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Since their spectacular experimental realisation
in the early 80’s [1], quasicrystals [2] have been
the subject of very active research, whose do-
mains extend far beyond the scope of solid state
physics. In optics, for instance, photonic qua-
sicrystals have attracted strong interest [3] for
their specific behaviour, induced by the partic-
ular spectral properties, in light transport [4–6],
plasmonic [7] and laser action [8]. Very recently,
one of the most salient spectral feature of qua-
sicrystals, namely the gap labelling [9], has been
observed for a polariton gas confined in a one di-
mensional quasi-periodic cavity [10]. This experi-
mental result confirms a theory which is now very
complete in dimension one [11, 12]. In dimension
greater than one, the theory is very far from being
complete. Furthermore, some intriguing phenom-
ena, like the existence of self-similar eigenmodes
can occur [13]. All this makes two dimensional
experimental realisations and numerical simula-
tions pertinent and attractive. Here, we report on
measurements and energy-scaling analysis of the
gap labelling and the spatial intensity distribution
of the eigenstates for a microwave Penrose-tiled
quasicrystal. Far from being restricted to the mi-
crowave system under consideration, our results
apply to a more general class of systems.

Quasicrystals are alloys that are ordered but lack
translational symmetry. In dimension two, they can be
modelled with a collection of polygons (tiles) that cover
the whole plane, so that each pattern (a sub-collection
of tiles) appears, up to translation, with a given density
but the tiling is not periodic. A typical example is given
by the Penrose tiling [14]. Here, we implement a mi-
crowave realisation of a Penrose-tiled lattice using a set
of coupled dielectric resonators [see Fig. 1 (a)]. The mi-
crowave setup used has shown its versatility by success-
fully addressing various physical situations ranging from
Anderson localisation [15] to topological phase transition
in graphene [16], and provided the first experimental re-
alisation of the Dirac oscillator [17].

We establish a two-dimensional tight-binding
regime [18], where the electromagnetic field is mostly
confined within the resonators. For an isolated resonator,
only a single mode is important in a broad spectral
range around the bare frequency Eb ≃ 6.65GHz. This
mode spreads out evanescently, so that the coupling

FIG. 1: Microwave Penrose-tiled quasicrystal. (a)
Diamond-vertex Penrose-tiled quasicrystal, where the tiling
is superposed to guide the eye (thin diamonds in green). The
sites of the lattice are occupied by dielectric resonators (ce-
ramic cylinders of 5 mm height and 8 mm diameter) with a
high index of refraction (n = 6). The lattice is sandwiched
between two aluminium plates (the upper one is not shown).
The microwaves are excited by a movable loop antenna. (b)
Experimentally obtained DOS as a function of frequency, the
white and gray zones indicate the main frequency bands, Ei,
and the gaps, ∆Ei, respectively. The bare frequency Eb is
indicated by the white arrow.

strength t can be controlled by adjusting the separation
distance d between the resonators [18]. The resulting
system can be described by the following tight-binding
Hamiltonian:

H = Eb

∑

i

|i〉〈i|+
∑

i,j,i 6=j

tij |i〉〈j|, (1)

where |i〉 is the wave function at site i and tij is the
coupling strength between sites i and j. We created a
Penrose tiling made of thin and fat diamonds. The lat-
tice is constructed using the inflation rules of the Robin-
son triangle decomposition [19] of the Penrose tiling [14].
A microwave resonator is placed at each diamond ver-
tex [Fig. 1 (a)]. The experimentally obtained density
of states (DOS), ρ(E) (see Supplementary Information
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for details), is shown in Fig. 1 (b). The main frequency
bands, Ei, and gaps, ∆Ei, are indicated by the white and
grey zones, respectively. The peak at “zero-energy”, here
the bare frequency Eb, predicted when the couplings are
restricted to the diamond edges [20], is not observed here.
Indeed, as explained below, in our system the spectrum
is dominated by the couplings along the short diagonal
of thin diamonds.
To visualise the gap labelling, we consider the inte-

grated density of states (IDOS): N (E) =
∫ E

−∞
ρ(E′) dE′.

As plotted in Fig. 2 (solid blue line), we clearly observe
plateaus for specific values of N (E), where the IDOS is
approximately constant. In contrast to a periodic crys-
tal, where the number of states in each band is the same
and the IDOS is a regular staircase with identical step
heights, in a quasicrystal, due to the fractal structure of
its spectrum, the IDOS is an irregular staircase. Gap la-
belling identifies the position of footsteps where N (E) is
constant and depends only on the geometry of the qua-
sicrystal and not on the physical nature of the coupling
between sites [9, 21–24]. For instance, for an infinite Fi-
bonacci or Penrose quasicrystal, it was shown that each
footstep in the IDOS appears at a precise value given by
N (E) = zi1 + λzi2 , where λ = (

√
5 + 1)/2 is the golden

ratio and the zi’s are relative integers. Moreover, the
IDOS builds a devil’s staircase: each step is divided in
smaller steps and each smaller step is divided in steps
even smaller, leading to a spectrum with a Cantor set
structure [11, 12].
For an infinite Penrose-tiled quasicrystal, as explained

in the Supplementary Information, the gap labelling
theory establishes the following main hierarchy of the
gaps [21]:

N (E) =



















5− 3λ, E ∈ ∆E1

2λ− 3, E ∈ ∆E2

4− 2λ, E ∈ ∆E3

3λ− 4, E ∈ ∆E4,

(2)

∆Ei being the ith frequency gap. As shown in Fig. 2,
these values perfectly fit for the IDOS calculated numeri-
cally for a large system (dotted red line). The experimen-
tal IDOS (solid blue line) is in very good agreement with
the predicted hierarchy. The discrepancies between the
numerics and the experiments have three main reasons.
First, the experimental lattice only possesses a few tens
of states in each band; the finite-size effect is particularly
visible in the last band, which is the largest. Second, the
spatial extension of the resonators is not taken into ac-
count in the numerics, thus neglecting screening effects.
Third, the microwave resonators are not strictly speaking
identical: the relative variation of the bare frequency can
reach 0.15%.
For a better understanding of the spectrum, we anal-

yse the wave function spatial distribution band by band
(Fig. 3). The data processing from reflexion measure-

FIG. 2: Integrated density of states. Normalised IDOS
N (E) for a diamond-vertex Penrose lattice setup. Solid red
line corresponds to the experimental Penrose lattice with 164
sites (see Fig. 1). The dashed blue line is obtained by di-
rectly diagonalising the tight-binding Hamiltonian using 2665
sites with the corresponding coupling constants obtained by
Eq. (9) of Ref. [25]). The horizontal dashed lines indicate
the gap labelling for an infinite lattice. Isolated and coupled
green diamonds are respectively associated with the dimer
and trimer structures of closer sites whose couplings generate
the five bands Ei in the DOS and give the main structure to
the IDOS staircase.

ments to the intensity of wave functions, via LDOS, is
reported in the Supplementary Information. We observe
that, in the first and last bands (dark grey zones), the
energy is mainly distributed in trimers of closer sites,
with a maximum of intensity in the central resonator of
each trimer [Figs 3 (a) and (f)]. In the second and fourth
bands (medium grey zones), the energy is essentially dis-
tributed in dimers of closer sites [Figs 3 (d) and (c)].
In the central band (light grey zone), we observe that
the energy is distributed more uniformly [Figs 3 (b) and
(e)]. Moreover, the dimers and trimers that emerge in
the landscape are associated with the two patterns cor-
responding to isolated or coupled thin diamonds depicted
in green in Fig. 2.

Dimer and trimer couplings give the dominant con-
tribution to the spectral structure. This can be under-
stood following a perturbative approach. If there were
no coupling among the resonators, the spectrum would
be a peak at Eb with a degeneracy given by the num-
ber of sites in the system. The main Hamiltonian terms
which contribute to remove this degeneracy are the ones
where the coupling is largest, tij = tmax, i.e. those asso-
ciated with resonators located at the minimum distance
dmin. This occurs for the resonators located at the clos-
est vertices of the thin diamonds. Thus, in the isolated
thin diamonds we have a dimer structure {|1d〉, |2d〉},
while in the coupled diamonds we have a trimer struc-
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FIG. 3: Energy landscape in each band. The central part of the figure shows the DOS for the diamond-vertex tiling. It
exhibits five main bands distributed on both sides of the bare frequency Eb indicated by the vertical dotted line, the central
band showing a point-like dip at Eb. For each single resonator we integrate the LDOS band by band and obtain the overall wave
function structure within the bands. (a) and (f) Energy localised on trimers of closer sites is associated with the two extreme
bands (dark grey zones). (b) and (e) For the two neighbouring bands (medium grey zone) a localisation on dimer structures is
observed. (c) and (d) For the central band (light grey zone), integrations from the lower limit to the bare frequency and from
the bare frequency to the upper limit give similar uniformly distributed energy landscapes: energy is delocalised over the edge
sites of the trimer structures and over the “uncoupled” resonators.

ture {|1t〉, |2t〉, |3t〉}. If the other couplings were vanish-
ing, the spectrum would have five peaks located at the
energies

E1 = Eb −
√
2tmax, E2 = Eb − tmax,

E3 = Eb,

E4 = Eb + tmax, E5 = Eb +
√
2tmax.

(3)

These eigenvalues would correspond to the eigenfunctions

|φ1〉 = |1t〉 −
√
2|2t〉+ |3t〉, |φ2〉 = |1d〉 − |2d〉,

|φ3,a〉 = |1t〉 − |3t〉, |φ3,b〉 = |1s〉,
|φ4〉 = |1d〉+ |2d〉, |φ5〉 = |1t〉+

√
2|2t〉+ |3t〉.

(4)

Eigenvalues E1 and E5 result from the trimer structure,
while E2 and E4 from the dimer one. E3 results from
both the trimer structure and all sites |1s〉 that are con-
sidered uncoupled in this perturbative argument. Thus

the degeneracy of the first and the fifth peaks is given
by the number of coupled thin diamonds present in the
tiling, while the one of the second and fourth by the
number of isolated thin diamonds. Finally, the degener-
acy of the central peak is given by the number of cou-
pled thin diamonds plus the number of all the remaining
resonators that are uncoupled. The other couplings are
much smaller than tmax since they decrease almost expo-
nentially with distance [18]. Indeed the coupling corre-
sponding to the side of the diamonds is∼ tmax/10 and the
others are even smaller. The main effect of these weaker
couplings is a broadening of the five peaks into five bands,
as observed in the spectrum [see Fig. 1 (c)]. The popula-
tion of the five bands of the spectrum is just given by the
reasoning above. Thus the numbers in Eq. (2) are related
to the fraction of isolated and coupled thin diamonds in
the Penrose tiling as detailed in the Supplementary In-
formation.

The perturbative approach outlined above can also be
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used to understand the energy landscape shown in Fig. 3.
The trimer structures in the LDOS that appear in the
first and in fifth bands [Figs 3 (a) and (f)] correspond
to the states |φ1〉 and |φ5〉, respectively. The dimerised
structures in the LDOS that appear in the second and
fourth bands [Figs 3 (b) and (e)] correspond to the states
|φ2〉 and |φ4〉, respectively. For the central band [Fig. 3
(c) and (d)] the LDOS corresponds to the states |φ3,a〉
and |φ3,b〉 and thus it vanishes over the dimers and over
the central site of each trimer (|2t〉).
We stress that, for larger systems and with better fre-

quency resolution, it would be possible to observe further
hierarchical structure of the bands, namely the fragmen-
tation of each band in sub-bands in connection with the
density of larger patterns. This may be possible using
ultracold gases [26] trapped in quasicrystal optical lat-
tices [27]. Another important remark is that the gap
labelling values in Eq. (2) do not depend on the partic-
ular values of the hopping energies in Eq. (1). For any
(non-interacting) classical or quantum system subject to
a potential with the same spatial patterns as the ones
studied in this work, the first hierarchy of the gaps will
be given by the values in Eq. (2), the only condition be-
ing that the shorter the distance between sites the larger
their coupling (the study performed in [28] does not meet
this criterion). Within this condition, different physical
systems will exhibit the same energy landscapes as the
ones shown in Fig. 3. What will change from one system
to another are the widths of the gaps and bands.

The difference between states |φ1〉 and |φ5〉 (and sim-
ilarly for |φ2〉 and |φ4〉) is the phase landscape. Because
of the positive sign of the coupling in such an experiment
[18], the ground state corresponds to trimers with alter-
nating signs (|φ1〉). Neighbouring trimers are also ar-
ranged such that the alternance of signs is fulfilled, thus
allowing the minimisation of the energy. The main con-
sequences are twofold: (i) the state is almost localised, as
outlined in [20, 29], and indeed the first band is very nar-
row; (ii) there is a geometrical frustration effect as shown
in Fig. 4: where there are patterns with five trimers form-
ing a circular structure, the wave function is vanishing
on one of the trimers (the bottom right trimer of the
structure, in Fig. 4), because it is not possible for all
five trimers to satisfy alternate signs with neighbouring
trimers. The wave function is numerically obtained by
diagonalising the tight-binding Hamiltonian correspond-
ing to the experimental situation (same number of sites
and same couplings). The reflexion measurements only
provide the intensity of wave functions, the sign is exper-
imentally accessible via transmission measurements [30]
which were not implemented in this study.

In conclusion we have measured experimentally the
gap labelling and the energy landscape of the eigenstates
of a microwave Penrose-tiled quasicrystal. To the best
of our knowledge, this is the first measure of these two
observables in dimension two. In such a microwave sys-

FIG. 4: Frustration mechanism. Ground state wave func-
tion (numerical calculation) for the Penrose-tiled quasicrystal.
In each trimer the sign alternates between neigbouring sites,
and, to minimize the energy, the sign alternates also between
neighbouring trimers. The dotted black circle delineates a
pattern of five trimers exhibiting a geometrical frustration ef-
fect: one of the trimers has to possess a vanishing energy since
the complete alternation of signs cannot be fulfilled.

tem, the Hamiltonian terms scale exponentially with the
distance. We have shown that this allows to use a per-
turbative argument to understand and determine both
the gap labelling and the energy landscape of the differ-
ent states. Even though the derivation of our results is
related to our particular setup, the gap labelling values
and the wave function symmetry in each band that we
have found, are general. Indeed, our results concern all
systems which share the same quasicrystalline potential
energy landscape.
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SUPPLEMENTARY INFORMATION

S1. DOS and wavefunctions extractions

The experimental setup and the tight-binding descrip-
tion of the microwave system are detailed in [18]. Here,
we describe the procedure used to obtain the density of
states (DOS) and the wavefunctions from reflection mea-
surements.
The resonance frequency of an isolated resonator Eb

is around 6.65GHz and is associated with the first Mie
resonance in the transverse electric polarisation. Due to
evanescent coupling, a lattice of such resonators exhibits
a discrete spectrum a few hundreds of MHz wide around
Eb. Figure S1 shows the reflection signal S11 measured
with a vectorial network analyser, via a magnetic an-
tenna positioned above the centre of a given resonator in
a Penrose-tiled quasycristal. We have shown in [18] that
the local density of states (LDOS), ρ(r1, E), measured
at position r1, is directly related to the amplitude and
phase of S11. Up to a normalisation factor, the relation
reads:

ρ(r1, E) ∝ |S11(E)|2
〈|S11|2〉E

ϕ′
11(E) (S.1)

where 〈. . .〉E indicates an averaging over the whole range
of the frequency spectrum, ϕ11 is the phase of the re-
flected signal: ϕ11 = Arg(S11), and where ϕ′

11 denotes
its derivative with respect to the frequency.
In Fig. S2(a), each color (from deep blue to red) corre-

sponds to a given site position. Their respective LDOS
are plotted in Fig. S2(b). The density of states (DOS)
shown in Fig. S2(c) is obtained by averaging the LDOS
over all positions.
Figure S3(a) presents a magnification of the small fre-

quency range indicated by the grey zone in Fig. S2(b).
For a given eigenfrequency (grey boxes) and a given po-
sition, according to the definition of the local density
of states ρ(r1, E) =

∑

n |Ψn(r1)|2δ(E − En), the reso-
nance curve exhibits a maximum whose value is related to
the intensity of the wavefunction at this specific position.
The visualisation of the wavefunction distribution asso-
ciated with each eigenfrequency thus becomes accessible,
see Figs S3(b) and (c). The energy landscapes depicted
in Fig. 3 are obtained by superimposing the wavefunction
intensities of all the resonances in the same band.

FIG. S1: From reflexion signal to LDOS. (a) Penrose-
tiled quasycristal whose sites are occupied by microwave res-
onators. The coloured site (light blue) indicates the position
of the magnetic antenna connected, via a coaxial cable, to a
vectorial network analyser. (b) and (c) The corresponding
amplitude and phase of the reflexion signal S11. (d) The lo-
cal density of states deduced from the reflexion measurement
according to relation (S.1).
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FIG. S2: From LDOS to DOS. (a) Color representation of
site positions and (b) the corresponding LDOS. (c)Density of
states obtained by averaging the LDOS over all site positions.

FIG. S3: From LDOS to wave functions. (a) A zoom of
the LDOS shown in Fig. S2. (b) The wave function intensity
distributions respectively associated with the two resonances
delineated by the grey boxes. For a given resonance, the in-
tensity on each site is given by the maximum of the corre-
sponding LDOS in the vicinity of the mean eigenfrequency
Ẽ.
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S2. Calculation of the gap labelling In Fig. 2 and
in Eq. (2) we have given the values of the IDOS that
label the main gaps of the system. These values can be
deduced by analysing the inflation transformation used to
generate the diamond Penrose tiling, as the one shown
in Fig. S4. For instance, for such an experiment, we

FIG. S4: Inflation of the basic tiles (one iteration) to produce
a larger pattern. The dashed lines are a guide to the eye to
identify the tiles which appear in the new pattern.

started with a fat diamond and we iterated the inflation
procedure 10 times (16 times for the theoretical curves
shown in Fig. 2). At the i-th iteration, the number of
fat diamonds N i

f and thin diamonds N i
t is related by the

numbers at the preceding iteration by the expression

(

N i
f

N i
t

)

= A
(

N i−1

f

N i−1
t

)

with A =

(

2 1
1 1

)

. (S.2)

The eigenvalues of A are λ+ = λ+1 and λ− = (λ+1)−1,
and the corresponding eigenvectors u+ and u− have com-
ponents (λ, 1) and (1,−λ). The eigenvector correspond-
ing to the inflation is u+, so that the ratio u+,1/u+,2 can
be identified with the ratio N i

f/N
i
t for large values of i.

Thus

lim
i→∞

N i
f

N i
t

=
u+,1

u+,2

= λ. (S.3)

We remark that, always in the limit of large i, the number
of vertices (sites)N i

v can be identified with the total num-
ber of tiles N i

tot = N i
f +N i

t . Indeed, N
i
tot−N i

r +N i
v = 1,

where N i
r is the number of ribs, that for a diamond tiling

is equal to twice the number of tiles, N i
r = 2N i

tot. This
leads to N i

v ≃ N i
tot.

By looking at Fig. ??, one can notice that, after a
single inflation, a fat diamond can never give coupled
thin diamonds, while the inflation of a thin diamond does.
Thus the number N i

c of coupled thin diamonds at the i-th
iteration is equal at the number N i−1

t of thin diamonds
at the preceding iteration.

Thus we can write the identity

N i
tot = 3N i−1

f + 2N i−1
t = (3λ+ 2)N i−1

t = (3λ+ 2)N i
c

(S.4)
from which we can deduce the population β1 and β5 of
the first and last bands in the limit of an infinite system:

β1 = β5 =
N i

c

N i
v

= (3λ+ 2)−1 = 5− 3λ. (S.5)

The populations β2 and β4 of the second and fourth
bands are given by the ratio N i

is/N
i
v, N

i
is being the num-

ber of isolated thin diamonds. Taking into account that
N i

t = 2N i
c +N i

is, we get

β2 = β4 =
N i

is

N i
v

= (λ+ 1)−1 − 2(5− 3λ) = 5λ− 8. (S.6)

The population β3 of the third band will be 1 − 2β1 −
2β2 = 7 − 4λ. The 4 values of the gap labelling shown
in Fig. 2 correspond to: N1(E) = β1, N2(E) = β1 + β2,
N3(E) = β1 + β2 + β3 and N4(E) = β1 + β2 + β3 + β4.
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