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PARCOACH: Combining Static and Dynamic Validation of MPI

Collective Communications

Emmanuelle Saillard∗, Patrick Carribault∗and Denis Barthou†

Abstract

Nowadays most scientific applications are parallelized based on MPI communications. Collective MPI communications have to be

executed in the same order by all processes in their communicator and thesame number of times, otherwise it is not conforming to

the standard and a deadlock or other undefined behavior can occur. As soon as the control-flow involving these collective operations

becomes more complex, in particular including conditionals on process ranks, ensuring the correction of such code is error-prone.

We propose in this paper a static analysis to detect when such situation occurs, combined with a code transformation that prevents

from deadlocking. We focus on blocking MPI collective operations in SPMD applications, assuming MPI calls are not nested

in multithreaded regions. We show on several benchmarks the small impact on performance and the ease of integration of our

techniques in the development process.

Keywords: MPI, debugging, collective, static analysis, correctness

1 Introduction

Most of scientific applications in High-Performance Computing rely on the MPI API specification to efficiently exploit a super-

computer and reach high parallel performance. Based on the distributed-memory paradigm, this model exposes multiple ways to

express communications between tasks/processes including point-to-point and collective. While point-to-point functions involve

only two tasks, collective communications require that all processes in a communicator invoke the same operation. Each process

does not have to statically invoke such collective function at the same line ofthe source code, but the sequences of collective calls

in all MPI processes must be the same and corresponding function callsshould have a compatible set of arguments. Due to the con-

trol flow inside an MPI program, processes may execute different execution paths. Such behavior may cause errors and deadlocks

difficult for the user to detect and analyze. To tackle this issue, this paperpresents PARCOACH (PARallel COntrol flow Anomaly

CHecker) a two-step analysis to detect incorrect collective patterns in SPMD (Single Program Multiple Data) MPI programs. For

each function, we first identify at compile-time the code fragments calling collectives that may deadlock and the control-flow parts

that may lead to such situation. Warnings are issued during this phase. Then, we transform the identified code fragments in order

to dynamically capture these situations before they arise. The runtime overhead of this instrumentation is limited since only the

pieces of code calling collectives that can deadlock are modified. In case of actual misuse, the application stops with an explicit

error message highlighting both the collectives and the control-flow code responsible for this situation. This paper is an extension
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of [16] including new detailed examples, new experimental results and a study about the check collective function (CC) used for the

code transformation.

1.1 Motivating Example

The following simple example (Listing 1) illustrates the potential issues with collective communications.

Listing 1: A simple example

vo id f ( i n t r ) {

i f ( r == 0 )

MPI Ba r r i e r (MPICOMM WORLD) ;

r e t u r n ;

}

vo id g ( i n t r ) {

f ( r ) ;

MP I Ba r r i e r (MPICOMM WORLD) ;

e x i t ( 0 ) ;

}

Listing 2: The instrumented example

vo id f ( i n t r ) {

i n t r e s ;

i f ( r == 0 ) {

MPI Reduce (1 ,& res , 1 , MPIINT , equa lsop , 0 ,MPICOMM WORLD) ;

i f ( rank ==0 && r e s == −1 ) MPI Abort (MPI COMM WORLD, 0 ) ;

MPI Ba r r i e r (MPICOMM WORLD) ;

}

MPI Reduce (0 ,& res , 1 , MPIINT , equa lsop , 0 ,MPICOMM WORLD) ;

i f ( rank ==0 && r e s == −1 ) MPI Abort (MPI COMM WORLD, 0 ) ;

r e t u r n ;

}

Assume here thatg is called by all processes. Depending on the value of the input parameterr, a process will execute or not the

barrier in theif statement inf. If r is not uniformly true or false among MPI processes, some tasks will be blocked inf while the

remaining process ranks will reach the barrier ing. These processes will then terminate, while the first ones will be in a deadlock

situation at the barrier ing. The machine state when the deadlock occurs does not help to identify the cause of the deadlock. As the

value ofr is unknown at compile time and might be the same for every MPI process,the dynamic state of control flow has to be

checked in order to prevent from entering a deadlock state. Transforming the previous example would lead to the code presented in

Listing 2. Notice that the function g does not need to be transformed since itdoes not introduce a collective that may be the cause of

a deadlock or an unspecified behavior. In order to partition processesaccording to their behavior regarding the conditional inf, two

calls to the collectiveMPI Reduce with the equalsop operation (bit equality checking, see Section 3.2) are inserted in the code: One

before the barrier operation with the input value 1 (1st parameter of the call), and one before thereturn statement with the input

value 0. All processes call theMPI Reduce collective, whatever their execution path. However, input values shouldbe the same,

otherwise the function is incorrect andMPI Abort is issued in order to prevent from deadlocking.

We propose in this paper methods (i) to identify the conditional inf as the cause for a possible deadlock, using compiler analysis

and (ii) to prevent from deadlocking using a code transformation.

1.2 Context and Contributions

This paper focuses on scientific SPMD (Single Program Multiple Data) applications parallelized with MPI, meaning that the source

code functions are assumed to be called either by all processes or by none of them. Futhermore, we consider only monothreaded

MPI programs (the analysis also works on multithreaded programs if all MPI collectives are performed in monothreaded regions). In

our context a function is said to becorrectregarding blocking collective communications if all MPI processes entering the function

eventually exit without leaving any process blocked inside a collective operation. As our analysis is focused on the detection of

mismatching collectives, other possible sources of deadlock (e.g., infinite loops, blocking IOs and other deadlocks) which would



, 3

require dedicated analysis are not checked. While all types of blocking collectives are handled, collective operations are assumed to

be called on the same communicators, with compatible arguments. In this context, this article makes the following contributions:

• Identification of collective callsites that may lead to deadlocks, and of control-flow codes responsible for such situation within

each function.

• Dedicated instrumentation based on the previous analysis to prevent collective errors at execution time, pinpointing the

control-flow divergence responsible for such errors.

• Full implementation inside a production compiler, experimental results on MPI benchmarks and applications.

1.3 Outline

Section 2 describes related work on MPI debugging and analysis, focusing on collective operations. Section 3 presents our contri-

bution: the static analysis detecting collective issues and the code transformation to capture incorrect functions. Section 4 shows

experimental results and finally Section 5 concludes our work.

2 Related Work

Related work on MPI code verification can be organized in 3 categories: (i) static analyses, (ii) online dynamic analyses and (iii)

trace-based dynamic analyses.

Static tools. This class of tools is mainly based on model checking and requires symbolic program execution, at the expense of

combinatorial number of schedules or reachable states to consider. TASS[18], a successor of MPI-SPIN[19] follows this approach:

using model checking and symbolic execution, it checks numerous program properties explicitly annotated with pragmas. If a

property is violated (such as an incorrect order of collective calls) by exploring reachable states of the model built, an explicit

counter-example is returned to the user in the form of a step-by-step trace through the program showing the values of variables at

each state. Unlike TASS, our static check analyzer requires no source-code modifications since it is integrated within a compiler.

Potential errors are automatically returned to the programmer with their context (including the line of the erroneous conditional)

through a low-complexity control-flow graph analysis. However a pragma-based approach could be useful to improve our static

analysis (for example by tagging MPI rank dependent variables), thusreducing false-positive possibilities. Besides, in our approach,

the combinatorial aspect of detecting effective mismatch is avoided by theruntime check.

Online dynamic tools. Dealing with dynamic tools able to check collective operations, we can mentionDAMPI[22], Marmot[13,

17], Umpire[21, 17], MPI-CHECK[14, 17], Intel Message Checker (IMC)[6, 17] and MUST[11, 10]. Umpire, Marmot and MUST

rely on a dynamic analysis of MPI calls instrumented through the MPI profiling interface (PMPI). They are able to detect mis-

matching collectives either with a timeout approach (DAMPI, Marmot, IMC and MPI-CHECK) or with a scheduling validation

(Umpire and MUST). Methods performing deadlock detections through atimeout approach are known to produce false positives,

for example in case of abnormal latencies. DAMPI uses a scalable algorithm based on Lamport Clocks (vector clocks focused on

call order) to capture possible non deterministic matches. For each MPI collective operation, participating processes update their

clock, based on operation semantics. Umpire, limited to shared memory platforms, relies on dependency graphs with additional

arcs for collective operations to detect deadlocks. In Marmot, an additional MPI process performs a global analysis of function

calls and communication patterns. Both of these approaches, however,have limited scalability, forwarding MPI call information

to a central manager for collective correctness. MUST overcomes such limitation by relying on a tree-based layout[9]. Finally,
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MPI-CHECK[14] instruments the source code at compile time adding extraarguments to MPI calls. The resulting instrumented

program is then compiled and produces an instrumented executable whichoutputs errors and warnings upon execution. In our ap-

proach, we perform a runtime check, taking advantage of the compile timeanalysis results (code locus and potential error filtering)

in order to scale to large programs, avoiding instrumentation of the whole MPI interface or systematic code instrumentation like in

MPI-CHECK.

Validation can also be done inside MPI libraries or as an extension of a library (as for MPICH for instance), allowing collective

verification for the full MPI-2 standard[7, 8, 20]. The detection of runtime deadlock causes is however limited to the information

available to the MPI routines. Compared to other dynamic analysis tools, ourmethod provides more precise errors including the

conditionals responsible with our static check help.

Trace-based dynamic tools. IMC (recently replaced by the online tool Intel Trace Analyzer v9.0) collects all MPI-related infor-

mation in trace files and performs the post-mortem analysis of these traces. This tends to be difficult and with limited scalability

due to the trace sizes, correlated to the number of cores and execution timeof the application.

Our detection of incorrect functions combines both static and dynamic approaches. The static analysis detects all incorrect

functions of a program and issues warnings for potential errors. Then because these potential errors might not appear during

execution, the code is transformed in order to check only the reported warnings. In case of actual deadlock situation, the program

aborts allowing a program state exploration with a debugger. PARCOACH checks a program function by function and then can stop

the program before all existing dynamic tools. As our dynamic check is performed by a lightweight library (see Algorithm 3), it is

also independent from the MPI implementation.

3 Checking MPI Collective Operations

This section describes our combining method named PARCOACH to verify MPI programs. To prove an MPI program is correct,

PARCOACH decomposes the method into two phases: A compile-time verification and an execution-time verification. All source

code functions are either proved statically correct, with the meaning givenin the introduction, or potentially incorrect, depending

on the control flow. Correct functions are filtered out and the code of the remaining functions is transformed to prevent deadlock

situations. Only collective calls that can deadlock are instrumented. This filtering approach avoid systematic instrumentation, thus

reducing the overhead due to the dynamic analysis. When a deadlock situation occurs in a run, an error message is returned with

information gathered at compile-time: The location and the type of the collective and the control-flow code responsible for this

situation.

3.1 Compile-Time Analysis

The first step takes place in the middle of the compilation chain where the source code is represented in an intermediate form. This

step consists in a static analysis of thecontrol-flow graph (CFG)for each function. The CFG is defined as a directed graph(V,E)

whereV represents the set of basic blocks andE is the set of edges. Each edgeu−→ v ∈ E depicts a potential flow of control

from nodeu to v. Each node inV has a set of successors denoted asSUCC(u). Moreover, we assume that the underlying compiler

appends two unique artificial nodes for entry and exit points. Throughout the rest of the paper, node refers to a CFG node. Within

the CFG, the different paths correspond to possible execution paths thatmay be taken by the different MPI tasks. The principle of

the proposed static analysis is to detect functions that have paths with different sequences of collectives (either not the same number

or not the same collectives). When two such paths are found, the node responsible for this possible control flow divergence leading
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Fig. 1: Example of Control Flow Graphs. From the left, a CFG showing execution orders, CFG of function f, a CFG
from a Benchmark and its instrumentation (see Algorithm 2)

to deadlock is identified. Algorithm 1 details our compile-time analysis to detect ifa function is correct (see Section 1.2). The

algorithm takes as input the CFG of the current function and outputs nodesthat may lead to collective errors and their collectives

that may deadlock (setO). This set will be given as parameter to the instrumentation detailed in Section3.2. The main steps of

the algorithm are the following: we compute for each node of the CFG the number of collectives on the execution paths from the

function entry to the node. This number is 0 for nodes before the first collective (including the node with the first collective), 1

for nodes reached after one collective and so on. When multiple paths exist, nodes can have multiple numbers, at most the number

of collectives in the function. Loop backedges are removed to have a finite numbering and the algorithm is applied to the CFG of

each loop separately. For nodes with collectives, these numbers definean execution orderbetween collectives within a function.

Collectives with different numbers are executed sequentially while directives with the same number can be executed in parallel.

These numbers are called in the followingexecution orders. If the same node has multiple execution orders, only the highest one

is considered. In a correct function, for any given orderk, all execution paths fromentry to exit should traverse the nodes of order

k with the same collective operation. A function is not correct if there are paths traversing nodes of execution orderk and other

paths that do not traverse nodes of orderk or with different collectives. They can be computed using the iterated postdominance

frontier [5]. A nodeu postdominates a nodev if all paths fromv to exit go throughu. We extend this relation to sets: A setU

postdominates a nodev if all paths fromv to exit go through at least one node ofU . The postdominance frontier of a nodeu,

PDF(u) is the set of all nodesv such thatu postdominates a successor ofv but does not strictly postdominatev. If ≫ denotes the

postdominance relation,PDF(u) = {v | ∃ w∈ SUCC(v),u≫ w andu 6≫ v}. In other words all paths fromw to the exit node go

throughu. On the contraryv is not postdominated byu so there exists a path fromv to exit node that does not traverseu. This

notion is extended to a set of nodesU . The iterated postdominance frontierPDF+ is defined as the transitive closure ofPDF, when

considered as a relation [5].
Algorithm 1 describes this computation applied to each function and loop, entry and exit being then defined as loop entry

and exit. The execution order computation corresponds to a simple traversal of the acyclic CFG, counting traversed nodes with

collectives. Then for each execution orderr, the nodes calling the same functionc, at orderr are clustered intoCr,c. The iterated

postdominance frontier of this set corresponds to nodes that can lead both to the execution of such collective or not. Note that the
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Algorithm 1 Step 1 - Static Pass

1: function STATIC PASS(G= (V,E)) ⊲ G: CFG
2: O← /0 ⊲ Output set
3: Remove loop backedges inG to compute execution orders for nodes with collectives
4: for r in node ordersdo
5: for c in collective names of execution orderr do
6: Cr,c←{u∈V|orderristhemax.executionordero fu,uexecutesacollectivewithnamec}
7: if PDF+(Cr,c) 6= /0 then
8: O←O∪ (c,PDF+(Cr,c))
9: end if

10: end for
11: end for
12: Output nodes inO as warnings and for Step 2.
13: end function

algorithm can handle any collective operation, and based on our context,only the name of the collective is used in the algorithm.

Lemma 1. Algorithm 1 is correct if it detects all deadlock situations due to an MPI collective operation.

Proof. We prove that the algorithm computes a non-empty setO if and only if the function is incorrect, and nodes inO correspond

exactly to the nodes that can lead to a deadlock.

Consider an element(c,S) of O, with c a collective andS the setPDF+(Cr,c) for some orderr. If u denotes a node from S,

there is an outgoing path fromu that goes throughc of orderr, and another path that reaches the exit node without going through

a collectivec of same order. If the second path never reaches a collectivec (any order) and if both paths are executed by different

tasks, then some tasks will wait at the collectivec while the other tasks will either wait at another collective (a deadlock) or exit the

function (incorrect function). In both cases, the function is incorrect.If both paths traverse the same collectivec, since the orders

are different, one of the paths has more collectivesc than the other. Again, this leads to an incorrect function.

The algorithm is applied on each loop separately. This separate analysis identifies at least loop exit nodes as control-flow

nodes that may be responsible for deadlocks, when the loop calls collectives. Indeed, static analysis does not count iterations and

collectives in loops may be executed a different number of times for eachprocess.

Now consider an incorrect function: when executing this function with multiple MPI tasks, some tasks may reach the exit node

while other tasks are waiting at a collectivec inside the function. If this collective is not inside a loop, by definition of the execution

order, this implies that the exit node and the node with the collectivec have the same execution orderr. As nodes may have multiple

execution orders, let us consider the smallestr. There is a collectivec′ of order r such that the set of nodesCr,c′ is not empty.

Besides,PDF+(Cr,c′) 6= /0 since there is a path to the exit that does not traverse therth collective. Hence Algorithm 1 detects the

function as incorrect. A similar proof holds for the case where the tasks are executing two different type of collectives.

Figure 1(a) shows an example of execution orders (numbers near each node) computation for a simple CFG.MPI Barrier node

5 can be the first collective called (pathentry→1→5) or the second one (pathentry→1→2→3 or 4→ 5). On this CFG, the set of

nodes{3, 4} postdominates node 2:{3,4} ≫ 2 but {3,4} 6≫ 1 so node 1 is in the iterated postdominance frontier of the set of

nodes{3, 4}: PDF+({3,4}) = {1}. Figure 1(b) depicts the CFG extracted from the initial code of Section 1.1.It contains 3 nodes:

The first one represents theif statement while the second one contains theif body with the collective call. Finally the last one

denotes thereturn instruction. The algorithm considers the setC0,Barrier = {2} corresponding to the collectiveMPI Barrier.

As its iterated postdominance frontier is node 1, the algorithm outputs a warning for the condition located in node 1 and flags
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the collectiveMPI Barrier for the following dynamic analysis (setO). Figure 1(c) presents another CFG extracted from a real

benchmark. This example contains 2 collectives:MPI Barrier (nodes 3, 7 and 8) andMPI Allreduce (node 10). The algorithm

first removes the backedge 5→ 2 from the loop and computes orders. Nodes 7,8 are of order 0, 10 of order 1. For the collectives in

C0,Barrier = {7,8}, the iterated postdominance frontier corresponds to node 1. Note that node 6 is postdominated by the set{7,8}

according to the definition of previous section.C1,Allreduce contains only node 10 andPDF+(C1,Allreduce) = {1,9,11}. Indeed

from these nodes, it is possible to execute theMPI Allreduce or not. Finally, the same algorithm is applied once more on the

graph with nodes{2,3,4,5} corresponding to the loop, without the backedge. Node 2 is marked as entry and exit. This node is

the only one in the iterated postdominance frontier of the barrier in node 3. To sum up, node 1 decides of the number of execution

of barriers in 7,8, nodes 9,11 decide of the number of execution ofMPI Allreduce and node 2 is responsible for the number of

barriers executed in node 3.

Potential errors reported by the static analysis can be false positives relatively to the CFG that is not correlated to the actual

control flow. To deal with false positive a dynamic check is needed.

3.2 Static Instrumentation for Execution-Time Verification

The code fragments leading potentially to incorrect functions and detectedwith the previous analysis are transformed in order to

raise an error message at the execution time: Whenever MPI processes take execution paths that cannot lead to the same number of

collectives, in the same order, the program stops. This section presentsthe code transformation involved.

Some potential errors may depend on the control flow taken by the different processes. The main idea is to modify the code

so that before each MPI collective call, we check that all processes within the communicator are about to call the same collective.

Besides, we also check that when a process is going to exit the function, all processes are exiting. This is achieved by a function,

CC that counts the number of processes that are going to execute a given collective operation or to exit the function in which the

MPI collective operation is invoked.CC is also a collective operation, as it gathers the processes of the communicator into groups

depending on what they are going to call (collective type or exit). FunctionCC is depicted in Algorithm 3. It takes as input the

communicator related to the collective callc, an integeric identifying the type of collective and the set of nodes generated by the

previous algorithm (see Section 3.1). We define a new MPI operator named equalsopwhich returns−1 if there is at least two

different integer among processes. Relying on theCC function, Algorithm 2 describes the instrumentation for the execution-time

verification. The functionINSTRUMENTATION is called onMPI COMM WORLD. For each noden containing a call to the collective

c, MPI Reduce is called just before callingc. The root process provides the combined value and test if all processes have the

same input value. If input values are different among all processes, an error is issued and the program is aborted through a call to

MPI Abort. This process is repeated for each collective operationc in the setO. Finally, in the closest node of collective nodes

that postdominates and joins all paths of the CFG,MPI Reduce with the input value 0 is added to eventually catch up processes not

calling any additional collective. Figure 1(d) presents the transformationachieved by Algorithm 2 on the CFG Figure 1(c).

Algorithm 2 Step 2 - Selective Static Instrumentation

1: function INSTRUMENTATION(communicator,G,O) ⊲ G: CFG,O: set created by Algorithm 1
2: for (c,S) ∈O do
3: for n in nodes containing a call to collectivec do
4: Insert call to CC(communicator, ic,S) before the call toc
5: end for
6: end for
7: Insert call to CC(communicator,0, /0) beforereturn statements
8: end function
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Algorithm 3 Library Function To Check Collectives (CC)

1: function CC(communicator, ic,S)
2: int rank, res
3: MPI COMM RANK(communicator,& rank)
4: MPI REDUCE(& ic,& res,1,MPI INT,equalsop,0,communicator)
5: if rank== 0 && res==−1 then
6: Display error for all nodes inS
7: MPI ABORT(communicator,0)
8: end if
9: end function

Lemma 2. Algorithm 2 is correct if all deadlock situations are captured by the instrumentation and if the new collectives inserted

do not generate a deadlock themselves.

Proof. We define acontrol sequenceas the sequence of collective calls executed by a process in a program execution. For an

execution of a given function, a control sequence is denoted asc1c2..cn with ci the i-th collective called. Algorithm 2 rewrites each

collectivec j from the setO into sjc j corresponding to the functionMPI Reduce called byCC based on the colorj and the initial

collectivec j . The functionMPI Reduce with color 0 denoted ass0 is added after all collective nodes. To ease the proof, we will

assume that this conditional rewriting, performed only for collectives found by the static analysis, is conducted for all collectives of

the control sequence. Consequently, a sequencec1..cn becomess1c1..sncns0. If all control sequences are the same for all processes,

the function executes with no deadlock. By applying Algorithm 2, the modifiedcontrol sequences are still identical, this algorithm

does not introduce deadlocks. If a function deadlocks due to collectiveoperations,

• Either a process calls a collective communicationci while another process calls a collective functionck with k 6= i. The

control sequence of both processes differ only with their last collective, ck andci , and both are prefixed byc1..ci−1.

• Or a process calls a collective communication while another one exits the function (a deadlock may occur at a later point in

the execution or outside of the function). The control sequence of the process exiting the function isc1..ci−1 and the process

inside the function executes the same prefix sequence with one more collective ci .

In the first case, the algorithm changes both control sequences intos1c1..si−1ci−1si ands1c1..si−1ci−1sk. These sequences stop

with si andsk since CC(x,i) and CC(x,k) lead to an error detection and abort. Hence themodified function no longer deadlocks. In

the second case, the algorithm changes both control sequences intos1c1..si−1ci−1si for the process inside the function, ands1c1..

si−1ci−1s0 for the one trying to leave the function. Note that the process is stopped before leaving the function since CC(x,i) and

CC(x,0) both abort, generating an error message. Again, the modifiedfunction does not deadlock anymore.

To conclude, Algorithm 2 is indeed correct and prevents all deadlock situations.

4 Experimental Results

We implemented our analysis in GCC 4.7.0[1] as a plugin performing a newpass inserted inside the compiler pass manager, after

generating the CFG information. This pass is located in the middle end of the compilation chain and is written in GIMPLE[15], a

tree-address representation derived from GENERIC. Thus, this solution is language independent, allowing to check MPI applications

written in C, C++ or FORTRAN (MPI collective operations are identified by their name). Besides the application language is

known at compile-time which enables theCC function to be adapted to all applications. The pass applies Algorithms 1 and 2. The

application needs to be linked to our dynamic library for runtime checking (see Algorithm 3). Our static analysis is simple to deploy
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in existing environment as it does not modify the whole compilation chain. This section presents experimental results obtained on

representative C++ MPI applications: EulerMHD[23], solving the Euler and ideal magnetohydrodynamics equations both at high

order on a 2D Cartesian mesh and HERA[12], a large multi-physics AMR hydrocode platform. We also selected six benchmarks

from the MPI NAS Parallel benchmarks[3] (NASPB v3.2) using class Cto test both C and Fortran programs.

All experiments were conducted on Tera 100,a supercomputerwith an aggregate peak performance of 1.2 PetaFlops. It hosts

4,370 compute nodes for a total of 140,000 cores. Each compute node gathers four eight-core Nehalem EX processors at 2.27 GHz

and 64 GB of RAM. All performance results are computed as the averageover 8 runs (compilation or execution) with BullxMPI

1.1.14.3 and Linux version 2.6.32.

4.1 CC function implementation

The goal of theCC function that checks MPI collective operations at runtime is to gather MPI processes calling the same collective

call. For that purpose, we can split the communicator through a call toMPI Comm split, gather or reduce information about collec-

tives withMPI Allgather, MPI Gather, MPI Allreduce or MPI Reduce, the best approach depending on the implementation. To

determine which MPI function performs better, we used the Intel MPI Benchmark suite[2] (IMB) v3.2.3 with a 4B message as we

only want to send an integer related to the type of the collective about to be called. Figure 2 shows the time spent in each candidate

function for a range of MPI processes. In this figure,MPI Reduce seems to be the most scalable[4]. Hence we opted for this function.
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Benchmark
#coll. #nodes % instrumented #calls

calls inS collectives to CC

EulerMHD 14 14 36% 26

BT 10 5 78% 8

LU 16 2 14% 6

SP 9 5 75% 7

IS 5 2 40% 3

CG 2 0 0% 0

FT 10 0 0% 0

HERA 644 578 84% 3,255

Tab. 1: Compilation and Execution Results

4.2 Static Check Results

At compile time, a warning is returned to the programmer when a potential deadlock situation is detected. The following example
shows what a user can read onstderr for NAS benchmark IS:

is.c:In function ‘main’:

is.c:1093:1: warning: STATIC-CHECK: MPI_Reduce may not be called by all processes in the communicator

because of the conditional line 923 - Check inserted before MPI_Reduce line 994

This warning provides the name of the collective that may deadlock (MPI Reduce) and the line of the conditional leading to

the collective call (line 923). This collective call is instrumented at line 994 as described in Algorithm 2. In this case, a test over

the number of processes which if higher than 512 produces an error requesting a lower number of processes, before finalizing the

program. This particular warning does not lead to a deadlock as all processes inside the same communicator share the same value
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for MPI Comm size. However, notice that the line number where the control flow divergence may occur is not close to the collective

call: The conditional that may be responsible for a deadlock in aMPI Reduce is 71 lines far from the collective.

Figure 3(a) details the overhead of compilation time when activating our GCCplugin. This overhead remains acceptable as it

does not exceed 5% for HERA. It is presented with and without the code generation which accounts for the insertion ofCC function

calls (see Algorithm 3). This specific step is mainly responsible for the overhead except for CG and FT. Indeed, according to the

static analysis, these benchmarks are correct, so no collective operation is instrumented. For each benchmark, Table 1 presents the

number of static calls to a collective communication and the number of nodesfound by Algorithm 1 (setS= ∪(PDF+(Cr,c) ∈O)).

The location of the static analysis in the compilation chain explains the high number of collective calls found in HERA. Indeed, C++

templates are instantiated and, therefore, duplicated before entering the middle-end part of GCC. For all nodes in S, the control-flow

does not depend on process ranks and the functions are correct. Nevertheless, this table shows that the static analysis is able to reduce

the amount of instrumentation needed to check the collective patterns (thirdcolumn). Reducing further the number of instrumented

collectives would require an inter-procedural data-flow analysis on thenodes inS. Such analysis is outside the scope of this paper

and is left for future work.

4.3 Execution Results

Figure 4(a) shows the overhead obtained for NASPB class C from 4 to 512cores (CG and FT have no overhead as no collective
is instrumented). The overhead does not exceed 18% and tends to slightlyincrease with the number of cores. Figure 4(b) presents
weak-scaling results for EulerMHD from 1 to 1,280 cores where the overhead remains comparable with a higher overhead as it is
related to the number ofCC calls, with the same increasing trend. Figure 3(b) presents the overheadobtained for HERA from 1 to
384 cores. The overhead also increases with the number of processes and does not exceed 12%. Highest execution times are of the
order of 10 min for the benchmarks. The last column of table 1 depicts thenumber of calls to theCC function during the execution
of the benchmarks. Processes about to call collectives identified as potential deadlock sources are counted. If some processes are
missing, the abort function is called to stop the program before deadlocking. An error is printed tostderr with the line number, the
collective name and conditionals responsible (informations gathered at compile-time):

DYNAMIC-CHECK: Error detected on rank 0 - Abort is invoking before MPI_Barrier line 47 in function f (program.c)

DYNAMIC-CHECK: See warnings about conditional(s) line(s) 45

5 Conclusion and Future Work

In this paper we described PARCOACH, our two-phase analysis to detectincorrect collective patterns in MPI programs. The first

pass statically identifies the reduced set of collective communications that may eventually lead to potential deadlock situations,

and issues warnings. Using this analysis, a selective instrumentation of thecode is achieved, displaying an error, synchronously

interrupting all processes, if the schedule leads to a deadlock situation. This method is easily integrated in the GCC compiler as

a plugin, avoiding compiler recompilation. We have shown that the overhead is very low at compile-time (5%). Dealing with the

runtime overhead, it could become non-negligible at larger scale as ouranalysis adds collectives for instrumentation. However,

with the help of collective selection, the runtime overhead remains acceptable (less than 20%) at a representative scale on a C++

application. Although it satisfies both scalability and functional requirements, our analysis tool is only intra-procedural with the

possible drawback of missing conditional statements out of function boundaries. Moreover, our analysis is focused on a particular

error and should be extended to cover common verification, for example, MPI call arguments, such as different communicators.

These improvements are currently under development, and the analysisis being extended to inter-procedural analysis, gathering

more data-flow information at compile-time in order to further reduce the number of instrumented collectives. Furthermore, our
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Fig. 3: Overhead of average compilation time with and without verification code generation and execution time over-
head for HERA with strong scaling
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Fig. 4: Execution time overhead for NASPB class C with strongscaling and for EulerMHD with weak scaling

approach in PARCOACH is a preliminary work setting the basis for a wider set of analysis combining static and dynamic aspects

and extended to OpenMP and hybrid (OpenMP + MPI) parallelisms.
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