′ (l′ + 1)

Dl
′Pm

′

l
′ ei (m

′
−m)φ, (43)

where

Dl
′ =

[

1

x

d

dx
(xhl

′ (x))

]

r=R

. (44)
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By multiplying both sides of Eq.(43) by sin θ Pm
l+1(cos θ) e−imϕ, after the integration on

θ between 0 and π, and on φ between 0 and 2π, with Eq.(42) and the orthogonality
properties of the associated Legendre functions Pm

l
(θ),

∫ π

0
Pm

l Pm
k sin θdθ = δl,k

2

2l + 1

(l + m) !

(l − m) !
(45)

only two coefficients survive,we obtain Eq. (32). Equation 33 is derived in an analo-
gous way.

B Proof that the last boundary condition is fulfilled

We obtained a solution that fulfils the condition Eφ(R) = 0. Does it fit the last condition
imposed by the boundary condition Eθ(R) = −(rΩ/c)Br sin θ ? From Eqs. 26-30, this
requirement is equivalent to

−mAT E
lm

hl(xs)

l(l + 1)

Pm
l

(cos θ)

sin θ

+AT M
l+1 m

Dl+1

(l + 1)(l + 2)

dPm
l+1(cos θ)

dθ
+ AT M

l−1 m

Dl−1

l(l + 1)

dPm
l−1(cos θ)

dθ

= −
1

m
AT E

lm hl(xs)P
m
l (cos θ) sin θ. (46)

When the coefficients AT M
l+1 m

and AT M
l−1 m

are expressed using Eqs. 32 and 33, the require-
ment becomes

0 =

[

−
m

l(l + 1) sin θ
+

sin θ

m

]

Pm
l (θ) +

1

ml(l + 1)
×

[

l(l − m + 1)

(2l + 1)

dPm
l+1(θ)

dθ
−

(l + m)(l + 1)

(2l + 1)

dPm
l−1(θ)

dθ

]

.

Considering the derivative of Eq. (42) relatively to θ, the condition becomes

[

−
m

l(l + 1) sin θ
+

sin θ

m

]

Pm
l (θ) +

d

dθ

[

sin θ
dPm

l

dθ

]

. (47)

By definition, the Lagrange polynomials Pm
l

are the solutions of the differential equa-
tion

d

dx

(

(1 − x2)
dPm

l
(x)

dx

)

=

(

m

1 − x2
− l(l + 1)

)

Pm
l (x). (48)

With x = cos θ, this differential equation results in the nullity of the expression in Eq.
(47). This proves that the boundary condition Eθ(R) = −(rΩ/c)Br sin θ is fulfilled,
and that the electromagnetic field derived in section 6 is a consistent solution of the
problem.

23



References

Abdo, A. A., Ackermann, M., Atwood, W. B., et al. 2009, ApJ, 696, 1084

Arons, J. 1993, ApJ, 408, 160

Bonazzola, S., Villain, L., & Bejger, M. 2007, Classical and Quantum Gravity, 24, 221

Contopoulos, I., Kazanas, D., & Fendt, C. 1999, Astrophysical Journal, 511, 351

Deutsch, A. J. 1955, Annales d’Astrophysique, 18, 1

Ferdman, R. D., Stairs, I. H., Kramer, M., et al. 2013, ApJ, 767, 85

Gotthelf, E. V., Halpern, J. P., & Alford, J. 2013, Astrophysical Journal, 765, 58

Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, A., & Zwillinger, D. 2007, Table of Integrals,
Series, and Products (Academic Press)

Gruzinov, A. 2005, Physical Review Letters, 94, 021101

Gruzinov, A. 2007, ApJL, 667, L69

Guillemot, L., Kramer, M., Johnson, T. J., et al. 2013, Astrophysical Journal, 768, 169
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