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nD Quasi-Affine Transformations

A Quasi-Affine Transformation (QAT) is a transformation on Z n which corresponds to the composition of a rational affine transformation and an integer part function. The aim of this paper is twofold. Firstly, it brings new insight into the periodic structures involved by a QAT. Secondly, some new results in nD are presented specifically about the behavior under iteration of a QAT.
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Introduction.

 to model them by Quasi-Affine Transformations (QAT) which are actual affine transformations on Q n followed by a floor function. We stress that this model slightly differs from the model used for instance by Nouvel et al. or Ngo et al. who consider Euclidean affine transformations (in R n ) followed by some rounding function.

At this point, we need to introduce a few notations. Points of R n , mixed up with vectors, are denoted with a bold font and, for any c ∈ R, c denotes the vector whose coordinates are all equal to c (in particular, 0 is the null vector). Binary relations between vectors (e.g. v ≤ w, or v ≤ 0), are to be understood coordinatewise. The floor function is denoted by ⌊•⌋ and, ω being a positive integer, we write ⌊x⌋ ω for 1 ω x . If g : Z n → Z n is an affine transformation of the n-dimensional Z-module, we note g 0 the linear part of g and v its constant part: g = g 0 + v. The Quasi-Affine Transformation (QAT) associated with g and ω is the transformation ⌊g⌋ ω : Z n → Z n defined by ⌊g⌋ ω (x) = ⌊ 1 ω g(x)⌋. We can now explain how a QAT ⌊g⌋ ω can be derived from an Euclidean affine transformation t. To fix ideas, let t be the rotation of π/4 radians such that t(0) = (1/3, 1/7) and u be the Euclidean vector with coordinates (π, 7/3).

The first way to obtain a QAT from the Euclidean rotation t is to approximate the real coefficients of (the matrix of) t by rationals whose greatest common denominator is ω leading to a rational affine transformation t ′ : Q n → Q n . Then the application of t ′ on the integer vectors ⌊x⌋, x ∈ R n , followed by the floor function leads to the QAT ⌊g⌋ ω : Z n → Z n where g = ω t ′ is an affine transformation on Z n . For instance, one can set ω = 1000 and g(x) = g 0 (x) + v where g 0 is defined by its matrix 707 -708 707 707 and v is the vector 333 142 . Then, t(u) is computed as .

t(u) = ⌊g⌋ ω (⌊u⌋) =
We have proposed in [START_REF] Andres | Les omega-aqa : Représentation discrète des applications affines[END_REF] another way to discretize an affine transformation in order to introduce the multigrid convergence scheme in the framework of QATs. Firstly, each real number is 'projected' on the integer line by a scaling operation followed by a rounding as in π → ⌊ω π⌋ = 3141 taking ω = 1000 as the scaling factor 1 . Then, any multiplication must be followed by an integer division. Indeed, consider for instance the calculus √ 2 × π + 6/7 with the precision ω = 1000. This calculation can be done by ⌊1414 × 3141⌋ 1000 + 857 = 4441 + 857 = 5298. Then, a "back-projection" on the real line gives the final result 5.298. In this setting, the Euclidean transformation t corresponds to the integer affine transformation ⌊g⌋ ω : x → ⌊g 0 (x)⌋ ω + v, that is to the QAT ⌊g 0 + ω v⌋ ω and t(u) is computed as t(u) = 1 ω ⌊g⌋ ω (⌊ωu⌋) = .

However, here it doesn't matter what the discretization scheme is. Indeed, the present paper is only interested in the properties of the QATs by themselves. More precisely, it is devoted to the understanding of the periodic structure created by a QAT, which basically expresses the lack of bijectivity of the transformation, and on the behavior under iteration, which brings out the loss of precision. We present new results about these two topics in the general case and also give a new perspective on the links with the lattice group theory. The article is organized as follows. In Sect. 2, we study tilings generated by QATs: a tile is the set of the inverse images of a given point. Indeed, as explained above, a QAT derived from a bijective affine transformation in the Euclidean world will generally not be bijective and fibers can be empty, contain one or several points. Then, if we only focus on the difference between the affine transformation and the quasi-affine transformation, tiles yield a lattice structure in the discrete space. In 2D and 3D, explicit formulas have been proposed to compute a minimal basis of the QAT periodic structure [START_REF] Col | Applications quasi-affines et pavages du plan discret[END_REF][START_REF] Coeurjolly | Quasi-affine transformation in 3-d: Theory and algorithms[END_REF]. In the n-dimensional case, an upper bound on the number of distinct tiles is given in [START_REF] Col | Quasi-linear transformations and discrete tilings[END_REF]. We now give a closed formula for the period in any dimension. In Sect. 3, we study the behavior under iterations of a contracting QAT. If g is a contracting affine transformation of R n then g has a unique fixed point and for each x ∈ R n the sequence g n (X) tends toward this fixed point. But the corresponding QAT has not necessarily a unique
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Fig. 1: Example of tiles and remainders. A point of Z 2 is represented by a unit square whose bottom-left corner corresponds to the represented point. For each point in a tile we provide its corresponding remainder. Tiles T (2,1) and T (0,0) are arithmetically equivalent. The tiles T (1,0) and T (1,1) have the same shapes but they are not equivalent.

fixed point. The behavior under iteration of the 2D contracting QATs has been studied in [START_REF] Jacob | Applications quasi-affines[END_REF], [START_REF] Nehlig | Applications Affines Discrètes et Antialiassage[END_REF] and [START_REF] Nehlig | Applications quasi-affines : pavages par images réciproques[END_REF]. In this paper, we study the nD case and prove that a QAT has a unique fixed point if and only if there are no cycle among the points of norm 1.

Periodicity of the tiles

In order to obtain efficient computations for the affine transformation of discrete images, we can use some properties of QATs. In [START_REF] Jacob | Gaussian numeration systems[END_REF] the 2D case has been treated and extended to 3D in [START_REF] Coeurjolly | Quasi-affine transformation in 3-d: Theory and algorithms[END_REF]. More precisely, we have seen in these papers that the periodicity properties of the tilings associated to QATs improve considerably the computation of the discrete affine transformations. This periodicity has been studied in the n-dimensional case in [START_REF] Col | Quasi-linear transformations and discrete tilings[END_REF] and [START_REF] Blot | Quasi-affine transformation in higher dimension[END_REF]. Nevertheless, no closed formula for the tile period was given in these papers. We begin by recalling some definitions about QATs and their tiles. A nonsingular QAT, that is a QAT derived from a bijective affine transformation, is generally not bijective and for a given QAT ⌊g⌋ ω , the preimages ⌊g⌋ ω -1 (y) can have either none, one or several elements. As these preimages define a tessellation of the space Z n , we call them tiles. In the sequel we assume a QAT ⌊g⌋ ω = 1 ω (g 0 + v) and we note T y the tile of y for this QAT. The remainder of a tile T y , noted r y , is the set of the remainders modulo ω of the vectors g(x), x ∈ T y , that is

r y = {g(x) -ω y | x ∈ T y } .
Observe that the sets T y and r y have the same cardinal since g is nonsingular.

Two tiles T y and T y ′ are said to be (arithmetically) equivalent when their remainders are the same. We then write T y ≡ T y ′ . Two vectors y and y ′ of Z n are equivalent modulo ⌊g⌋ ω -we write y ≡ y ′ -if the tiles T y and T y ′ are equivalent. Eventually, we write p ∧ q, resp. p ∨ q, for the gcd, resp. the lcm, of the integers p and q. Two equivalent tiles of a QAT ⌊g⌋ ω share the same shape but the converse is false. Figure 1 exhibits some tiles of the QAT defined by the integer matrix 3 1

-1 3 , the vector v = 0 and the integer ω = 6.

The next proposition and its corollary describes the periodic structures induced by the equivalence modulo ⌊g⌋ ω and the corresponding tile equivalence.

Proposition 1. Let ⌊g⌋ ω be a non singular QAT. The equivalence modulo ⌊g⌋ ω has a translational symmetry whose lattice group is

G = g 0 ( 1 ω Z n ) ∩ Z n .
In particular, two non empty tiles T y and T y ′ are equivalent iff yy ′ ∈ 1 ω g 0 (Z n ). Moreover, the multi-valued function defined by q → T ⌊q⌋ induces a surjection from the quotient space

1 ω g(Z n ) ∪ Z n /G onto the tile classe set {T y } y∈Z n / ≡. Proof. Let y, y ′ in Z n such that y ′ -y = 1
ω g 0 (z) for some z ∈ Z n . We shall prove that the tiles T y and T y ′ have the same remainders. Let x ∈ T y , if such an integer vector exists. The remainder of g(x

) modulo ω is r(x) = g(x) -ω y. We observe that 1 ω g(x + z) -y ′ = 1 ω g(x) + 1 ω g 0 (z) -y ′ = 1 ω g(x) -y = 1 ω r(x)
by definition of z and r(x). Thus, the integer vector x ′ = x + z lies in T y ′ and the remainder of g(x ′ ) modulo ω is equal to the remainder of g(x) modulo ω. Thereby, we proved that either r y = ∅ or ∅ = r y ⊆ r y ′ . It is plain that, by the same reasoning, we can also prove r y ′ = ∅ or ∅ = r y ′ ⊆ r y . Hence, either

T y = T y ′ = ∅ or r y = r y ′ , that is, in both cases, T y ≡ T y ′ .
Conversely, if two non empty tiles T y and T y ′ are equivalent, there exist two vectors x ∈ T y and

x ′ ∈ T y ′ such that g(x) ≡ g(x ′ ) (mod ω). Thus g 0 (x ′ -x) ≡ 0 (mod ω) so z = 1 ω g 0 (x ′ -x) ∈ Z n . Then, ⌊g(x ′ )⌋ ω = 1 ω g(x) + g 0 (x ′ -x) = 1 ω g(x) + z = 1 ω g(x) + z = y + z where z ∈ 1 ω g 0 (Z n ).
We cannot assert that for two empty tiles T y and T y ′ there exists z ∈ 1 ω g 0 (Z n ) such that y ′ = y + z. Nevertheless, this is not necessary to obtain the result since the tiles cannot all be empty. Incidentally, we have shown that, for any x, x ′ in Z n , if g(x) ≡ g(x ′ ) (mod ω), then ⌊g(x ′ )⌋ ω = ⌊g(x)⌋ ω + z where z ∈ 1 ω g 0 (Z n ) which, from the first part of the proof, implies that

T ⌊g(x ′ )⌋ ω ≡ T ⌊g(x)⌋ ω . ⊓ ⊔
Note that, from a practical point of view, the last assertion of Prop. 1 means that one can prove that two tiles are equivalent by just exhibiting two integer points in these tiles whose images under 1 ω g have the same fractional part. Corollary 1. Let ⌊g⌋ ω be a non singular QAT. The tiles of ⌊g⌋ ω have a translational symmetry whose lattice group is g -1 0 (ωZ n ) ∩ Z n . Proof. Let y, z ∈ Z n and t the translation of vector g -1 0 (ωz). Assume that the tiles T y and T y+z are equivalent. Then r y = r y+z and

T y+z = {g -1 (ω (y + z) + r) | r ∈ r y+z } = {g -1 (ω (y + z) + r) | r ∈ r y } = {g -1 (ω y + r) + g -1 0 (ωz) | r ∈ r y } = t(T y ) .
In particular, g -1 0 (ωz) is an integer vector. Conversely, let y, u ∈ Z n and let t be the translation of vector u. Assume that there exists z ∈ Z n such that u = g -1 0 (ωz). Since z = 1 ω g 0 (u), we derive from Prop. 1 that T y+z ≡ T y . Then, from the first part of the proof, t(T y ) = T y+z . Thus, t(T y ) is a tile and this tile is equivalent to T y . ⊓ ⊔

In [START_REF] Col | Quasi-linear transformations and discrete tilings[END_REF], the authors give upper and lower bounds for the number of tile equivalent classes. Thanks to the Smith normal form of integer matrices, we give hereafter the exact number of classes. We also provide the cardinal of any (maximal) union of representative tiles. Firstly, we give two lemmas that describe the role of unimodular transformations on the lattices associated to a QAT.

Lemma 1 ([5]

). Let u be an unimodular transformation. The QAT ⌊g⌋ ω and ⌊g • u⌋ ω have the same tile remainders. In particular, they share the same tile equivalence and the same empty tiles.

Proof. We note T u y , resp. r u y , the tile of y, resp. the remainder of T u y , for the QAT ⌊g • u⌋ ω while T y and r y are the tile of y, resp. the remainder of T y , for the QAT ⌊g⌋ ω . We have x ∈ T u y ⇐⇒ u(x) ∈ T y , thus T y = u(T u y ). Furthermore,

r u y = {g • u(x) -ω y | x ∈ T u y } = {g(z) -ω y | z ∈ T y } = r y . ⊓ ⊔ Lemma 2.
Let u be an unimodular transformation. The cardinals of the fundamental domains of the equivalences modulo ⌊g⌋ ω and modulo ⌊u • g⌋ ω are equal.

Proof. The lattice groups of the equivalences modulo ⌊g⌋ ω and modulo ⌊u •

g⌋ ω are L 1 = Z n ∩ 1 ω g 0 (Z n ) and L 2 = Z n ∩ 1 ω u • g 0 (Z n ). Note that L 2 = u(L 1 ) since u(Z n ) = Z n
and u is bijective (u is unimodular). As |det(u)| = 1, we get that the volumes of the parallelepipeds wrapping L 1 and L 2 are equal. Then, from Picks's theorem, we derive that the numbers of integer vectors in these domains are identical.

⊓ ⊔

The following lemma describes the lattice groups of QATs whose matrix is diagonal.

Lemma 3. Let ⌊g⌋ ω be a nonsingular QAT whose matrix (d i,j ) is diagonal. Then, -the lattice group of the equivalence modulo ⌊g⌋ ω is n i=1 di,i ω∧di,i Z; -the lattice group of the non empty tiles is

n i=1 ω ω∧di,i Z.
Proof.

-From Prop. 1, the lattice group of the equivalence modulo

⌊g⌋ ω is Z n ∩ g 0 1 ω Z n = 1 ω (ω Z n ∩ g 0 (Z n )) and g 0 (Z n ) = n i=1 (d i,i Z) for g 0 is diagonal. Then, the relation ω ∨ d i,i = (ω d i,i )/(ω ∧ d i,i
) yields the first part of the result.

-From Corollary. 1, the lattice group of the non empty tiles is g

-1 0 (ω Z n )∩Z n = n i=1 1 di,i (ω ∨ d i,i )Z = n i=1 ω ω∧di,i Z.

⊓ ⊔

Thanks to the Smith normal form of the affine transformations of Z n , we now derive from the three preceding lemmas the cardinal of the fundamental domains of the lattice structures involved in a QAT.

Theorem 1. Let ⌊g⌋ ω be a nonsingular QAT and D be a fundamental domain of the equivalence modulo ⌊g⌋ ω . Noting s = (s i,j ) the Smith normal form of the matrix of g 0 and δ its determinant, one has

#D = δ n i=1 ω ∧ s i,i and y∈D #T y = ω n n i=1 ω ∧ s i,i
.

Proof.

-From Prop. 1, the cardinal of D only depends on g 0 . Let s = u • g 0 • v be the Smith normal form of g 0 . From Lemmas 1 and 2, we derive that #D = #D ′ where D ′ is the fundamental domain of the equivalence modulo ⌊s⌋ ω . Then Lemma 3 gives the first result. -From Corollary 1, y∈D #T y is equal to the cardinal of the fundamental domain of g -1 0 (ω Z n ) ∩ Z n . Then, thanks to the properties of unimodular transformations, we have

g -1 0 (ω Z n ) ∩ Z n = v • s -1 • u (ω Z n ) ∩ Z n = v • s -1 (ω Z n ) ∩ Z n = v s -1 (ω Z n ) ∩ v -1 (Z n ) = v s -1 (ω Z n ) ∩ Z n .
Hence, the lattice of the non empty tiles of g is the image by an unimodular transformation of the non empty tile lattice of s. We conclude straightforwardly by invoking the second part of Lemma 3.

⊓ ⊔

Example : Figure 2 illustrates a QAT in Z 2 (g 0 : 12 -11 18 36 , v = 0, ω = 84) whose fundamental domain contains 15 tiles (the tiles with same color are equivalent). In this example, for all i, j ∈ N, T (i+5,j) ≡ T (i,j) and T (i+2,j-3) ≡ T (i,j) . The fundamental domain of this QAT is the set T (i,j) | i = 0, 1, 2, 3, 4, j = 0, 1, 2 . The Smith normal form of the QAT is 1 0 0 630 . From Th. 1, we derive that there is no empty tile (#D = 15) and there are 168 integer points in 0≤i≤4,0≤j≤2 T (i,j) .

In [START_REF] Coeurjolly | Quasi-affine transformation in 3-d: Theory and algorithms[END_REF] we used the periodicity to improve the transformation of a 3D image by a linear transformation. In order to use this periodicity we need to determine a basis of the equivalence modulo ⌊g⌋ ω lattice group such that, for any m ≤ n, (y i ) m i=1 is a basis of Z m × {0} n-m . Proposition 2. Let ⌊g⌋ ω be a non singular QAT. There exists a basis (y i ) n i=1 of the equivalence modulo ⌊g⌋ ω lattice group such that, for any m ≤ n, (y i ) m a basis of Z m (more specifically, Z m × {0} n-m that we identify with Z m ). Each vector y i , 1 ≤ i ≤ n, is defined by y i = h i (λ i ) where h i is the restriction to Z i of the Hermite normal form of g 0 and λ i = (λ i,1 , . . . , λ i,i ) is the solution of h i (λ i ) = 0 (mod ω) such that λ i,i is minimal.

Proof. The modulo ⌊g⌋ ω equivalence lattice group is g 0 1 ω Z n ∩ Z n . Let h be the Hermite normal form of g 0 . As h -1 • g 0 is unimodular, the group g 0 (Z n ) is generated by the column vectors of h. Let c j = (h i,j ) n i=1 be the j-th column vector of h. Note that, since h is triangular, c j ∈ Z j × {0} n-j . Then finding the basis (y i ) amounts to find the integer tuples (λ i,1 , . . . , λ i,i ) such that

y i = i j=1 λ i,j c j ∈ ω Z n and λ i,i is minimal. ⊓ ⊔
Proposition 2 shows that we can compute the basis (y i ) n i=1 by solving triangular systems of i linear equations in the modules (Z/ωZ) i , 1 ≤ i ≤ n, which can be done by Gaussian elimination in polynomial time.

Behavior under iteration of a quasi-linear transformation

In this section we consider affine transformations g whose vector v is such that 0 ≤ v < ω. Then, the associated QAT can be seen as the composition of a linear transformation with some rounding operator. For this reason, we say that such a QAT is a quasi linear transformation (QLT). Since we are interested in fixed points, or more generally in cycles, we restrict our study to non expansive transformations for the infinite norm, which is defined on a linear transformation

f whose matrix is A = (a i,j ) by f ∞ = A ∞ = max i j |a i,j | . Thus we have for any vector x, f (x) ∞ ≤ f ∞ × x ∞ .
It is well known that if f is a contracting linear transformation of R n then f has the origin as unique fixed point and for each x ∈ R n the sequence f n (x) tends toward this fixed point. But a QLT built from a non expansive linear transformation has not necessarily a unique fixed point. Consider the sequence y n = (⌊g⌋ ω (y n-1 )) n≥0 = (⌊g⌋ ω n (y 0 )) n≥0 with y 0 ∈ Z n . Depending on y 0 we can obtain a cycle (y p = y q for some integer pair p < q), a fixed point (y n = y n+1 for some n ∈ N), or leaves The first results concern the localisation of the cycles. Firstly, the following lemma gives a bound on the difference between a QLT and the corresponding linear transformation. Lemma 4. Let ⌊g⌋ ω be a QLT, d = ⌊g⌋ ω -1 ω g 0 and s = max( ||v||∞ ω , 1 -||v||∞ ω ). Then, for any integer vector x, d(x) ∞ ≤ s, the inequality being strict if s > 1 2 .

Proof.

Consider x ∈ Z n , y = ⌊g⌋ ω (x) ∈ Z n , y ′ = 1 ω g 0 (x) ∈ Q n and d(x) = y -y ′ . We have d(x) = 1 ω (g 0 (x) + v) - 1 ω g 0 (x) = 1 ω (g 0 (x) + v) -r - 1 ω g 0 (x) with 0 ≤ r < 1 = 1 ω v -r with 0 ≤ r < 1 It follows that 1 ω v -1 < d(x) ≤ 1 ω v.
As we assume in the current section that

0 ≤ v < ω , we get d(x) ∞ ≤ s, the inequality being strict if s = 1 -1 ω v ∞ , that is to say if v ∞ < ω 2 . ⊓ ⊔
As a consequence of Lemma 4, we show that a QLT corresponding to a non expansive linear transformation is itself non expansive from the origin.

Corollary 2. If ⌊g⌋ ω is a QLT and 1 ω g 0 ∞ ≤ 1, then ⌊g⌋ ω (x) ∞ ≤ x ∞ for any x ∈ Z n .
Proof. Let ⌊g⌋ ω be a QLT such that 1 ω g 0 ∞ ≤ 1. With the notations of Lemma 4, we have:

⌊g⌋ ω (x) ∞ = 1 ω g 0 (x) + d(x) ∞ ≤ 1 ω g 0 (x) ∞ + d(x) ∞ ≤ 1 ω g 0 ∞ x ∞ + d(x) ∞ ≤ x ∞ + d(x) ∞ < x ∞ + 1 (from Lemma 4) ≤ x ∞ for ⌊g⌋ ω (x) ∞ and x ∞ are integers . ⊓ ⊔ Remark 1.
From Corollary 2, we derive that, if ⌊g⌋ ω is a QLT, 1 ω g 0 is non expansive and x belongs to a cycle, then ⌊g⌋ ω (x) ∞ = x ∞ .

Thanks to Lemma 4, we can also prove that the cycles of non expansive QLTs are 'not too far' from the origin. Thereby, we extend to the general case a result that was obtained in [START_REF] Jacob | Applications quasi-affines[END_REF] for the 2D space.

Theorem 2. Consider a QLT ⌊g⌋ ω such that 1 ω g 0 is contracting and note s = max(

v ∞ ω , 1 - v ∞ ω ). If x belongs to a cycle then x ∞ ≤ s 1-g0 ∞ /ω , the inequality being strict if s > 1 2 . Proof. Let g 1 = (1/ω) g 0 . From lemma 4, inductively we get ⌊g⌋ ω k (x) = g k 1 (x) + g k-1 1 (d 1 (x)) + g k-2 1 (d 2 (x)) + • • • + g 1 (d k-1 (x)) + d k (x) with d i (x) ∞ ≤ s for i = 1, 2, . . . , k each inequality being strict if s > 1 2 . It follows that ⌊g⌋ ω k (x) ∞ ≤ g k 1 (x) ∞ + k i=1 g k-i 1 (d i (x)) ∞ ≤ g 1 k ∞ x ∞ + k i=1 g 1 k-i ∞ d i (x) ∞ ≤ g 1 k ∞ x ∞ + s k i=1 g 1 k-i ∞ ≤ g 1 k ∞ x ∞ + s 1 -g 1 k ∞ 1 -g 1 ∞ .
If x belongs to a cycle, it exits k ∈ N such that ⌊g⌋ ω k (x) = x and so

x ∞ (1 -g 1 k ∞ ) ≤ s 1 -g 1 k ∞ 1 -g 1 ∞ .
Finally, x ∞ ≤ s/(1g 1 ∞ ), the inequality being strict if s > 1 2 .

⊓ ⊔

As noted in Remark 1, the points of a cycle of a non expansive QLT share the same infinite norm. Then, the following lemma shows that, for contracting QLTs with null constant part, those points cannot lie in the first hyperoctant.

Lemma 5. Let ⌊g⌋ ω a QLT such that 1 ω g 0 ∞ < 1 and v = 0. Consider y = ⌊g⌋ ω (x) where x ∈ Z n . If y ∞ = x ∞ , then the coordinates of y with maximal absolute value are negative.

Proof. From the hypotheses, we have

1 ω g 0 (x) ∞ ≤ 1 ω g 0 ∞ x ∞ < y ∞ .
Thus, any positive coordinate of 1 ω g 0 (x) is less than y ∞ which prove the result. ⊓ ⊔ Corollary 3 applies Theorem 2 to two common particular cases: v ∞ = ω/2 (rounding half up) and v = 0 (rounding down). In this corollary and in the following theorem we denote by S n-1 the unit sphere {x | x ∞ = 1}. Corollary 3. Let ⌊g⌋ ω be a QLT.

-If v ∞ = ω 2 and g 0 ∞ < 3 4 ω then any cycle is included in the unit sphere S n-1 . -If v = 0 and g 0 ∞ < 1 2 ω, then any cycle is included in the unit cube {-1, 0} n .
Proof. The first assertion is a direct consequence of Theorem 2. The second assertion is a consequence of Lemma 5 and Theorem 2.

⊓ ⊔

Eventually with the next theorem we show that not only the cycles of a non expansive QLT are not too far from the origin but moreover one of these cycles (if such a cycle exists) lies in the unit sphere S n-1 . Thereby, we solve a conjecture that was stated in [START_REF] Jacob | Applications quasi-affines[END_REF] for the 2D case. Theorem 3. Any QLT ⌊g⌋ ω derived from a non expansive linear transformation (1/ω) g 0 has a cycle in the unit sphere S n-1 or has no cycle.

In order to prove the theorem we need the following technical lemma.

Lemma 6. Let ⌊g⌋ ω be a QLT such that 1 ω g 0 ∞ ≤ 1. Let x ∈ Z n \ {0}, p ∈ S n-1 be such that x -p ∞ is minimal. If y = ⌊g⌋ ω (x)
has the same norm as x, then q = ⌊g⌋ ω (p) is in S n-1 and yq ∞ is minimal.

Proof. As p ∈ S n-1 , Corollary 2 induces that q ∈ S n-1 ∪ {0}. Moreover, again from Corollary 2, we derive that:

y -q ∞ = ⌊g(x)⌋ ω -⌊g(p)⌋ ω ∞ = ⌊g 0 (x -p) + g(p)⌋ ω -⌊g(p)⌋ ω ∞ = ⌊g 0 (x -p) + u⌋ ω ∞ where u = g(p) -ω ⌊g(p)⌋ ω ≤ x -p ∞ for x → g 0 (x) + u is a non expansive QLT. Since x -p ∞ is minimal and p ∈ S n-1 , one has x -p ∞ = x ∞ -1 = y ∞ -1. Then, y -q ∞ < y ∞ .
We conclude that q = 0 so that q ∈ S n-1 and yq ∞ is minimal. ⊓ ⊔ Proof (Theorem 3). Consider x a point of a cycle and a point p defined as in lemma 6 and consider the sequences x i = ⌊g⌋ ω i (x) and p i = ⌊g⌋ ω i (p). For each i ∈ N the points x i and p i verify the condition of lemma 6. The sequence p i is then an infinite sequence of points in S n-1 . But it exits a finite number of points in S n-1 so there is a cycle among these points.

⊓ ⊔ Remark 2. If v = 0 and g 0 ∞ < ω, from Lemma 5 and Theorem 3, we derive that there exists a cycle in the unit cube {-1, 0} n .

Conclusion

In this paper we completed and improved some theoretical results abouts QATs. We gave a closed formula for the period of the tiles generated by QATs and proved a conjecture on the localization of their cycles. We plan to use these results in a multigrid and multiprecision framework that we are developing in a joint work between Poitiers University and Strasbourg University [START_REF] Andres | Les omega-aqa : Représentation discrète des applications affines[END_REF]. The goal of this project is to build a formal theory in which the consequences of the change of universe between affine and quasi-affine transforms, that is between real numbers and integers, is precisely described so that one could choose a calculus precision and an image resolution to ensure a set of properties up to a tolerance threshold. For instance, at any precision and resolution, almost all quasi-affine rotations have non-singular tiles. Nevertheless, it would be desirable firstly to prove that though the size in pixels of the tiles grows with the precision, their 'true' sizes, taking into account the space resolution, tend toward zero and secondly to bound the convergence speed. Alike, we have to ensure for example that, despite the increasing complexity of cycles of quasi-affine rotations as the precision goes to infinity, they converge, together with fixed points, toward the center of the rotation when the pair precision -resolution tends toward infinity.
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 2 Fig. 2: Periodicity of thes tiles of a 2D QAT (see text)
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 331111 Fig. 3: (a) Example of cycle, fixed point and leaf. (b) QLT with many cycles. The points of a cycle and those that reach this cycle have the same colours. (c) QLT with a unique fixed point. The colour of a point is determined by the number of iterations necessary to reach the fixed point.

One can use two distinct scale factors for the digitization of the space and the quantification of the transformation.