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Abstract: 

The  cyclin-dependent kinase CDK11p58 is specifically expressed at G2/M phase. CDK11p58 

depletion  leads  to  different  cell  cycle  defects  such  as  mitotic  arrest,  failure  in  centriole 

duplication and centrosome maturation and premature sister chromatid separation. We report 

that, upon CDK11 depletion, loss of sister chromatid cohesion occurs during mitosis but not 

during G2 phase. CDK11p58 depletion prevents Bub1 and Shugoshin 1 recruitment but has no 

effect  on the dimethylation  of  histone H3 lysine  4 at  centromeres.  We also report  that  a 

construct expressing a kinase dead version of CDK11p58 fails to prevent CDK11 depletion-

induced sister chromatid separation, showing that CDK11p58 kinase activity is required for 

protection of sister chromatid cohesion at centromeres during mitosis. Thus, CDK11p58 kinase 

activity  appears  to  be  involved  in  early  events  in  the  establishment  of  the  centromere 

protection machinery. 
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Abbreviations

CDK11p58 Cyclin-dependent kinase 11, p58 isoform

CDK11p110  Cyclin-dependent kinase 11, p110 isoform

CREST Calcinosis,  Raynaud’s  phenomenon,  Esophageal  dysmotility, 

Sclerodactyly Telangiectasia

FISH Fluorescence in situ hybridization

H2AT120P Phosphorylated H2AT120

H3K4diM Dimethylated H3K4

H3S10P Phosphorylated H3S10

IRES Internal ribosomal entry site

PSCS Premature sister chromatids separation

SAC Spindle assembly checkpoint

siRNA Small interference RNA
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Introduction:

At every cellular division, chromosomes must be equally segregated into each daughter cell. 

In order to ensure accurate segregation, sister chromatid cohesion must be maintained from its 

establishment during DNA replication until the metaphase-anaphase transition. Loss of sister 

chromatid  cohesion  before  anaphase  onset  results  in  segregation  defects  that  lead  to 

aneuploidy,  with  significant  potential  deleterious  consequences  such  as  infertility,  birth 

defects, tumorigenesis and cell death .

Sister chromatid cohesion is mediated by cohesin, a ring-shaped protein complex, loaded on 

chromatin in G1, stabilized upon replication fork progression and thought to embrace and 

hold  together  the  two  sister  chromatids  .  In  vertebrates,  two  distinct  events  account  for 

cohesin  removal  during  mitosis.  First,  in  prophase,  phosphorylation  of  the  cohesin  SA2 

subunit by Plk1 and phosphorylation of the pro-cohesion factor Sororin by CDK1 and Aurora 

B occur . Sororin phosphorylation leads to its displacement from cohesin and its replacement 

by  the  anti-cohesion  factor  WAPL .  During  this  step,  called  "prophase  pathway",  sister 

chromatid cohesion is lost on chromosome arms but remains protected at centromeres . At the 

metaphase-anaphase transition, when all kinetochores are attached to spindle microtubules, 

the satisfaction of the kinetochore attachment checkpoint (also called "SAC", for "Spindle 

Assembly Checkpoint" ) leads to the release of an active form of the separase, a proteolytic 

enzyme that cleaves the Scc1 subunit of the remaining centromeric cohesin . Protection of 

cohesion at centromeres during mitosis early stages is mediated by Shugoshin 1 (Sgo1) . Sgo1 

is  recruited  at  inner  centromeres  during  early  mitosis  following  Bub1-mediated 

phosphorylation of histone H2A at threonine 120 . SGO collaborate with protein phosphatase 
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2A  (PP2A)  which  is  thought  to  participate  to  protection  of  cohesion  at  centromeres  by 

counteracting SA2 and Sororin phosphorylation . We had previously reported that depletion 

of  histone  deacetylase  HDAC3 (histone  deacetylase)  leads  to  loss  of  protection  of  sister 

chromatid  cohesion  at  centromeres  in  a  separase-independent  manner.  HDAC3 depletion 

causes displacement of Sgo1 from centromeres and is correlated with forced acetylation and 

loss of dimethylation on Lys4 of histone H3 at centromeres . 

CDK11 (previously known as PITSLRE) is a member of the cdc2p34 related protein kinase 

family and is encoded by CDK11A and CDK11B genes . The CDK11 mRNA is translated 

into two major CDK11 proteins: a full-length 110 kDa isoform, CDK11p110, and a shorter 58 

kDa protein, CDK11p58, corresponding to the C-terminal moiety of CDK11p110. CDK11p110 is 

expressed during all stages of the cell cycle and is involved in transcription regulation and 

mRNA splicing . During G2 and M phases, upon activation of an internal ribosome entry site 

(IRES)  present  in  the  CDK11  mRNA,  CDK11p58 is  expressed   and  it  is  required  for 

centrosome maturation   and centriole  duplication  .   CDK11 depletion  by  RNAi leads  to 

premature  sister  chromatid  separation  (PSCS),  a  phenotype  that  can  be  rescued  by  the 

expression  of  a  construct  encoding  CDK11p58 .  The  authors  report  that,  upon  CDK11 

depletion,  Bub1 is  absent  from centromeres  and  Sgo1 is  still  present  but  its  localization 

relative to the CREST signal  is  altered.  This result  is  puzzling since Bub1 is  required to 

phosphorylate  H2AT120  at  centromeres  which,  in  turn,  recruits  Sgo1  .  Loss  of  sister 

chromatid cohesion may result from different events at different stages of the "cohesin cycle". 

For  example,  failure  to  recruit  cohesin  on chromatin  in  G1,  lack  of  cohesin  stabilization 

following replication fork progression in S phase or defects in the protection of cohesion at 

centromeres in mitosis can all lead to premature sister chromatid separation . We report that 

CDK11p58 is  required  for  both  Bub1  and  Sgo1  localization  at  centromeres,  but  not  for 
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centromere cohesion in G2, making CDK11p58 part of the centromere protection machinery. 

We also show that the CDK11p58 kinase activity is essential for this function.

  

Materials and methods:

Cell culture and RNAi:

HeLa-S3cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented 

with  10% fetal  bovine  serum (FBS),  0.03% L-glutamine,  100  U/mL  penicillin,  and  100 

μg/mL  streptomycin.  G418  (1  mg/ml)  was  added  to  the  culture  medium  of  cell  lines 

expressing an EGFP-CDK11p58 construct. The cells were transfected with luciferase siRNA 

(as  a  negative  control)  or  a  CDK11  siRNA  (5’AGCGGCUGAAGAUGGAGAA-3’)  that 

targets  the  endogenous  CDK11 mRNA but  not  the  GFP-CDK11 mRNA using  Hiperfect 

(Qiagen)  as  a  transfection  reagent.  Immunofluorescence  was  performed  72  hours  after 

transfection.

Plasmid constructs and establishment of stable cell lines: 

The pEGFP- CDK11p58 wild type construct has been described before . This construct has 

been  designed  to  be  resistant  to  the  siRNA  used  in  this  study.  To  obtain  the  pEGFP- 

CDK11p58KD construct, pEGFP- CDK11p58  was amplified and mutated in its kinase domain 

(D224N)  using  the  QuickChange  II  site-directed  mutagenesis  kit  (Agilent  Technologies) 

following  manufacturer  instructions  with  the  following  oligonucleotides: 

(5‘TACTCCCGCGCCAGCCCAAAGTTACCCACCTTGAGGATGCC  3’  and 

5’GGCATCCTCAAGGTGGGTAACTTTGGGCTGGCGCGGGAGTA 3’) 

HeLa-S3 cells  were  transfected  with  the  relevant  plasmids  using  the  transfection  reagent 

Lipofectamine (Invitrogen).  Stably transfected cells were selected with 1mg/ml G418 and 
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cloned by limiting dilution. Individual clones were expanded in selective media before being 

tested for EGFP-CDK11p58 expression by Western blotting. 

Immunofluorescence: 

Cells were cytocentrifugated and fixed for 20 min in 3 % paraformaldehyde in PBS (pH 7). 

Cells  were  then  permeabilized  in  1X  PBS  containing  0.1  % Triton  X100  and  100  mM 

Glycerol. Following saturation of non-specific sites by incubation for 60 min in 5% FBS, cells 

were  incubated  overnight  at  4  °C  with  the  primary  antibody  and  for  45  min  at  room 

temperature with the secondary antibody. DNA was stained with DAPI (0,1 µg/ml). Slides 

were mounted in ProLong Gold (Invitrogen) and observed by epifluorescence microscopy 

(Zeiss Axio Imager M2). Fluorescence quantification at  centromeres was performed using 

Image-J software.

Antibodies:

Antibodies  used in  this  work:  mouse  anti-Bub1,  rabbit  anti-phospho-H2A (T120) [Active 

Motif  #39391,  #39392];  rabbit  anti-dimethyl-H3 (K4) [Cell  signaling  #9725],  rabbit  anti-

phospho-H3 (T3) [Abcam #ab17352], rabbit anti-actin [Sigma #A5060], mouse anti H3S10P 

[Millipore  #05-806].  Affinity–purified  rabbit  anti-Sgo1  was  a  gift  from  Pr  Yoshinori 

Watanabe and rabbit anti-CDK11 antibody was previously described . Human CREST serum 

was a gift from Dr Isabelle Bahon-Riedinger. Alexa Fluor coupled secondary antibodies from 

Invitrogen  and  horseradish  peroxydase  coupled  secondary  antibodies  from  (Jackson 

ImmunoResearch) were used for detection.

Fluorescence In Situ Hybridization: 

HeLa  cells  were  transfected  with  CDK11,  Scc1  or  Luciferase  siRNA.  48  hours  after 

transfection, FISH experiment was performed using the procedure described by Schmitz et al. 
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with minor modifications. The synthetic probe used is specific for chromosome 11 centromere 

(5'-A488/AgGgTtTcAgAgCtGcTc,  where  uppercase  letters  are  for  DNA  nucleotides  and 

lowercase  letters  are  for  "locked  nucleic  acid"  (LNA)  nucleotides)  and  leads  to  three 

independent signals in the aneuploid HeLa-S3 cell line.  

Results 

Loss of sister chromatid cohesion following CDK11 depletion is not a consequence of 

premature mitosis exit:

HeLa-S3 cells were transfected with a siRNA that targets the CDK11 mRNA 3'end and that 

was  successfully  used  to  deplete  CDK11  in  a  previous  study.  .  Immunoblotting  with  a 

polyclonal  CDK11  antibody  72  hours  after  CDK11  siRNA  transfection  shows  efficient 

depletion of both CDK11 isoforms (Figure 1A). HeLa cells depleted of CDK11 displayed 

increased  mitotic  index  (8.26%  vs.  3.3%  in  control  cells)  (Figure  1B),  and  increased 

premature  sister  chromatid  separation  (51.75%  vs.  4.43%)  (Figure  1C),  confirming  the 

findings reported by Hu et al. . 

 To ensure that sister chromatid separation was not a consequence of a precocious mitotic exit 

followed  by  an  accumulation  of  cells  in  anaphase,  chromosome  spreads  from  CDK11-

depleted cells were labeled with an anti-phospho H3S10 antibody. H3S10 is phosphorylated 

during mitosis and this phosphorylation is rapidly lost upon anaphase onset . As shown on 

figure 1D, CDK11-depleted cells chromosomes displaying sister chromatid separation display 

strong H3S10P labeling,  indicating that these mitotic cells have not progressed in the cell 

cycle beyond the metaphase to anaphase transition. 
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Loss of sister chromatid cohesion upon CDK11 depletion is restricted to mitosis:

Previous  studies  have  reported  that  the  lack  of  the  short  isoform  (p58)  of  CDK11  is 

responsible  for  the  cohesion  defect  observed  in  CDK11  depletion  experiments  .  Since 

CDK11p58 is expressed during G2 and M stages of the cell cycle, it can be involved in the 

establishment  of  cohesion  in  S/G2 phase,  in  its  maintenance  during  G2 phase,  or  in  the 

protection of cohesion at centromeres against the prophase pathway phosphorylation waves 

during  mitotic  early  stages.  In  order  to  assess  whether  sister  chromatid  cohesion  was 

established and maintained upstream of mitosis, we examined the inter-centromere distance of 

sister chromatids pairs in G2 phase nuclei. Hela-S3 cells were transfected with luc siRNA, 

CDK11 siRNA or Scc1 siRNA and inter-centromere distance was measured in G2 cells 48 

hours after  transfection.  Since Scc1 is a component  of the cohesin complex,  its  depletion 

prevents establishment of sister chromatid cohesion in interphase and, thus, Scc1- depleted 

cells are used as a positive control for loss of cohesion in G2. Chromosome 11 centromeres 

were labeled by FISH using a synthetic probe developed by us. Results displayed on Figure 2 

show that the inter-centromere distances in CDK11 depleted G2 cells are undistinguishable 

from  that  of  the  mock-transfected  control  cells  (0.86  µm  vs.  0.78  µm  respectively).  In 

contrast, this distance was increased to 1.34 µm in Scc1 depleted cells. These data show that 

cohesion at centromere is not lost in G2 cells upon CDK11 depletion. 

CDK11 is required for Bub1 and Sgo1 localization at centromeres:

Since CDK11 depleted cells do not display sister chromatid separation in G2, we assessed the 

presence of factors involved in the protection of cohesion at centromeres during mitosis. We 

focused on the main known centromere cohesion "guardian", Shugoshin, and on the elements 

involved  in  its  deposition  at  centromeres.  Human  Sgo1  starts  to  accumulate  at  inner 
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centromeres during prophase and is retained until the onset of anaphase . Its recruitment is 

mediated by the mitotic checkpoint protein Bub1. Bub1 phosphorylates human histone H2A 

at centromeres on threonine 120 (H2AT120) and this phosphorylation is essential for Sgo1 

recruitment . As the Bub1/H2A-T120/Sgo1 pathway is established in early mitosis to protect 

cohesion  at  centromeres  and  CDK11  is  involved  in  cohesion  beyond  the  G2  phase,  we 

assessed whether CDK11 depletion could affect the Bub1/H2A-T120/Sgo1 pathway. CDK11-

depleted cells were labeled with anti-Bub1, anti-Sgo1 and anti-H2AT120P antibodies. Human 

CREST  autoimmune  serum  was  used  as  a  centromere  marker  and  centromere  signal 

intensities for the different labelings were quantified. CDK11 depletion induced an almost 

complete  loss of Bub1 (Fig.  3A),  H2AT120P (Fig.  3B) and Sgo1 (Fig.  3C) signals  from 

centromeres in mitotic cells displaying PSCS, whereas the CREST signal was not affected. 

We had previously reported that HDAC3 depletion resulted in loss of H3K4 dimethylation at 

centromeres,  lack  of  Sgo1  recruitment  and  premature  sister  chromatid  separation  .  We 

therefore  assessed  whether  CDK11  depletion  could  affect  H3K4  dimethylation  at 

centromeres. As shown on Figure 3D, separated sister chromatids in CDK11 depleted cells do 

not show any detectable H3K4 dimethylation defect at centromeres. 

CDK11p58 kinase  activity  is  required  for  protection  of  sister  chromatid  cohesion  at 

centromeres:

We then asked whether CDK11p58 kinase activity was involved in the protection of sister 

chromatid cohesion. We generated two HeLa-S3 cell lines stably expressing either a wild-type 

GFP  tagged–CDK11p58 or  a  D224N  "kinase  dead"  version.  Five  silent  mutations  were 

introduced into the siRNA target  sequence in  order to  make both GFP-tagged transgenes 

mRNAs resistant to the siRNA used in this study. As shown on Figure 4A, CDK11 RNA 
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interference in these cell lines results in the depletion of both endogenous CDK11 isoforms 

but not of the 90kD GFP-tagged protein expressed from the transgene. Figure 4B shows the 

results of rescue experiments using wild-type and "kinase dead" versions of GFP-CDK11p58. 

Expression of the GFP-CDK11p58 wild-type construct in cells  depleted for the endogenous 

CDK11 was able to rescue both the increased mitotic index (Figure 4B) and the cohesion 

defect  phenotypes  (3.5  %  PSCS in  mock-transfected  cells  vs.  2.8  % in  CDK11 siRNA 

transfected cells, Figure 4C). In contrast, phenotype rescue was not observed in the cell line 

expressing the  GFP-CDK11p58 kinase  dead mutant  after  CDK11 depletion  (4 % PSCS in 

mock-transfected cells vs. 28.2 % in CDK11 RNAi cells, Figure 4C). Similar results were 

obtained for the proportion of cells in mitosis following CDK11 depletion (Figure 4B).

Discussion:

Maintenance of sister chromatid cohesion until anaphase onset is a critical process required to 

prevent segregation defects which would lead to aneuploidy and, eventually,  cell death or 

cancer.  Premature  sister  chromatid  separation  may result  from different  causes,  the  most 

obvious of which being unscheduled mitosis exit. We assessed whether CDK11-depleted cells 

displaying PSCS had exit mitosis and found that separated sister chromatids were positive for 

the widely used mitotic marker phospho-H3S10 (Figure 1), indicating that these cells had not 

crossed  the  metaphase  to  anaphase  border.   Thus,  CDK11  depletion  results  in  a  sister 

chromatid cohesion defect that may originate from a defect in any step of the cohesin cycle, 

such as cohesin loading onto chromatin in G1 , sister chromatid cohesion establishment and 

maintenance in S and G2 ,  or protection of cohesion during mitosis  .  The depletion of a 

cohesin subunit such as Scc1 leads to lack of cohesin loading and cohesion establishment and 

results in loose association of sister chromatids in G2 cells . However, CDK11-depleted cells 
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do not  show this  "loose  association"  phenotype  in  G2 (Figure  2),  indicating  that  loss  of 

cohesion in these cells occurs beyond the G2/M transition. 

Vertebrates have evolved a mechanism, known as the "prophase pathway", by which cohesin 

is actively taken off chromosome arms during early mitosis stages, cohesion being protected 

at  centromeres  .  The  benefits  of  such  a  mechanism  are  not  clear  but  it  is  thought  that 

removing most of the cohesin from chromatin may allow to build up a stock of intact soluble 

cohesin  that  will  be  readily  usable  during  the  early  steps  of  the  next  cell  cycle  . 

Individualizing  condensed  chromosome  arms  in  prophase  may  also  be  a  way  to  prevent 

chromatin  entanglement  between  sister  chromatids  during  chromosome  segregation  . 

Protection  of  cohesion  at  centromeres  is  mediated  by the  evolutionary  conserved protein 

Shugoshin, whose association to phosphatase PP2A is thought to counteract PLK1-mediated 

phosphorylation  of  cohesin  during  the  prophase  pathway  .  Shugoshin  is  loaded  on 

centromeres in late G2 phase  and is secured at centromeres by binding histone H2A upon its 

phosphorylation  on  threonine  120  by  the  checkpoint  kinase  Bub1  .  We  have  previously 

reported that depletion of the deacetylase HDAC3 results in forced acetylation and loss of 

dimethylation  of  histone  H3  lysine  4  at  centromeres.  The  loss  of  H3K4  dimethylation 

correlates with sister chromatid separation and displacement of Sgo1 from centromeres . We 

report that, upon CDK11 depletion, H3K4 dimethylation at centromeres is unaffected, while 

centromere  signals  corresponding to  Bub1, H2AT120 and Sgo1 become barely detectable 

compared to a control (Figure 3). These findings indicate that CDK11 acts downstream of 

dimethylated H3K4 and upstream of the Bub1/H2AT120/Sgo1 axis to protect sister chromatid 

cohesion. In agreement with our data, a previous study on the involvement of CDK11 in sister 

chromatid cohesion reported that, upon CDK11 depletion, Bub1 interaction with centromeres 

was  destabilized.  However,  the  authors  found  that  Sgo1,  although  mislocalized,  was  not 

absent from centromeres . This represents a clear discrepancy: in our study, CDK11 depletion 
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leads to a 90% decrease of Sgo1 signal at centromeres. A possible explanation is that Hu et al. 

used a shRNA expression vector and observed cells 48 hours post-transfection while we used 

a  siRNA and looked at  cells  after  72 hours.  The amount  of  time required  to  express  the 

shRNA and to process it would reduce the period of time during which the cell progress into 

the cell cycle in the absence of CDK11. Thus, upon CDK11 depletion, Sgo1 would be first 

destabilized  from  centromeres  but  still  detectable  and,  with  time,  it  would  detach  from 

chromatin. We reported a similar phenomenon for Haspin-mediated phosphorylation of H3T3 

at  centromeres  when  Shugoshin  is  not  present:   upon  Sgo1  depletion,  H3T3P  is  first 

delocalized from centromeres to chromosome arms and, 96 hours post-transfection, its signal 

is no longer detectable .

Phosphorylation activity of centromeric kinases is not always required to their function at 

centromeres. For example,  Bub1 kinase activity is essential  for H2AT120 phosphorylation 

and subsequent Sgo1 recruitment, but is not required for SAC signaling in mammalian cells . 

We show that  CDK11p58 kinase activity  is  required for its  role  in  the protection  of sister 

chromatid  cohesion  (Figure  4).  Since  centromere  protection  seems  to  rely  on  cross-talks 

between  histone  modifications  (H3K4diMe,  H2AT120P)  and  soluble  factors  recruited  at 

centromeres, it was tempting to speculate that histones can be phosphorylated by CDK11p58. 

Thus, we immunoprecipitated GFP-CDK11p58 from the corresponding cell line and used it in a 

kinase assay with bulk histones as a substrate. We did not detect any histone phosphorylation 

(not shown), suggesting that the relevant CDK11p58  substrate must be a non-histone protein. 

Thus,  identification  and  characterization  of  this  substrate  represents  a  major  goal  in  the 

understanding of the establishment of protection of sister chromatid cohesion at centromeres 

during mitosis.
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Figures legends:

Figure 1. CDK11 depletion induces sister chromatid separation in mitotic cells. 

(A).  Immunoblot  showing  CDK11p110  and  CDK11p58 protein  levels  depleted  by  siRNA 

transfection. Cells were analyzed 72 hours post- transfection. The membrane was probed with 

an anti-CDK11 antibody that recognizes both CDK11 isoforms. Actin was used as a loading 

control.  Quantification of mitotic indexes (B) and PSCS (C) of HeLa cells depleted or not for 

CDK11. More than 100 mitotic cells per transfection were observed to quantify PSCS and the 

mitotic index was determined on at least 1000 cells. (D). Immunofluorescence microscopy on 

chromosome  spreads  obtained  by cytocentrifugation  of  HeLa  cells  transfected  as  in  (A), 

stained with CREST serum (red), anti-H3S10P (green) and DAPI. Scale bar is 10µm.

Figure 2. CDK11 depletion does not induce sister chromatid separation in G2. 

 (A). FISH on chromosome spreads in G2 HeLa cells. Cells were transfected with si-Luc, si-

CDK11  or  si-Scc1  and  observed  after  48h.  The  FISH  probe  (green)  is  specific  for  the 

chromosome 11 centromere. DNA was counterstained with DAPI (blue). Scale bar is 10µm. 

(B).  Measurement  of  the  inter-centromere  distance  in  HeLa  cells  transfected  as  in  (A). 

Measurements were done on 100-200 sister chromatid pairs per transfection.  

Figure 3. CDK11 is required for centromere targeting of factors involved in the Bub1/Sgo1 

pathway.  Immunofluorescence  microscopy  analysis  on  chromosome  spreads  obtained  by 
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cytocentrifugation of mitotic HeLa cells 72 hours after transfection with the indicated siRNA. 

Cells were labeled for Bub1 (A), H2AT120 (B) and Sgo1 (C) (green). Cells were co-labeled 

with CREST serum (red)  and DAPI (blue).  Scale  bar  is  10µm..   Quantification of Bub1, 

H2AT120 and Sgo1 signals at centromeres is shown on left panels.

 (D). Immunofluorescence microscopy showing isolated chromosomes (left panel) of HeLa 

cell  transfected  72  hours  by  si-Luc,  si-CDK11  or  si-HDAC3  and  stained  for  H3K4diM 

(green),  CREST  (red)  and  DAPI  (blue).  White  arrows  point  to  the  H3K4diM  signal  at 

centromeres. Scale bar is 1µm.

Figure 4. CDK11p58 kinase activity is required for protection of sister chromatid cohesion.

(A). Immunoblot analysis showing CDK11p110, GFP-CDK11p58, CDK11p58 and actin protein 

levels in HeLa-S3, GFP-CDK11p58 wild type and GFP-CDK11p58 kinase dead cell  lines 

transfected with si-Luc or si-CDK11 and collected 72 hours after transfection and probed with 

anti-CDK11 antibody or an anti-actin antibody as a loading control. GFP-tagged constructs 

are  resistant  to the CDK11 siRNA. Quantification of mitotic  index (B) and PSCS (C) of 

HeLa-S3, GFP-CDK11p58 wild type and GFP-CDK11p58 kinase dead cell lines transfected as 

in (A). At least 800 cells were counted for mitotic index and PSCS. 
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