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PARCOACH: Combining Static and Dynamic Validation of MPI

Collective Communications

Emmanuelle Saillard?* Patrick Carribault*and Denis BarthouJr

Abstract

Nowadays most scientific applications are parallelized based on MPI noioations. Collective MPI communications have to be
executed in the same order by all processes in their communicator asarteenumber of times, otherwise it is not conforming to
the standard and a deadlock or other undefined behavior can occsmoA as the control-flow involving these collective operations
becomes more complex, in particular including conditionals on proceks,ransuring the correction of such code is error-prone.
We propose in this paper a static analysis to detect when such situatios,comubined with a code transformation that prevents
from deadlocking. We focus on blocking MPI collective operations in SPApplications, assuming MPI calls are not nested
in multithreaded regions. We show on several benchmarks the smaltirapgperformance and the ease of integration of our
techniques in the development process.

Keywords:  MPI, debugging, collective, static analysis, correctness

1 Introduction

Most of scientific applications in High-Performance Computing rely on th& KPI specification to efficiently exploit a super-
computer and reach high parallel performance. Based on the distrimémory paradigm, this model exposes multiple ways to
express communications between tasks/processes including pointitaapd collective. While point-to-point functions involve
only two tasks, collective communications require that all processesamananicator invoke the same operation. Each process
does not have to statically invoke such collective function at the same lithe &fource code, but the sequences of collective calls
in all MPI processes must be the same and corresponding functiosleallfd have a compatible set of arguments. Due to the con-
trol flow inside an MPI program, processes may execute differestigion paths. Such behavior may cause errors and deadlocks
difficult for the user to detect and analyze. To tackle this issue, this papsents PARCOACH (PARallel COntrol flow Anomaly
CHecker) a two-step analysis to detect incorrect collective patternsNtDSBingle Program Multiple Data) MPI programs. For
each function, we first identify at compile-time the code fragments callitigatives that may deadlock and the control-flow parts
that may lead to such situation. Warnings are issued during this phase. Wéémnsform the identified code fragments in order
to dynamically capture these situations before they arise. The runtimeeacof this instrumentation is limited since only the
pieces of code calling collectives that can deadlock are modified. Biafaactual misuse, the application stops with an explicit
error message highlighting both the collectives and the control-flow axponsible for this situation. This paper is an extension
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of [16] including new detailed examples, new experimental results ahalg about the check collective functioBC) used for the
code transformation.

1.1 Motivating Example

The following simple example (Listing 1) illustrates the potential issues with dellecommunications.

Listing 1: A simple example Listing 2: The instrumented example
void f( int r ) { void f( int r ) {

if(r==20) int res;

MPI_Barrier (MPLCOMM.WORLD) ; if(r==0) {

return; MPI_Reduce(1,&res ,1,MRINT, equalsop ,0 ,MPCOMMWORLD) ;
} if ( rank==0 & res == -1 ) MPI_Abort(MPLCOMMWORLD, 0);
void g( int r ) { MPI_Barrier (MPLCOMM.WORLD) ;

f(r); }

MPI_Barrier (MPLCOMMWORLD) ; MPI_Reduce(0,&res ,1,MRINT, equalsop ,0 ,MPCOMMWORLD) ;

exit (0); if ( rank==0 & res == -1 ) MPI_Abort (MPLCOMM.WORLD, 0);
} return;

Assume here thatis called by all processes. Depending on the value of the input parameterocess will execute or not the
barrier in thel f statementir . If r is not uniformly true or false among MPI processes, some tasks will lnddxdbinf while the
remaining process ranks will reach the barrieginThese processes will then terminate, while the first ones will be in a dgadlo
situation at the barrier ip. The machine state when the deadlock occurs does not help to identifgutbe of the deadlock. As the
value ofr is unknown at compile time and might be the same for every MPI protesslynamic state of control flow has to be
checked in order to prevent from entering a deadlock state. Tranisfgithe previous example would lead to the code presented in
Listing 2. Notice that the function g does not need to be transformed sidoestnot introduce a collective that may be the cause of
a deadlock or an unspecified behavior. In order to partition processesding to their behavior regarding the conditiondl,itwo
calls to the collectivé/Pl _Reduce with the equalsop operation (bit equality checking, see Section 3.2) amrddsn the code: One
before the barrier operation with the input value 1 (larameter of the call), and one before the ur n statement with the input
value 0. All processes call thél _Reduce collective, whatever their execution path. However, input values shmriltie same,
otherwise the function is incorrect ai&l _Abort is issued in order to prevent from deadlocking.

We propose in this paper methods (i) to identify the condition&las the cause for a possible deadlock, using compiler analysis
and (i) to prevent from deadlocking using a code transformation.

1.2 Context and Contributions

This paper focuses on scientific SPMD (Single Program Multiple Data) apipliseparallelized with MPI, meaning that the source
code functions are assumed to be called either by all processes or &phtirem. Futhermore, we consider only monothreaded
MPI programs (the analysis also works on multithreaded programs ifRlliddllectives are performed in monothreaded regions). In
our context a function is said to lmerrectregarding blocking collective communications if all MPI processes eng¢he function
eventually exit without leaving any process blocked inside a collectiveatipa. As our analysis is focused on the detection of
mismatching collectives, other possible sources of deadlock (e.aiténkbops, blocking 10s and other deadlocks) which would



require dedicated analysis are not checked. While all types of blockitegtiees are handled, collective operations are assumed to
be called on the same communicators, with compatible arguments. In théxtdhis article makes the following contributions:
¢ Identification of collective callsites that may lead to deadlocks, and ofaleftdwv codes responsible for such situation within
each function.

e Dedicated instrumentation based on the previous analysis to preventtigelleaors at execution time, pinpointing the
control-flow divergence responsible for such errors.

e Fullimplementation inside a production compiler, experimental results obgifchmarks and applications.

1.3 Outline

Section 2 describes related work on MPI debugging and analysis,ifigcois collective operations. Section 3 presents our contri-
bution: the static analysis detecting collective issues and the code traasifmrto capture incorrect functions. Section 4 shows
experimental results and finally Section 5 concludes our work.

2 Related Work

Related work on MPI code verification can be organized in 3 categoijestaic analyses, (ii) online dynamic analyses and (iii)
trace-based dynamic analyses.

Static tools.  This class of tools is mainly based on model checking and requires dignpbogram execution, at the expense of
combinatorial number of schedules or reachable states to consides[T8], a successor of MPI-SPIN[19] follows this approach:
using model checking and symbolic execution, it checks numerousaogroperties explicitly annotated with pragmas. If a
property is violated (such as an incorrect order of collective calls)X¥pjoeing reachable states of the model built, an explicit
counter-example is returned to the user in the form of a step-by-stepthramigh the program showing the values of variables at
each state. Unlike TASS, our static check analyzer requires no socadeemodifications since it is integrated within a compiler.
Potential errors are automatically returned to the programmer with theiextafincluding the line of the erroneous conditional)
through a low-complexity control-flow graph analysis. However a piadpased approach could be useful to improve our static
analysis (for example by tagging MPI rank dependent variables)réuuging false-positive possibilities. Besides, in our approach,
the combinatorial aspect of detecting effective mismatch is avoided bwtitiene check.

Online dynamic tools. Dealing with dynamic tools able to check collective operations, we can meDAdAPI[22], Marmot[13,

17], Umpire[21, 17], MPI-CHECK][14, 17], Intel Message Checid®IC)[6, 17] and MUST[11, 10]. Umpire, Marmot and MUST
rely on a dynamic analysis of MPI calls instrumented through the MPI prgfiliterface (PMPI). They are able to detect mis-
matching collectives either with a timeout approach (DAMPI, Marmot, IM@d &PI-CHECK) or with a scheduling validation
(Umpire and MUST). Methods performing deadlock detections throutiineout approach are known to produce false positives,
for example in case of abnormal latencies. DAMPI uses a scalabldtalgdrased on Lamport Clocks (vector clocks focused on
call order) to capture possible non deterministic matches. For each ME¢tee operation, participating processes update their
clock, based on operation semantics. Umpire, limited to shared memdfygrpia, relies on dependency graphs with additional
arcs for collective operations to detect deadlocks. In Marmot, an additMPI process performs a global analysis of function
calls and communication patterns. Both of these approaches, howaver|imited scalability, forwarding MPI call information
to a central manager for collective correctness. MUST overcomés|guitation by relying on a tree-based layout[9]. Finally,



MPI-CHECK][14] instruments the source code at compile time adding exgaments to MPI calls. The resulting instrumented

program is then compiled and produces an instrumented executable avtjmits errors and warnings upon execution. In our ap-
proach, we perform a runtime check, taking advantage of the compileatialgsis results (code locus and potential error filtering)
in order to scale to large programs, avoiding instrumentation of the wholdari#®face or systematic code instrumentation like in

MPI-CHECK.

Validation can also be done inside MPI libraries or as an extension of ayfli@arfor MPICH for instance), allowing collective
verification for the full MPI-2 standard[7, 8, 20]. The detection oftine deadlock causes is however limited to the information
available to the MPI routines. Compared to other dynamic analysis toolsnetinod provides more precise errors including the
conditionals responsible with our static check help.

Trace-based dynamic tools. IMC (recently replaced by the online tool Intel Trace Analyzer v9.0)ects all MPI-related infor-
mation in trace files and performs the post-mortem analysis of these.trBlaisstends to be difficult and with limited scalability
due to the trace sizes, correlated to the number of cores and executicof timeapplication.

Our detection of incorrect functions combines both static and dynamimagipes. The static analysis detects all incorrect
functions of a program and issues warnings for potential errors.n Deeause these potential errors might not appear during
execution, the code is transformed in order to check only the reportednga. In case of actual deadlock situation, the program
aborts allowing a program state exploration with a debugger. PARCOA@Eksta program function by function and then can stop
the program before all existing dynamic tools. As our dynamic checkrfeqmeed by a lightweight library (see Algorithm 3), it is
also independent from the MPI implementation.

3 Checking MPI Collective Operations

This section describes our combining method named PARCOACH to vefifiygvbgrams. To prove an MPI program is correct,
PARCOACH decomposes the method into two phases: A compile-time védficand an execution-time verification. All source
code functions are either proved statically correct, with the meaning givéire introduction, or potentially incorrect, depending
on the control flow. Correct functions are filtered out and the codeeofémaining functions is transformed to prevent deadlock
situations. Only collective calls that can deadlock are instrumented. Thinfijftapproach avoid systematic instrumentation, thus
reducing the overhead due to the dynamic analysis. When a deadlodiositoecurs in a run, an error message is returned with
information gathered at compile-time: The location and the type of the cotteatid the control-flow code responsible for this
situation.

3.1 Compile-Time Analysis

The first step takes place in the middle of the compilation chain where theesoode is represented in an intermediate form. This
step consists in a static analysis of tantrol-flow graph (CFGYor each function. The CFG is defined as a directed g(&ph)
whereV represents the set of basic blocks dhis the set of edges. Each edge— v € E depicts a potential flow of control
from nodeu to v. Each node itV has a set of successors denote$d€Gu). Moreover, we assume that the underlying compiler
appends two unique artificial nodes for entry and exit points. Throuigthe rest of the paper, node refers to a CFG node. Within
the CFG, the different paths correspond to possible execution pathsdlydte taken by the different MPI tasks. The principle of
the proposed static analysis is to detect functions that have paths witledtfferquences of collectives (either not the same number
or not the same collectives). When two such paths are found, the aspensible for this possible control flow divergence leading
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Fig. 1: Example of Control Flow Graphs. From the left, a CF@vging execution orders, CFG of function f, a CFG
from a Benchmark and its instrumentation (see Algorithm 2)

to deadlock is identified. Algorithm 1 details our compile-time analysis to detecfuhction is correct (see Section 1.2). The
algorithm takes as input the CFG of the current function and outputs rtbademay lead to collective errors and their collectives
that may deadlock (séd). This set will be given as parameter to the instrumentation detailed in S&fomhe main steps of
the algorithm are the following: we compute for each node of the CFG thédeuof collectives on the execution paths from the
function entry to the node. This number is O for nodes before the fitlgtative (including the node with the first collective), 1
for nodes reached after one collective and so on. When multiple pagisredes can have multiple numbers, at most the number
of collectives in the function. Loop backedges are removed to havéta fimmbering and the algorithm is applied to the CFG of
each loop separately. For nodes with collectives, these numbers dafxecution ordebetween collectives within a function.
Collectives with different numbers are executed sequentially while drectivith the same number can be executed in parallel.
These numbers are called in the followiegecution orderslf the same node has multiple execution orders, only the highest one
is considered. In a correct function, for any given orkleall execution paths frorantryto exit should traverse the nodes of order

k with the same collective operation. A function is not correct if there atksp@maversing nodes of execution ordeand other
paths that do not traverse nodes of orkdle@r with different collectives. They can be computed using the iteratettipmsnance
frontier [5]. A nodeu postdominates a nodeif all paths fromv to exit go throughu. We extend this relation to sets: A dét
postdominates a nodeif all paths fromv to exit go through at least one node ldf The postdominance frontier of a node
PDF(u) is the set of all nodeg such thatu postdominates a successondiut does not strictly postdominate If >> denotes the
postdominance relatio®DF (u) = {v | 3 w € SUCQV),u > wandu }% v}. In other words all paths fromw to the exit node go
throughu. On the contrary is not postdominated by so there exists a path fromto exit node that does not traverse This
notion is extended to a set of nod¢s The iterated postdominance frontRDF T is defined as the transitive closureRIDF, when

considered as a relation [5].
Algorithm 1 describes this computation applied to each function and loopy antt exit being then defined as loop entry

and exit. The execution order computation corresponds to a simplegahwdrthe acyclic CFG, counting traversed nodes with
collectives. Then for each execution ordethe nodes calling the same functionat orderr are clustered int€; .. The iterated
postdominance frontier of this set corresponds to nodes that candéadblthe execution of such collective or not. Note that the



Algorithm 1 Step 1 - Static Pass

1: function STATIC_PASS(G = (V,E)) >G: CFG
2: O«+0 > Output set
3: Remove loop backedges @ito compute execution orders for nodes with collectives
4: for r in node orderslo
5: for cin collective names of execution ordedo
6: Crc < {u e V]orderisthemaxexecutionorderodi,uexecutesacollectivewithnaoje
7: if PDF*(Cyc) # 0then
8: O+ OU(c,PDF*(Ci))
9: end if
10: end for
11 end for

12: Output nodes if© as warnings and for Step 2.
13: end function

algorithm can handle any collective operation, and based on our cooidxthe name of the collective is used in the algorithm.
Lemma 1. Algorithm 1 is correct if it detects all deadlock situations due to an MPI colleatiperation.

Proof. We prove that the algorithm computes a non-emptyGsiétand only if the function is incorrect, and nodes@xorrespond
exactly to the nodes that can lead to a deadlock.

Consider an elemert, S) of O, with c a collective andS the setPDF*(C;¢) for some order. If u denotes a node from S,
there is an outgoing path fromthat goes through of orderr, and another path that reaches the exit node without going through
a collectivec of same order. If the second path never reaches a collec{mey order) and if both paths are executed by different
tasks, then some tasks will wait at the collectivehile the other tasks will either wait at another collective (a deadlock) ibthex
function (incorrect function). In both cases, the function is incorrfdioth paths traverse the same collectiyesince the orders
are different, one of the paths has more collectivétan the other. Again, this leads to an incorrect function.

The algorithm is applied on each loop separately. This separate analydifiedeat least loop exit nodes as control-flow
nodes that may be responsible for deadlocks, when the loop calls c@kectndeed, static analysis does not count iterations and
collectives in loops may be executed a different number of times for padess.

Now consider an incorrect function: when executing this function with meltipP| tasks, some tasks may reach the exit node
while other tasks are waiting at a collectivénside the function. If this collective is not inside a loop, by definition of theceion
order, this implies that the exit node and the node with the collectivave the same execution ordeAs nodes may have multiple
execution orders, let us consider the smaltesiThere is a collective’ of orderr such that the set of nod& ¢ is not empty.
BesidesPDF*(C; ) # 0 since there is a path to the exit that does not traversetfrepllective. Hence Algorithm 1 detects the
function as incorrect. A similar proof holds for the case where the taskex@cuting two different type of collectives. O

Figure 1(a) shows an example of execution orders (numbers neanede) computation for a simple CH&I _Barri er node
5 can be the first collective called (paghtry—1—5) or the second one (pa#émtry—1—2—3 or 4— 5). On this CFG, the set of
nodes{3, 4} postdominates node 3,4} > 2 but{3,4} > 1 so node 1 is in the iterated postdominance frontier of the set of
nodes{3, 4}: PDF*({3,4}) = {1}. Figure 1(b) depicts the CFG extracted from the initial code of Sectiontlcantains 3 nodes:
The first one represents thé statement while the second one containsithéody with the collective call. Finally the last one
denotes the et ur n instruction. The algorithm considers the €gtzarrier = {2} corresponding to the collectivePl _Barri er .
As its iterated postdominance frontier is node 1, the algorithm outputs a waimirthe condition located in node 1 and flags



the collectiveMPl Barri er for the following dynamic analysis (s€). Figure 1(c) presents another CFG extracted from a real
benchmark. This example contains 2 collectivigB: Barri er (nodes 3, 7 and 8) ari®l _Al | reduce (hode 10). The algorithm
first removes the backedge-5 2 from the loop and computes orders. Node® &re of order 0, 10 of order 1. For the collectives in
Copgarrier = {7,8}, the iterated postdominance frontier corresponds to node 1. Note tth@6rie postdominated by the gét 8}
according to the definition of previous sectidBy a | reduce CONtains only node 10 arDF* (Cy | reduce) = {1,9,11}. Indeed
from these nodes, it is possible to execute MRE_Al | reduce or not. Finally, the same algorithm is applied once more on the
graph with nodeq2,3,4,5} corresponding to the loop, without the backedge. Node 2 is markedtigsaenl exit. This node is
the only one in the iterated postdominance frontier of the barrier in node 8urh up, node 1 decides of the number of execution
of barriers in 78, nodes 911 decide of the number of execution )l _Al | r educe and node 2 is responsible for the number of
barriers executed in node 3.

Potential errors reported by the static analysis can be false positivéisalgldo the CFG that is not correlated to the actual
control flow. To deal with false positive a dynamic check is needed.

3.2 Static Instrumentation for Execution-Time Verification

The code fragments leading potentially to incorrect functions and detedtiedhe previous analysis are transformed in order to
raise an error message at the execution time: Whenever MPI predakeesxecution paths that cannot lead to the same number of
collectives, in the same order, the program stops. This section préisemisde transformation involved.

Some potential errors may depend on the control flow taken by theatiffrocesses. The main idea is to modify the code
so that before each MPI collective call, we check that all processemilith communicator are about to call the same collective.
Besides, we also check that when a process is going to exit the fundtiprp@esses are exiting. This is achieved by a function,
CC that counts the number of processes that are going to execute a gllestige operation or to exit the function in which the
MPI collective operation is invoked_C is also a collective operation, as it gathers the processes of the conataunito groups
depending on what they are going to call (collective type or exit). Fun@dis depicted in Algorithm 3. It takes as input the
communicator related to the collective callan integeii; identifying the type of collective and the set of nodes generated by the
previous algorithm (see Section 3.1). We define a new MPI operatoedhaqualsopwhich returns—1 if there is at least two
different integer among processes. Relying on@Bdunction, Algorithm 2 describes the instrumentation for the execution-time
verification. The functiod NSTRUVENTATI ON is called onMPl _COMWORLD. For each nod@ containing a call to the collective
¢, MPI _Reduce is called just before calling. The root process provides the combined value and test if all prexédss/e the
same input value. If input values are different among all processesrror is issued and the program is aborted through a call to
MPl _Abort. This process is repeated for each collective operationthe setO. Finally, in the closest node of collective nodes
that postdominates and joins all paths of the CH&, Reduce with the input value 0 is added to eventually catch up processes not
calling any additional collective. Figure 1(d) presents the transformatbieved by Algorithm 2 on the CFG Figure 1(c).

Algorithm 2 Step 2 - Selective Static Instrumentation

1: function INSTRUMENTATION(cOmmunicatorG, O) > G: CFG,O: set created by Algorithm 1
2 for (c,S) € Odo

3 for nin nodes containing a call to collectieedo

4: Insert call to CC§ommunicataic, S) before the call ta

5 end for

6 end for

7 Insert call to CC¢ommunicatqi0, 0) beforer et ur n statements

8: end function




Algorithm 3 Library Function To Check Collectives (CC)

1: function CC(communicatoyic, S)

2 int rank, res

3 MPI_CoMM_RANK(communicator&rank)

4 MPI_REDUCE(&ic,&res 1, MPI_INT, equalsop0, communicator
5: if rank==0 && res== —1then
6

7

8

9:

Display error for all nodes i%
MPI_ABORT(communicatoy0)
end if
end function

Lemma 2. Algorithm 2 is correct if all deadlock situations are captured by the instmatédn and if the new collectives inserted
do not generate a deadlock themselves.

Proof. We define acontrol sequenceas the sequence of collective calls executed by a process in a progeantien. For an
execution of a given function, a control sequence is denotegcasc, with ¢; thei-th collective called. Algorithm 2 rewrites each
collectivec; from the setO into sjc; corresponding to the functidvPl _Reduce called byCC based on the colof and the initial
collectivecj. The functionMPl _Reduce with color O denoted asy is added after all collective nodes. To ease the proof, we will
assume that this conditional rewriting, performed only for collectiveséoby the static analysis, is conducted for all collectives of
the control sequence. Consequently, a sequena® becomes; C1..snChSp. If all control sequences are the same for all processes,
the function executes with no deadlock. By applying Algorithm 2, the modd@drol sequences are still identical, this algorithm
does not introduce deadlocks. If a function deadlocks due to collempeestions,

e Either a process calls a collective communicatiprvhile another process calls a collective functignwith k #i. The
control sequence of both processes differ only with their last colleajpv@ndc;, and both are prefixed knf..ci_;.

e Or a process calls a collective communication while another one exits thédnifa deadlock may occur at a later point in
the execution or outside of the function). The control sequence of taegs exiting the function i§..c;_; and the process
inside the function executes the same prefix sequence with one mordiceltgc

In the first case, the algorithm changes both control sequences;mtos_1¢i_1S ands;c;..5-1Ci—1%. These sequences stop
with 5 ands, since CC(x,i) and CC(x,k) lead to an error detection and abort. Hengadldied function no longer deadlocks. In
the second case, the algorithm changes both control sequencesscintg _1¢;_15 for the process inside the function, asid; ..
S_1C_15 for the one trying to leave the function. Note that the process is stoppeceldefving the function since CC(x,i) and
CC(x,0) both abort, generating an error message. Again, the moflifiedon does not deadlock anymore.

To conclude, Algorithm 2 is indeed correct and prevents all deadlocktsins. O

4 Experimental Results

We implemented our analysis in GCC 4.7.0[1] as a plugin performing apass inserted inside the compiler pass manager, after
generating the CFG information. This pass is located in the middle end of thgiletion chain and is written in GIMPLE[15], a
tree-address representation derived from GENERIC. Thus, thismols language independent, allowing to check MPI applications
written in C, C++ or FORTRAN (MPI collective operations are identified byirthhame). Besides the application language is
known at compile-time which enables tB€ function to be adapted to all applications. The pass applies Algorithms 1. artke2
application needs to be linked to our dynamic library for runtime checkieg fgdgorithm 3). Our static analysis is simple to deploy



in existing environment as it does not modify the whole compilation chaits Jéction presents experimental results obtained on
representative C++ MPI applications: EulerMHD[23], solving the Eulet meal magnetohydrodynamics equations both at high
order on a 2D Cartesian mesh and HERA[12], a large multi-physics AWtRdzode platform. We also selected six benchmarks
from the MPI NAS Parallel benchmarks[3] (NASPB v3.2) using clage @st both C and Fortran programs.

All experiments were conducted on Tera 18Gupercomputewith an aggregate peak performance of 1.2 PetaFlops. It hosts
4,370 compute nodes for a total of 140,000 cores. Each compugegatiders four eight-core Nehalem EX processors at 2.27 GHz
and 64 GB of RAM. All performance results are computed as the avenagre8 runs (compilation or execution) with BullxMPI
1.1.14.3 and Linux version 2.6.32.

4.1 CCfunction implementation

The goal of theCC function that checks MPI collective operations at runtime is to gather Mitlgsses calling the same collective
call. For that purpose, we can split the communicator through a cillitaCommspl i t, gather or reduce information about collec-
tives withMPl _Al | gat her, MPl _Gat her, MPI _Al | reduce or MPl _Reduce, the best approach depending on the implementation. To
determine which MPI function performs better, we used the Intel MPlcBerark suite[2] (IMB) v3.2.3 with a 4B message as we
only want to send an integer related to the type of the collective about tdlbd.daigure 2 shows the time spent in each candidate
function for a range of MPI processes. In this figuel, Reduce seems to be the most scalable[4]. Hence we opted for this function.

10000 Régﬁ‘f; ‘: Benchmark #coll. #nodes % instrumented #calls
1000 | Comm Split —x— - calls inS collectives to CC
Allgather 7/ P EulerMHD 14 14 36% 26
g 100 / BT 10 5 78% 8
£ 5 LU 16 2 14% 6
E SP 9 5 75% 7
IS 5 2 40% 3
! CG 2 0 0% 0
FT 10 0 0% 0
ot 10 100 1000 10000 HERA 644 578 84% 3,255
MPI Processes

) o ) Tab. 1: Compilation and Execution Results
Fig. 2: Execution time of collective calls from IMB

4.2 Static Check Results

At compile time, a warning is returned to the programmer when a potentalalek situation is detected. The following example
shows what a user can readsirer r for NAS benchmark IS:

is.ciln function ‘main’:
is.c:1093:1: warning: STATIC CHECK: MPlI _Reduce may not be called by all processes in the conmuni cator
because of the conditional line 923 - Check inserted before MPI _Reduce |ine 994

This warning provides the name of the collective that may deadlkek Reduce) and the line of the conditional leading to
the collective call (line 923). This collective call is instrumented at line 99described in Algorithm 2. In this case, a test over
the number of processes which if higher than 512 produces an erqoesting a lower number of processes, before finalizing the
program. This particular warning does not lead to a deadlock as akgses inside the same communicator share the same value



, 10

for MPI _Commsi ze. However, notice that the line number where the control flow divergemay occur is not close to the collective
call: The conditional that may be responsible for a deadlockhl aReduce is 71 lines far from the collective.

Figure 3(a) details the overhead of compilation time when activating our @@gn. This overhead remains acceptable as it
does not exceed 5% for HERA. It is presented with and without the cedergtion which accounts for the insertionG8ffunction
calls (see Algorithm 3). This specific step is mainly responsible for theheael except for CG and FT. Indeed, according to the
static analysis, these benchmarks are correct, so no collective opéasatistrumented. For each benchmark, Table 1 presents the
number of static calls to a collective communication and the number of foded by Algorithm 1 (se6= U(PDF* (C;¢) € O)).
The location of the static analysis in the compilation chain explains the high mahteallective calls found in HERA. Indeed, C++
templates are instantiated and, therefore, duplicated before enteringgtiie4@nd part of GCC. For all nodes in S, the control-flow
does not depend on process ranks and the functions are corrgettidgdess, this table shows that the static analysis is able to reduce
the amount of instrumentation needed to check the collective patternsdgtintin). Reducing further the number of instrumented
collectives would require an inter-procedural data-flow analysis ondldes inS. Such analysis is outside the scope of this paper
and is left for future work.

4.3 Execution Results

Figure 4(a) shows the overhead obtained for NASPB class C from 4 te&@®2 (CG and FT have no overhead as no collective
is instrumented). The overhead does not exceed 18% and tends to shightigse with the number of cores. Figure 4(b) presents
weak-scaling results for EulerMHD from 1 to 1,280 cores where theh@asl remains comparable with a higher overhead as it is
related to the number @C calls, with the same increasing trend. Figure 3(b) presents the ovesh&sided for HERA from 1 to

384 cores. The overhead also increases with the number of pre@sseoes not exceed 12%. Highest execution times are of the
order of 10 min for the benchmarks. The last column of table 1 depictsutheber of calls to th€C function during the execution

of the benchmarks. Processes about to call collectives identified attipbtieadlock sources are counted. If some processes are
missing, the abort function is called to stop the program before deadtpckimerror is printed tat der r with the line number, the
collective name and conditionals responsible (informations gatherexirgtile-time):

DYNAM C- CHECK: Error detected on rank 0 - Abort is invoking before MPI _Barrier line 47 in function f (program c)
DYNAM C- CHECK: See war ni ngs about conditional (s) line(s) 45

5 Conclusion and Future Work

In this paper we described PARCOACH, our two-phase analysis to daetegtect collective patterns in MPI programs. The first
pass statically identifies the reduced set of collective communications thaewentually lead to potential deadlock situations,
and issues warnings. Using this analysis, a selective instrumentation ofdleeis achieved, displaying an error, synchronously
interrupting all processes, if the schedule leads to a deadlock situatigs niethod is easily integrated in the GCC compiler as
a plugin, avoiding compiler recompilation. We have shown that the ovdrisezery low at compile-time (5%). Dealing with the
runtime overhead, it could become non-negligible at larger scale aanalysis adds collectives for instrumentation. However,
with the help of collective selection, the runtime overhead remains actefftass than 20%) at a representative scale on a C++
application. Although it satisfies both scalability and functional requirementsanalysis tool is only intra-procedural with the
possible drawback of missing conditional statements out of functiondaoies. Moreover, our analysis is focused on a particular
error and should be extended to cover common verification, for exaufié call arguments, such as different communicators.
These improvements are currently under development, and the arialpsisig extended to inter-procedural analysis, gathering
more data-flow information at compile-time in order to further reduce tivalrer of instrumented collectives. Furthermore, our
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approach in PARCOACH is a preliminary work setting the basis for a widesfsgnalysis combining static and dynamic aspects
and extended to OpenMP and hybrid (OpenMP + MPI) parallelisms.

Acknowledgments
This work is (integrated and) supported by the PERFCLOUD project. Adfr&SN (Fond pour la Saae Nunerique) cooperative

project that associates academics and industrials partners in ordeigo thes provide building blocks for a new generation of
HPC datacenters.

References

[1] GCC 4.7.gcc. gnu. org/ gcec-4.7/.



[2] IMB. software.intel.com en-us/articles/intel-npi-benchmarksl .
[3] NASPB. http://ww. nas. nasa. gov/ sof t war e/ NPB.
[4] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk,TRakur, and J. L. Taff. MPI on a million processors.
pages 20-30. EuroPVM/MPI, 2009.
[5] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadedfcidatly computing static single assignment form and the
control dependence graph. ACM TOPLASpages 13(4):451-490, 1991.
[6] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov, S. Zhedod S. Bratanov. Automated, scalable debugging of MPI
programs with Intel Message Checker.3B-HPCSpages 78-82, 2005.
[7] C. Falzone, A. Chan, E. Lusk, and W. Gropp. Collective erraded#on for MPI collective operations. pages 138-147.
PVM/MPI, 2005.
[8] C. Falzone, A. Chan, E. Lusk, and W. Gropp. A portable methodifating user errors in the usage of MPI collective
operationslJHPCA, 2007.
[9] T. Hilbrich, F. Hansel, M. Schulz, B. R. de Supinski, M. SiiNer, and W. E. Nagel. Runtime MPI collective checking with
tree-based overlay networks. pages 117-122. EuroMPI, 2013.
[10] T. Hilbrich, J. Protze, M. Schulz, B. R. de Supinski, and M. Siller. MPI runtime error detection with MUST: advances in
deadlock detection. IBupercomputingpages 30:1-30:11, 2012.
[11] T. Hilbrich, M. Schulz, B. de Supinski, and M. dler. MUST: A scalable approach to runtime error detection in MPI
programs. Parallel Tools Workshop, 2010.
[12] H. Jourdren. HERA: A hydrodynamic amr platform for multi-plogssimulations. In J. Foster, E. Lutton, J. Miller, C. Ryan,
and A. Tettamanzi, editorgdaptive Mesh Refinement - Theory and Applicatiages 283-294. LNCSE, 2005.
[13] B. Krammer, K. Bidmon, M. S. Mller, and M. M. Resch. MARMOT: An MPI analysis and checking toolPlRRCQ pages
493-500, 2003.
[14] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, artbM. MPI-CHECK: a tool for checking Fortran 90 MPI programs.
Concurrency and Computation: Practice and Experience, pages 16(3003.
[15] J. Merrill. GENERIC and GIMPLE: A new tree representation fotirenfunctions. GCC summit, 2003.

[16] E. Saillard, P. Carribault, and D. Barthou. Combining static and mlynaalidation of MPI collective communications. pages
117-122. EuroMPI, 2013.

[17] S. Sharma, G. Gopalakrishnan, and R. M. Kirby. A survey of kfated debuggers and tools. 2007.

[18] S. Siegel and T. Zirkel. Automatic formal verification of MPI bagedtallel programs. ®PoPR pages 309-310, 2011.

[19] S.F. Siegel. Verifying Parallel Programs with MPI-Spin. In F. @alfo, T. Hrault, and J. Dongarra, editoPYM/MPI, volume
4757 ofLecture Notes in Computer Scienpages 13-14. Springer, 2007.

[20] J. L. Traff and J. Worringen. Verifying collective MPI calls. pages 18-27. FMMI, 2004.

[21] J. S. Vetter and B. R. de Supinski. Dynamic software testing of MBliegtions with Umpire. InSupercomputingpages
51-51. ACM/IEEE, 2000.

[22] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B. R. d. Siki. Schulz, and G. Bronevetsky. A scalable and distributed
dynamic formal verifier for MPI programs. Bupercomputingpages 1-10, 2010.

[23] M. Wolff, S. Jaouen, and H. Jourdren. Hight-order dimendigreplit lagrange-remap schemes for ideal magnetohydrody-
namics. InDiscrete and Continuous Dynamical Systems Seri®dVBCF, 2009.



