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Abstract. A Quasi-Affine Transformation (QAT) is a transformation
on Zn which corresponds to the composition of a rational affine transfor-
mation and an integer part function. The aim of this paper is twofold.
Firstly, it brings new insight into the periodic structures involved by a
QAT. Secondly, some new results in nD are presented specifically about
the behavior under iteration of a QAT.

1 Introduction.

Affine transformations (scaling, rotating, etc.) are widely used in image analysis
and processing, for instance to register images. Nevertheless, two issues have to
be considered when one uses such a transformation in the digital world. Indeed
digital images only embed a finite number of pixels (or voxels) and it is well
known that for instance continuous rotations when applied on Zn are generally
not bijective [11, 12], nor topology preserving [10] (e.g. holes can appear in a sim-
ply connected object). Moreover, very few affine transformations can be exactly
calculated in computers. For instance, an 1/8th of a turn involves an irrational
coefficient that cannot be represented by a floating number. In order to study
the properties of the ”affine” transformations embedded in computers, the first
author of the present paper has proposed in [4] to model them by Quasi-Affine
Transformations (QAT) which are actual affine transformations on Qn followed
by a floor function. We stress that this model slightly differs from the model
used for instance by Nouvel et al. or Ngo et al. who consider Euclidean affine
transformations (in Rn) followed by some rounding function.

At this point, we need to introduce a few notations. Points of Rn, mixed up
with vectors, are denoted with a bold font and, for any c ∈ R, c denotes the
vector whose coordinates are all equal to c (in particular, 0 is the null vector).
Binary relations between vectors (e.g. v ≤ w, or v ≤ 0), are to be understood
coordinatewise. The floor function is denoted by ⌊·⌋ and, ω being a positive
integer, we write ⌊x⌋ω for

⌊
1
ω x

⌋
. If g : Zn → Zn is an affine transformation of the

n-dimensional Z-module, we note g0 the linear part of g and v its constant part:
g = g0 + v. The Quasi-Affine Transformation (QAT) associated with g and ω is
the transformation ⌊g⌋ω : Zn → Zn defined by ⌊g⌋ω(x) = ⌊ 1

ω g(x)⌋.
We can now explain how a QAT ⌊g⌋ω can be derived from an Euclidean

affine transformation t. To fix ideas, let t be the rotation of π/4 radians such
that t(0) = (1/3, 1/7) and u be the Euclidean vector with coordinates (π, 7/3).



The first way to obtain a QAT from the Euclidean rotation t is to approximate
the real coefficients of (the matrix of) t by rationals whose greatest common
denominator is ω leading to a rational affine transformation t′ : Qn → Qn. Then
the application of t′ on the integer vectors ⌊x⌋, x ∈ Rn, followed by the floor
function leads to the QAT ⌊g⌋ω : Zn → Zn where g = ω t′ is an affine transfor-
mation on Zn. For instance, one can set ω = 1000 and g(x) = g0(x) + v where
g0 is defined by its matrix

(
707 −708
707 707

)
and v is the vector

(
333
142

)
. Then, t(u) is

computed as

t̂(u) = ⌊g⌋ω(⌊u⌋) =
⌊

1
1000

((
707 −708
707 707

)(
3
2

)
+
(
333
142

))⌋
.

We have proposed in [1] another way to discretize an affine transformation in
order to introduce the multigrid convergence scheme in the framework of QATs.
Firstly, each real number is ’projected’ on the integer line by a scaling operation
followed by a rounding as in π → ⌊ω π⌋ = 3141 taking ω = 1000 as the scaling
factor1. Then, any multiplication must be followed by an integer division. Indeed,
consider for instance the calculus

√
2×π+6/7 with the precision ω = 1000. This

calculation can be done by ⌊1414 × 3141⌋1000+ 857 = 4441+857 = 5298. Then,
a ”back-projection” on the real line gives the final result 5.298. In this setting,
the Euclidean transformation t corresponds to the integer affine transformation
⌊g⌋ω : x 7→ ⌊g0(x)⌋ω + v, that is to the QAT ⌊g0 + ω v⌋ω and t(u) is computed
as

t̂(u) =
1

ω

(
⌊g⌋ω(⌊ωu⌋)

)
= 1

1000

⌊
1

1000

(
707 −708
707 707

)(
3141
2333

)
+
(
333
142

)⌋
.

However, here it doesn’t matter what the discretization scheme is. Indeed,
the present paper is only interested in the properties of the QATs by them-
selves. More precisely, it is devoted to the understanding of the periodic struc-
ture created by a QAT, which basically expresses the lack of bijectivity of the
transformation, and on the behavior under iteration, which brings out the loss
of precision. We present new results about these two topics in the general case
and also give a new perspective on the links with the lattice group theory. The
article is organized as follows. In Sect. 2, we study tilings generated by QATs: a
tile is the set of the inverse images of a given point. Indeed, as explained above,
a QAT derived from a bijective affine transformation in the Euclidean world
will generally not be bijective and fibers can be empty, contain one or several
points. Then, if we only focus on the difference between the affine transformation
and the quasi-affine transformation, tiles yield a lattice structure in the discrete
space. In 2D and 3D, explicit formulas have been proposed to compute a min-
imal basis of the QAT periodic structure [6, 3]. In the n-dimensional case, an
upper bound on the number of distinct tiles is given in [5]. We now give a closed
formula for the period in any dimension. In Sect. 3, we study the behavior under
iterations of a contracting QAT. If g is a contracting affine transformation of Rn

then g has a unique fixed point and for each x ∈ Rn the sequence gn(X) tends
toward this fixed point. But the corresponding QAT has not necessarily a unique

1 One can use two distinct scale factors for the digitization of the space and the
quantification of the transformation.
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Fig. 1: Example of tiles and remainders. A point of Z2 is represented by a unit
square whose bottom-left corner corresponds to the represented point. For each
point in a tile we provide its corresponding remainder. Tiles T(2,1) and T(0,0) are
arithmetically equivalent. The tiles T(1,0) and T(1,1) have the same shapes but
they are not equivalent.

fixed point. The behavior under iteration of the 2D contracting QATs has been
studied in [4], [8] and [9]. In this paper, we study the nD case and prove that a
QAT has a unique fixed point if and only if there are no cycle among the points
of norm 1.

2 Periodicity of the tiles

In order to obtain efficient computations for the affine transformation of discrete
images, we can use some properties of QATs. In [7] the 2D case has been treated
and extended to 3D in [3]. More precisely, we have seen in these papers that
the periodicity properties of the tilings associated to QATs improve consider-
ably the computation of the discrete affine transformations. This periodicity has
been studied in the n-dimensional case in [5] and [2]. Nevertheless, no closed
formula for the tile period was given in these papers. We begin by recalling some
definitions about QATs and their tiles.

A nonsingular QAT, that is a QAT derived from a bijective affine trans-
formation, is generally not bijective and for a given QAT ⌊g⌋ω, the preimages

⌊g⌋ω
−1

(y) can have either none, one or several elements. As these preimages de-
fine a tessellation of the space Zn, we call them tiles. In the sequel we assume a
QAT ⌊g⌋ω=

⌊
1
ω (g0 + v)

⌋
and we note Ty the tile of y for this QAT. The remain-

der of a tile Ty, noted ry, is the set of the remainders modulo ω of the vectors
g(x), x ∈ Ty, that is

ry = {g(x)− ω y | x ∈ Ty} .

Observe that the sets Ty and ry have the same cardinal since g is nonsingular.
Two tiles Ty and Ty′ are said to be (arithmetically) equivalent when their re-
mainders are the same. We then write Ty ≡ Ty′ . Two vectors y and y′ of Zn are



equivalent modulo ⌊g⌋ω – we write y ≡ y′ – if the tiles Ty and Ty′ are equivalent.
Eventually, we write p∧q, resp. p∨q, for the gcd, resp. the lcm, of the integers p
and q. Two equivalent tiles of a QAT ⌊g⌋ω share the same shape but the converse
is false. Figure 1 exhibits some tiles of the QAT defined by the integer matrix(

3 1
−1 3

)
, the vector v = 0 and the integer ω = 6.

The next proposition and its corollary describes the periodic structures in-
duced by the equivalence modulo ⌊g⌋ω and the corresponding tile equivalence.

Proposition 1. Let ⌊g⌋ω be a non singular QAT. The equivalence modulo ⌊g⌋ω
has a translational symmetry whose lattice group is G = g0(

1
ωZ

n) ∩ Zn. In par-
ticular, two non empty tiles Ty and Ty′ are equivalent iff y − y′ ∈ 1

ω g0(Z
n).

Moreover, the multi-valued function defined by q 7→ T⌊q⌋ induces a surjection

from the quotient space
(
1
ω g(Z

n) ∪ Zn
)
/G onto the tile classe set {Ty}y∈Zn/ ≡.

Proof. Let y, y′ in Zn such that y′ − y = 1
ω g0(z) for some z ∈ Zn. We shall

prove that the tiles Ty and Ty′ have the same remainders. Let x ∈ Ty, if such
an integer vector exists. The remainder of g(x) modulo ω is r(x) = g(x)− ω y.
We observe that 1

ω g(x+ z)−y′ = 1
ω g(x) + 1

ω g0(z)−y′ = 1
ω g(x)−y = 1

ω r(x)
by definition of z and r(x). Thus, the integer vector x′ = x+ z lies in Ty′ and
the remainder of g(x′) modulo ω is equal to the remainder of g(x) modulo ω.
Thereby, we proved that either ry = ∅ or ∅ 6= ry ⊆ ry′ . It is plain that, by
the same reasoning, we can also prove ry′ = ∅ or ∅ 6= ry′ ⊆ ry. Hence, either
Ty = Ty′ = ∅ or ry = ry′ , that is, in both cases, Ty ≡ Ty′ .

Conversely, if two non empty tiles Ty and Ty′ are equivalent, there exist two
vectors x ∈ Ty and x′ ∈ Ty′ such that g(x) ≡ g(x′) (mod ω). Thus g0(x

′−x) ≡
0 (mod ω) so z = 1

ω g0(x
′−x) ∈ Zn. Then, ⌊g(x′)⌋ω=

⌊
1
ω

(
g(x) + g0(x

′ − x)
)⌋

=⌊
1
ω g(x) + z

⌋
=

⌊
1
ω g(x)

⌋
+ z = y + z where z ∈ 1

ω g0(Z
n). We cannot assert that

for two empty tiles Ty and Ty′ there exists z ∈ 1
ω g0(Z

n) such that y′ = y + z.
Nevertheless, this is not necessary to obtain the result since the tiles cannot all
be empty.
Incidentally, we have shown that, for any x, x′ in Zn, if g(x) ≡ g(x′) (mod ω),
then ⌊g(x′)⌋ω= ⌊g(x)⌋ω+z where z ∈ 1

ω g0(Z
n) which, from the first part of the

proof, implies that T⌊g(x′)⌋
ω

≡ T⌊g(x)⌋
ω
. ⊓⊔

Note that, from a practical point of view, the last assertion of Prop. 1 means
that one can prove that two tiles are equivalent by just exhibiting two integer
points in these tiles whose images under 1

ω g have the same fractional part.

Corollary 1. Let ⌊g⌋ω be a non singular QAT. The tiles of ⌊g⌋ω have a trans-
lational symmetry whose lattice group is g−1

0 (ωZn) ∩ Zn.

Proof. Let y, z ∈ Zn and t the translation of vector g−1
0 (ωz). Assume that the

tiles Ty and Ty+z are equivalent. Then ry = ry+z and

Ty+z = {g−1(ω (y + z) + r) | r ∈ ry+z}
= {g−1(ω (y + z) + r) | r ∈ ry}
= {g−1(ω y + r) + g−1

0 (ωz) | r ∈ ry}
= t(Ty) .



In particular, g−1
0 (ωz) is an integer vector.

Conversely, let y,u ∈ Zn and let t be the translation of vector u. Assume that
there exists z ∈ Zn such that u = g−1

0 (ωz). Since z = 1
ω g0(u), we derive from

Prop. 1 that Ty+z ≡ Ty. Then, from the first part of the proof, t(Ty) = Ty+z.
Thus, t(Ty) is a tile and this tile is equivalent to Ty. ⊓⊔

In [5], the authors give upper and lower bounds for the number of tile equiv-
alent classes. Thanks to the Smith normal form of integer matrices, we give
hereafter the exact number of classes. We also provide the cardinal of any (max-
imal) union of representative tiles. Firstly, we give two lemmas that describe the
role of unimodular transformations on the lattices associated to a QAT.

Lemma 1 ([5]). Let u be an unimodular transformation. The QAT ⌊g⌋ω and
⌊g ◦ u⌋ω have the same tile remainders. In particular, they share the same tile
equivalence and the same empty tiles.

Proof. We note Tu
y , resp. r

u
y, the tile of y, resp. the remainder of Tu

y , for the
QAT ⌊g ◦ u⌋ωwhile Ty and ry are the tile of y, resp. the remainder of Ty, for the
QAT ⌊g⌋ω. We have x ∈ Tu

y ⇐⇒ u(x) ∈ Ty, thus Ty = u(Tu
y ). Furthermore,

ruy = {g ◦ u(x)− ω y | x ∈ Tu
y } = {g(z)− ω y | z ∈ Ty} = ry .

⊓⊔

Lemma 2. Let u be an unimodular transformation. The cardinals of the funda-
mental domains of the equivalences modulo ⌊g⌋ω and modulo ⌊u ◦ g⌋ω are equal.

Proof. The lattice groups of the equivalences modulo ⌊g⌋ω and modulo ⌊u ◦ g⌋ω
are L1 = Zn ∩ 1

ω g0(Z
n) and L2 = Zn ∩ 1

ωu ◦ g0(Zn). Note that L2 = u(L1) since
u(Zn) = Zn and u is bijective (u is unimodular). As |det(u)| = 1, we get that
the volumes of the parallelepipeds wrapping L1 and L2 are equal. Then, from
Picks’s theorem, we derive that the numbers of integer vectors in these domains
are identical. ⊓⊔

The following lemma describes the lattice groups of QATs whose matrix is
diagonal.

Lemma 3. Let ⌊g⌋ω be a nonsingular QAT whose matrix (di,j) is diagonal.
Then,

– the lattice group of the equivalence modulo ⌊g⌋ω is
∏n

i=1

( di,i

ω∧di,i

)
Z;

– the lattice group of the non empty tiles is
∏n

i=1

(
ω

ω∧di,i

)
Z.

Proof.

– From Prop. 1, the lattice group of the equivalence modulo ⌊g⌋ω is Zn ∩
g0
(
1
ω Zn

)
= 1

ω (ω Zn ∩ g0(Z
n)) and g0(Z

n) =
∏n

i=1 (di,i Z) for g0 is diagonal.
Then, the relation ω ∨ di,i = (ω di,i)/(ω ∧ di,i) yields the first part of the
result.

– From Corollary. 1, the lattice group of the non empty tiles is g−1
0 (ω Zn)∩Zn =∏n

i=1
1

di,i
(ω ∨ di,i)Z =

∏n
i=1

ω
ω∧di,i

Z.



⊓⊔

Thanks to the Smith normal form of the affine transformations of Zn, we
now derive from the three preceding lemmas the cardinal of the fundamental
domains of the lattice structures involved in a QAT.

Theorem 1. Let ⌊g⌋ω be a nonsingular QAT and D be a fundamental domain
of the equivalence modulo ⌊g⌋ω. Noting s = (si,j) the Smith normal form of the
matrix of g0 and δ its determinant, one has

#D =
δ∏n

i=1 ω ∧ si,i
and

∑

y∈D

#Ty =
ωn

∏n
i=1 ω ∧ si,i

.

Proof.

– From Prop. 1, the cardinal of D only depends on g0. Let s = u◦g0 ◦v be the
Smith normal form of g0. From Lemmas 1 and 2, we derive that #D = #D′

where D′ is the fundamental domain of the equivalence modulo ⌊s⌋ω. Then
Lemma 3 gives the first result.

– From Corollary 1,
∑

y∈D #Ty is equal to the cardinal of the fundamental

domain of g−1
0 (ω Zn) ∩ Zn. Then, thanks to the properties of unimodular

transformations, we have

g−1
0 (ω Zn) ∩ Zn =

(
v ◦ s−1 ◦ u

)
(ω Zn) ∩ Zn

=
(
v ◦ s−1

)
(ω Zn) ∩ Zn

= v
(
s−1(ω Zn) ∩ v−1(Zn)

)

= v
(
s−1(ω Zn) ∩ Zn

)
.

Hence, the lattice of the non empty tiles of g is the image by an unimodular
transformation of the non empty tile lattice of s. We conclude straightfor-
wardly by invoking the second part of Lemma 3.

⊓⊔

Example : Figure 2 illustrates a QAT in Z2 (g0 :
(
12 −11
18 36

)
, v = 0, ω = 84)

whose fundamental domain contains 15 tiles (the tiles with same color are equiva-
lent). In this example, for all i, j ∈ N, T(i+5,j) ≡ T(i,j) and T(i+2,j−3) ≡ T(i,j). The

fundamental domain of this QAT is the set
{
T(i,j) | i = 0, 1, 2, 3, 4, j = 0, 1, 2

}
.

The Smith normal form of the QAT is
(
1 0
0 630

)
. From Th. 1, we derive that there is

no empty tile (#D = 15) and there are 168 integer points in
⋃

0≤i≤4,0≤j≤2 T(i,j).

In [3] we used the periodicity to improve the transformation of a 3D image
by a linear transformation. In order to use this periodicity we need to determine
a basis of the equivalence modulo ⌊g⌋ω lattice group such that, for any m ≤ n,
(yi)

m
i=1 is a basis of Zm × {0}n−m.

Proposition 2. Let ⌊g⌋ω be a non singular QAT. There exists a basis (yi)
n
i=1

of the equivalence modulo ⌊g⌋ω lattice group such that, for any m ≤ n, (yi)
m
i=1 is



(i+2,j−3)

(i+5,j)T

T

T

(i,j)

Fig. 2: Periodicity of thes tiles of a 2D QAT (see text)

a basis of Zm (more specifically, Zm × {0}n−m that we identify with Zm). Each
vector yi, 1 ≤ i ≤ n, is defined by yi = hi(λi) where hi is the restriction to
Zi of the Hermite normal form of g0 and λi = (λi,1, . . . , λi,i) is the solution of
hi(λi) = 0 (mod ω) such that λi,i is minimal.

Proof. The modulo ⌊g⌋ω equivalence lattice group is g0
(
1
ω Zn

)
∩ Zn. Let h be

the Hermite normal form of g0. As h−1 ◦ g0 is unimodular, the group g0(Z
n)

is generated by the column vectors of h. Let cj = (hi,j)
n
i=1 be the j-th column

vector of h. Note that, since h is triangular, cj ∈ Zj × {0}n−j . Then finding
the basis (yi) amounts to find the integer tuples (λi,1, . . . , λi,i) such that yi =∑i

j=1 λi,j cj ∈ ω Zn and λi,i is minimal. ⊓⊔

Proposition 2 shows that we can compute the basis (yi)
n
i=1 by solving triangular

systems of i linear equations in the modules (Z/ωZ)i, 1 ≤ i ≤ n, which can be
done by Gaussian elimination in polynomial time.

3 Behavior under iteration of a quasi-linear

transformation

In this section we consider affine transformations g whose vector v is such that
0 ≤ v < ω. Then, the associated QAT can be seen as the composition of a
linear transformation with some rounding operator. For this reason, we say that
such a QAT is a quasi linear transformation (QLT). Since we are interested in
fixed points, or more generally in cycles, we restrict our study to non expansive
transformations for the infinite norm, which is defined on a linear transformation

f whose matrix is A = (ai,j) by ‖f‖∞ = ‖A‖∞ = max
i

(∑
j |ai,j |

)
. Thus we

have for any vector x, ‖f(x)‖∞ ≤ ‖f‖∞ × ‖x‖∞. It is well known that if f
is a contracting linear transformation of Rn then f has the origin as unique
fixed point and for each x ∈ Rn the sequence fn(x) tends toward this fixed
point. But a QLT built from a non expansive linear transformation has not
necessarily a unique fixed point. Consider the sequence yn = (⌊g⌋ω(yn−1))n≥0 =
(⌊g⌋ωn(y0))n≥0 with y0 ∈ Zn. Depending on y0 we can obtain a cycle (yp = yq

for some integer pair p < q), a fixed point (yn = yn+1 for some n ∈ N), or leaves



X

Y

fixed point

points of the attraction basin of a cycle

Leaf (point without antecedent)

points of a cycle

(a)

(b) (c)

Fig. 3: (a) Example of cycle, fixed point and leaf. (b) QLT with many cycles. The
points of a cycle and those that reach this cycle have the same colours. (c) QLT
with a unique fixed point. The colour of a point is determined by the number of
iterations necessary to reach the fixed point.

(points without antecedent). Figures 3a, 3b and 3c illustrate this behavior. In
Fig. 3b the QLT has many cycles. It is defined by y = 1

4495

(
4187 −1622
1622 4187

)
x. In

Fig. 3c the QLT which is defined by y = 1
3

(
−1 1
−1 −1

)
x has a unique fixed point.

The first results concern the localisation of the cycles. Firstly, the following
lemma gives a bound on the difference between a QLT and the corresponding
linear transformation.

Lemma 4. Let ⌊g⌋ω be a QLT, d = ⌊g⌋ω− 1
ω g0 and s = max( ||v||∞ω , 1− ||v||∞

ω ).
Then, for any integer vector x, ‖d(x)‖∞ ≤ s, the inequality being strict if s > 1

2 .



Proof. Consider x ∈ Zn, y = ⌊g⌋ω(x) ∈ Zn, y′ = 1
ω g0(x) ∈ Qn and d(x) =

y − y′. We have

d(x) =

⌊
1

ω
(g0(x) + v)

⌋
− 1

ω
g0(x)

=
1

ω
(g0(x) + v)− r − 1

ω
g0(x) with 0 ≤ r < 1

=
1

ω
v − r with 0 ≤ r < 1

It follows that 1
ω v − 1 < d(x) ≤ 1

ωv. As we assume in the current section that
0 ≤ v < ω , we get ‖d(x)‖∞ ≤ s, the inequality being strict if s = 1− 1

ω ‖v‖∞
, that is to say if ‖v‖∞ < ω

2 . ⊓⊔

As a consequence of Lemma 4, we show that a QLT corresponding to a non
expansive linear transformation is itself non expansive from the origin.

Corollary 2. If ⌊g⌋ω is a QLT and
∥∥ 1
ω g0

∥∥
∞

≤ 1, then ‖⌊g⌋ω(x)‖∞ ≤ ‖x‖∞ for
any x ∈ Zn.

Proof. Let ⌊g⌋ωbe a QLT such that
∥∥ 1
ω g0

∥∥
∞

≤ 1. With the notations of Lemma 4,
we have:

‖⌊g⌋ω(x)‖∞ =

∥∥∥∥
1

ω
g0(x) + d(x)

∥∥∥∥
∞

≤
∥∥∥∥
1

ω
g0(x)

∥∥∥∥
∞

+ ‖d(x)‖∞

≤ 1

ω
‖g0‖∞ ‖x‖∞ + ‖d(x)‖∞

≤ ‖x‖∞ + ‖d(x)‖∞
< ‖x‖∞ + 1 (from Lemma 4)

≤ ‖x‖∞ for ‖⌊g⌋ω(x)‖∞ and ‖x‖∞ are integers . ⊓⊔

Remark 1. From Corollary 2, we derive that, if ⌊g⌋ω is a QLT, 1
ω g0 is non ex-

pansive and x belongs to a cycle, then ‖⌊g⌋ω(x)‖∞ = ‖x‖∞.

Thanks to Lemma 4, we can also prove that the cycles of non expansive QLTs
are ’not too far’ from the origin. Thereby, we extend to the general case a result
that was obtained in [4] for the 2D space.

Theorem 2. Consider a QLT ⌊g⌋ω such that 1
ω g0 is contracting and note s =

max(
‖v‖

∞

ω , 1 − ‖v‖
∞

ω ). If x belongs to a cycle then ‖x‖∞ ≤ s
1−‖g0‖∞

/ω , the

inequality being strict if s > 1
2 .

Proof. Let g1 = (1/ω) g0. From lemma 4, inductively we get

⌊g⌋ωk(x) = gk1 (x) + gk−1
1 (d1(x)) + gk−2

1 (d2(x)) + · · ·+ g1(dk−1(x)) + dk(x)



with ‖di(x)‖∞ ≤ s for i = 1, 2, . . . , k each inequality being strict if s > 1
2 . It

follows that

∥∥⌊g⌋ωk(x)
∥∥
∞

≤
∥∥gk1 (x)

∥∥
∞

+

k∑

i=1

∥∥gk−i
1 (di(x))

∥∥
∞

≤ ‖g1‖k∞ ‖x‖∞ +
k∑

i=1

‖g1‖k−i
∞ ‖di(x)‖∞

≤ ‖g1‖k∞ ‖x‖∞ + s
k∑

i=1

‖g1‖k−i
∞

≤ ‖g1‖k∞ ‖x‖∞ + s
1− ‖g1‖k∞
1− ‖g1‖∞

.

If x belongs to a cycle, it exits k ∈ N such that ⌊g⌋ωk(x) = x and so

‖x‖∞ (1− ‖g1‖k∞) ≤ s
1− ‖g1‖k∞
1− ‖g1‖∞

.

Finally, ‖x‖∞ ≤ s/(1− ‖g1‖∞), the inequality being strict if s > 1
2 . ⊓⊔

As noted in Remark 1, the points of a cycle of a non expansive QLT share
the same infinite norm. Then, the following lemma shows that, for contracting
QLTs with null constant part, those points cannot lie in the first hyperoctant.

Lemma 5. Let ⌊g⌋ω a QLT such that
∥∥ 1
ω g0

∥∥
∞

< 1 and v = 0. Consider y =
⌊g⌋ω(x) where x ∈ Zn. If ‖y‖∞ = ‖x‖∞, then the coordinates of y with maximal
absolute value are negative.

Proof. From the hypotheses, we have
∥∥ 1
ω g0(x)

∥∥
∞

≤
∥∥ 1
ω g0

∥∥
∞

‖x‖∞ < ‖y‖∞ .

Thus, any positive coordinate of 1
ω g0(x) is less than ‖y‖∞ which prove the result.

⊓⊔

Corollary 3 applies Theorem 2 to two common particular cases: ‖v‖∞ = ω/2
(rounding half up) and v = 0 (rounding down). In this corollary and in the
following theorem we denote by Sn−1 the unit sphere {x | ‖x‖∞ = 1}.
Corollary 3. Let ⌊g⌋ω be a QLT.

– If ‖v‖∞ = ω
2 and ‖g0‖∞ < 3

4ω then any cycle is included in the unit sphere
Sn−1.

– If v = 0 and ‖g0‖∞ < 1
2ω, then any cycle is included in the unit cube

{−1, 0}n.

Proof. The first assertion is a direct consequence of Theorem 2. The second
assertion is a consequence of Lemma 5 and Theorem 2. ⊓⊔



Eventually with the next theorem we show that not only the cycles of a non
expansive QLT are not too far from the origin but moreover one of these cycles
(if such a cycle exists) lies in the unit sphere Sn−1. Thereby, we solve a conjecture
that was stated in [4] for the 2D case.

Theorem 3. Any QLT ⌊g⌋ω derived from a non expansive linear transformation
(1/ω) g0 has a cycle in the unit sphere Sn−1 or has no cycle.

In order to prove the theorem we need the following technical lemma.

Lemma 6. Let ⌊g⌋ω be a QLT such that
∥∥ 1
ω g0

∥∥
∞

≤ 1. Let x ∈ Zn \ {0}, p ∈
Sn−1 be such that ‖x− p‖∞ is minimal. If y = ⌊g⌋ω(x) has the same norm as
x, then q = ⌊g⌋ω(p) is in Sn−1 and ‖y − q‖∞ is minimal.

Proof. As p ∈ Sn−1, Corollary 2 induces that q ∈ Sn−1 ∪ {0}. Moreover, again
from Corollary 2, we derive that:

‖y − q‖∞ = ‖⌊g(x)⌋ω− ⌊g(p)⌋ω‖∞
= ‖⌊g0(x− p) + g(p)⌋ω− ⌊g(p)⌋ω‖∞
= ‖⌊g0(x− p) + u⌋ω‖∞ where u = g(p)− ω ⌊g(p)⌋ω
≤ ‖x− p‖∞ for x 7→ g0(x) + u is a non expansive QLT.

Since ‖x− p‖∞ is minimal and p ∈ Sn−1, one has ‖x− p‖∞ = ‖x‖∞ − 1 =
‖y‖∞ − 1. Then,

‖y − q‖∞ < ‖y‖∞ .

We conclude that q 6= 0 so that q ∈ Sn−1 and ‖y − q‖∞ is minimal. ⊓⊔

Proof (Theorem 3). Consider x a point of a cycle and a point p defined as in
lemma 6 and consider the sequences xi = ⌊g⌋ωi(x) and pi = ⌊g⌋ωi(p). For each
i ∈ N the points xi and pi verify the condition of lemma 6. The sequence pi is
then an infinite sequence of points in Sn−1. But it exits a finite number of points
in Sn−1 so there is a cycle among these points. ⊓⊔

Remark 2. If v = 0 and ‖g0‖∞ < ω, from Lemma 5 and Theorem 3, we derive
that there exists a cycle in the unit cube {−1, 0}n.

4 Conclusion

In this paper we completed and improved some theoretical results abouts QATs.
We gave a closed formula for the period of the tiles generated by QATs and
proved a conjecture on the localization of their cycles. We plan to use these
results in a multigrid and multiprecision framework that we are developing in a
joint work between Poitiers University and Strasbourg University [1]. The goal
of this project is to build a formal theory in which the consequences of the
change of universe between affine and quasi-affine transforms, that is between
real numbers and integers, is precisely described so that one could choose a
calculus precision and an image resolution to ensure a set of properties up to



a tolerance threshold. For instance, at any precision and resolution, almost all
quasi-affine rotations have non-singular tiles. Nevertheless, it would be desirable
firstly to prove that though the size in pixels of the tiles grows with the precision,
their ’true’ sizes, taking into account the space resolution, tend toward zero and
secondly to bound the convergence speed. Alike, we have to ensure for example
that, despite the increasing complexity of cycles of quasi-affine rotations as the
precision goes to infinity, they converge, together with fixed points, toward the
center of the rotation when the pair precision - resolution tends toward infinity.
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retical Computer Science. vol. 156, pp. 1–38. Elsiever Science (1995)

10. Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid trans-
formation of 2d digital images. Image Processing, IEEE Transactions on 23(2),
885–897 (2014)

11. Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: Periodicity
and quasi-periodicity properties. Discrete Applied Mathematics 147(2), 325–343
(2005)

12. Nouvel, B., Rmila, E.: Characterization of bijective discretized rotations. In: Klette,
R., uni, J. (eds.) Combinatorial Image Analysis, Lecture Notes in Computer Sci-
ence, vol. 3322, pp. 248–259. Springer (2005)


