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Abstract

The problem of fusing beliefs in the Dempster-Shafer belieftheory has attracted consid-
erable attention over the last two decades. The classical Dempster’s Rule has often been
criticised, and many alternative rules for belief combination have been proposed in the lit-
erature. We show that it is crucial to consider the nature of the situation at hand and to
select the appropriate fusion operator as a function thereof. In this paper we present the cu-
mulative rule and the averaging rule of belief fusion, whichrepresent generalisations of the
subjective logic consensus operator for independent and dependent opinions respectively.
The generalised operators are applicable to the combination of general basic belief assign-
ments (bbas). These rules, which can be directly derived from classical statistical theory,
produce results that correspond well with human intuition.
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1 Introduction

Belief theory has its origin in a model for upper and lower probabilities proposed by
Dempster in 1960. Shafer later used the same fundamental framework as a model
for expressing beliefs [1]. The main idea behind the theory of belief functions is to
abandon the additivity principle of probability theory, i.e. that the sum of probabil-
ities on all pairwise disjoint possibilities always equalsone. Instead belief theory
gives observers the ability to assign belief masses to any subset of a state space, i.e.
to non-disjoint possibilities including the whole state space itself. The advantage of
this approach over classical probabilistic modelling is that uncertainty about subset
probabilities, e.g. due to missing evidence, can be explicitly expressed. Uncertainty
can for example be expressed by assigning belief mass to the union of singletons, or
to the whole state space itself. Consistency is preserved byrequiring that the sum
of all belief masses always is one. The difference between probability additivity
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and belief mass additivity is that for probabilities the states must all be mutually
disjoint, whereas for belief masses the states can be overlapping. Shafer’s book [1]
describes many characteristics of belief functions, but the two main elements are 1)
a flexible way of expressing beliefs, and 2) a method for fusing beliefs, commonly
known as Dempster’s Rule.

There are well known examples where Dempster’s rule produces counter-intuitive
results, especially in case of strong conflict between the two argument beliefs. Moti-
vated by this observation, numerous authors have proposed alternative methods for
fusing beliefs, e.g. [2,3,4,5,6,7,8,9]. An overview of belief fusion rules that have
been proposed in the literature is provided in [10]. These rules express different
behaviours with respect to the results of fusing beliefs, but have in general been
proposed with the same basic purpose in mind: to combine two beliefs into a single
belief that reflects the two possibly conflicting beliefs in afair and equal way.

However, situations that may seem similar at first glance canbe very different when
examined more closely, and will therefore require different operators. For example,
the right operator for modelling the strength of a chain is the principle of the weak-
est link. The right operator for modelling the strength of a relay swimming team is
the average strength of each member. Applying the weakest swimmer principle to
assess the overall strength of the relay team might represent an approximation, but
it is incorrect in general, and would give very unreliable predictions. Similarly, ap-
plying the principle of average strength of the links in a chain to assess the overall
strength of the chain might represent an approximation, butit is incorrect in general
and could be fatal if life depended on it. The observation of these simple examples
tells us that it is crucial to properly understand the situation at hand in order to find
the correct model for analysing it.

In our view researchers in the belief theory community have not paid sufficient
attention to analysing the actual situation to be modelled in order to determine
whether Dempster’s rule or any other rule can be correctly applied. Instead, re-
searchers have often tried to assess the merits of fusion operators based solely on
algebraic properties, such as commutativity and associativity, which do not repre-
sent sufficient criteria for judging an operator’s applicability to a particular situa-
tion. For example, no matter how solid the theoretic basis for the average operator
is, it will never represent a correct model for the strength of a chain.

In this article we present two belief fusion operators called the cumulative and
averaging rules of combining beliefs. These rules do not represent an alternative
or competitor to Dempster’s rule because they are applicable in different types of
situations than Dempster’s rule.

The termscumulative ruleandaveraging rulehave explicitly been chosen in or-
der to have descriptive names for the types of situations to which they apply. The
cumulative rule of combination is applicable to situationswhere independent be-
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lief functions are combined as a function of accumulation ofthe evidence. The
averaging rule of combination is applicable to situations where dependent belief
functions are combined as a function of the average of the evidence. This is differ-
ent from Dempster’s rule, where beliefs are combined by normalised conjunction.
It can be shown that non-normalised conjunction corresponds to multiplication of
belief functions, and normalised conjunction correspondsto a series of stochastic
constraints [11] represented by the argument belief functions. This difference will
be illustrated by examples below.

The cumulative and averaging rules can be applied to the combination of general
belief functions, and represents a generalisation of cumulative and averaging fusion
of opinions in subjective logic[5,12,13,14]. The cumulative rule itself is then simply
equivalent to the additive combination of Dirichlet distributions, and the averaging
rule is simply equivalent to the average of Dirichlet distributions. This also provides
an equivalence mapping between Dirichlet distributions and belief functions [15].
In this way, belief fusion in the form of the cumulative and averaging rules is firmly
based on classical statistical theory.

2 Theory of Belief Functions

In this section several concepts of the Dempster-Shafer theory of evidence [1] are
recalled in order to introduce notations used throughout the article. The termframe
of discernmentis used in belief theory with the equivalent meaning of statespace
from probability theory. A frame denoted byΘ = {θi; i = 1, · · ·k} represents a
finite set of exhaustive and exclusive possible values for a state variable of interest.
The termsstates, elementsor outcomeswill be used to denote the state variable. The
frame can for example be the set of six possible outcomes of throwing a dice, so
that the (unknown) outcome of a particular instance of throwing the dice becomes
the state variable. A bba (basic belief assignment1 ), denoted bym, is defined as a
belief distribution function from the powerset2Θ to [0, 1] satisfying:

m(∅) = 0 and
∑

x⊆Θ

m(θ) = 1 . (1)

Values of a bba are calledbelief masses. Each subsetx ⊆ Θ such thatm(x) > 0 is
called a focal element ofΘ.

From a bbam can be derived a set of non-additive belief functionsBel: 2Θ → [0, 1],
defined as:

Bel(x) ,
∑

∅6=y⊆x

m(y) ∀ x ⊆ Θ . (2)

1 Calledbasic probability assignmentin [1], andBelief Mass Assignment(BMA) in [16,5].
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The quantityBel(x) can be interpreted as a measure of one’s total belief committed
to the hypothesis thatx is true. Note that functionsm andBel are in one-to-one
correspondence [1] and can be seen as two facets of the same piece of information.

A few special classes of bba can be mentioned. A vacuous bba has m(Θ) = 1,
i.e. no belief mass committed to any proper subset ofΘ. A Bayesianbba is when
all the focal elements are singletons, i.e. one-element subsets ofΘ. If all the focal
elements are nestable (i.e. linearly ordered by inclusion)then we speak about a
consonantbba. Adogmaticbba is defined by Smets as a bba for whichm(Θ) = 0.
Let us note, that trivially, every Bayesian bba is dogmatic.

The powerset of the frameΘ is defined as2Θ = {xi; xi ⊆ Θ}. We will define the
state spaceX as a special representation of the powerset ofΘ. More precisely, the
setX is defined as:

X = 2Θ\Θ (3)

meaning that all proper subsets ofΘ are elements ofX. By consideringX as a
frame in itself, a general bba onΘ becomes a particular bba onX called aDirich-
let bba. A belief mass on a proper subset ofΘ then becomes a belief mass on a
singleton ofX. In addition we definem(X) = m(Θ). In this way, a Dirichlet bba
on X derived from a general bba onΘ, is characterised by having mutually dis-
joint focal elements, except the whole frameX itself. This is formally defined as
follows.

Definition 1 (Dirichlet bba) Let X be a frame f discernment. A bba where the
only focal elements areX and/or singletons ofX, is called a Dirichlet belief mass
distribution function, or Dirichlet bba for short.

Fig.1 below illustrates a possible Dirichlet bba onX, where the shaded circles
around singletons and the shaded ellipse aroundX represent belief masses on those
subsets. The focal elements in this example areX, x1, x2 andx4.

Figure 1. Example Dirichlet bba, characterised by belief masses on singletons andX

The number of elements inX is |X| = 2|Θ| − 2 when excluding∅. For example,
Fig.1 illustratesX as having cardinality 6, meaning that it is the powerset of a
ternary frame of discernment. The subsets ofΘ and the elements ofX carry the
same belief masses, so is natural to make the correspondenceas simple as possible.
The following example defines a possible correspondence between subsets ofΘ
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and elements ofX:

x1 ←→ θ1, x4 ←→ θ1 ∪ θ2, X ←→ Θ .

x2 ←→ θ2, x5 ←→ θ1 ∪ θ3 ,

x3 ←→ θ3, x6 ←→ θ2 ∪ θ3 ,

(4)

The number of focal elements of a Dirichlet bba onX can be at most|X| + 1,
which happens when every element as well asX is a focal element.

The name “Dirichlet” bba is used because bbas of this type areequivalent to Dirich-
let probability density functions under a specific mapping.A bijective mapping be-
tween Dirichlet bbas and Dirichlet probability density functions is defined in [15],
and is also described in Sec.4 below. Our approach is different from that of Walley’s
Imprecise Dirichlet Model [17] which interprets the situations of frame ignorance
and frame certainty in the Dirichlet model as lower and upperprobability in the
belief model.

3 The Dirichlet Multinomial Model

The cumulative and averaging rules of combination, to be described in detail in the
following sections, are firmly rooted in the classical Bayesian inference theory, and
are equivalent to addition and averaging of multinomial observations respectively.
For self-containment, we briefly outline the Dirichlet multinomial model below,
and refer to [18] for more details.

3.1 The Dirichlet Distribution

We are interested in knowing the probability distribution over the disjoint elements
of a frame based on observed instances of these elements. In case of binary frames,
it is determined by the Beta distribution. In the general case it is determined by
the Dirichlet distribution, which describes the probability distribution over ak-
component random variablep(xi), i = 1, . . . k with sample space[0, 1]k, subject
to the additivity criterion:

k
∑

i=1

p(xi) = 1 . (5)

Note that for any sample from a Dirichlet random variable, itis sufficient to de-
termine values forp(xi) for any k − 1 elementsi of {1, . . . , k}, as this uniquely
determines the value of the remaining variable.

5



The Dirichlet distribution with prior captures a sequence of observations of thek
possible outcomes withk positive real observation variablesr(xi), i = 1 . . . k,
each corresponding to one of the possible outcomes. In orderto have a compact
notation we define a vector~p = {p(xi) | 1 ≤ i ≤ k} to denote thek-component
random probability variable, and a vector~r = {ri | 1 ≤ i ≤ k} to denote the
k-component random observation variable[r(xi)]

k
i=1.

In order to distinguish between thea priori information and thea posterioriev-
idence, the Dirichlet distribution must be expressed with prior information repre-
sented as a base rate vector~a over the frame as well as the non-informative prior
weightC. Eq.(6) represents this Dirichlet Distribution with Prior.

f(~p | ~r,~a) =

Γ

(

k
∑

i=1
(r(xi) + a(xi)C)

)

k
∏

i=1
Γ (r(xi) + a(xi)C)

k
∏

i=1

p(xi)
r(xi)+a(xi)C−1 (6)

The vector~p represents first order probability variables over the elements of X
satisfying Eq.(5), whereas the densityf(~p | ~r,~a) represents the probability of spe-
cific sets of values for the first-order variables. Since the first-order variables~p
are continuous, the second-order probabilityf(~p | ~r,~a) for any given value of
p(xi) ∈ [0, 1] is vanishingly small and therefore meaningless as such. It is only
meaningful to compute

∫ p2

p1
f(p(xi) | ~r,~a) for a given interval[p1, p2] and levelxi,

or simply to compute the expectation value ofp(xi). As will be shown below, this
provides a sound mathematical basis for accumulating and averaging evidence.

Given the Dirichlet distribution of Eq.(6), the probability expectation of any of the
k random variables can now be written as:

E(p(xi) | ~r,~a) =
r(xi) + a(xi)C

C +
∑k

t=1 r(xt)
. (7)

Eq.(6) is useful, because it allows the determination of theprobability distribution
with arbitrary amounts of observation evidence, even without any observations.

The non-informativeprior weightC is set toC = 2 when a uniform distribution
over binary frames is assumed. Selecting a larger value forC will result in new
observations having less influence over the Dirichlet distribution. A distribution is
non-informative when it only reflects knowledge of the frame, and does not reflect
any observation evidence.

It can be noted that it would be unnatural to require a uniformdistribution over
arbitrary large frames because it would make the sensitivity to new evidence arbi-
trarily small. For example, requiring a uniforma priori distribution over a frame
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of cardinality 100, would forceC = 100. In case an event of interest has been
observed 100 times, and no other event has been observed, thederived probability
expectation of the event of interest will still only be about1

2
, which would seem

totally counter-intuitive. In contrast, when a uniform distribution is assumed in the
binary case, and the same 100 observations are analysed, thederived probability
expectation of the event of interest would be close to 1, as intuition would dictate.
The value ofC determines the approximate number of observations of a particular
element in the frame needed to influence the probability expectation value of that
element from 0 to 0.5

It can be noted that according to Walley’s IDM (Imprecise Dirichlet Model) [17]
the upper and lower probability for a statexi are obtained by settinga(xi) = 1
anda(xi) = 0 respectively. The lower probability is thus based on a zero base rate,
and the upper probability is based on a base rate equal to one.The upper and lower
probabilities are then interpreted as the upper and lower bounds for the relative
frequency of the outcome. While this is an interesting interpretation of the Dirichlet
distribution, it can not be taken literally. According to this model, the upper and
lower probability values for an outcomexi are defined as:

IDM Upper probability: P (xi) =
r(xi) + C

C +
∑k

i=1 r(xi)
(8)

IDM Lower probability: P (xi) =
r(xi)

C +
∑k

i=1 r(xi)
(9)

wherer(xi) is the number of observations of outcomexi, andC is the weight of
the non-informative prior probability distribution. It can easily be shown that these
values can be misleading. For example, assume an urn containing 9 red balls and 1
black ball, meaning that the relative frequencies of red andblack balls arep(red) =
0.9 andp(black) = 0.1. Thea priori weight is set toC = 2. Assume further that an
observer picks one ball which turns out to be black. According to Eq.(9) the lower
probability is thenP (black) = 1

3
. It would be incorrect to literally interpret this

value as the lower bound for the relative frequency because it obviously is greater
than the actual relative frequency of black balls. This example shows that there is
no guarantee that the actual probability of an event is inside the interval defined by
the upper and lower probabilities as described by the IDM. The terms “upper” and
“lower” must therefore be interpreted as rough terms for imprecision, and not as
absolute bounds.

The traditional approach in Bayesian analysis is to interpret the combination of
the base rate vector~a and thea priori weight C as representing specifica priori
information such as provided by a domain expert.
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3.2 Visualising Dirichlet Distributions

Visualising Dirichlet distributions is challenging because it is a density function
overk − 1 dimensions, wherek is the frame cardinality. For this reason, Dirichlet
distributions over ternary frames are the largest that can be easily visualised on
paper.

With k = 3, the probability distribution has 2 degrees of freedom, andthe additivity
equationp(x1) + p(x2) + p(x3) = 1, which is an instantiation of Eq.(5), defines a
triangular plane as illustrated in Fig.2.
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Figure 2. Triangular plane

In order to visualise probability density over the triangular plane, it is convenient
to lay the triangular plane horizontally in the X:Y-plane, and visualise the density
dimension along the Z-axis.

Let us consider the example of an urn containing balls that can have the inscription
x1, x2 or x3 (i.e. k = 3). Let us first assume that no other information than the
cardinality of the frame is available, meaning thatr(x1) = r(x2) = r(x3) = 0, and
a(x1) = a(x2) = a(x3) = 1/3. Then Eq.(7) dictates that the expected probability
of picking a ball of any type is equal to the base rate probability, which is 1

3
. Thea

priori Dirichlet density function is illustrated in Fig.3.a.

Let us now assume that an observer has pickedx1 6 times,x2 once andx3 once, i.e.
r(x1) = 6, r(x2) = 1, r(x3) = 1. By assuming a prior weightC = 2 as before,
thea posterioriexpected probability of picking a ball withx1 can be computed as
E(p(x1)) = 2

3
. Thea posterioriDirichlet density function is illustrated in Fig.3.b.

We reuse the example of the urn containing balls with the inscriptionsx1, x2, and
x3, but this time we assume a binary partition ofX into {x1, x1}, i.e. wherex1 =
x2 ∪ x3. The base rate of picking a ball with inscriptionx1 is set toa(x1) = 1

3
as

before because the urn still contains balls of three different types, and the grouping
of statesx2 andx3 is purely technical.

Let us again assume that an observer has picked (with return)x1 6 times, and
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Figure 3. Visualisinga priori anda posterioriDirichlet distributions

{x2 or x3} twice, i.e.r(x1) = 6 andr(x1) = 2.

Since the frame has been reduced to binary, the Dirichlet distribution is reduced
to a Beta distribution which is simple to visualise. Thea priori anda posteriori
density functions are illustrated in Fig.3.2.
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Figure 4. Visualising prior and posterior Beta distributions

Thea posterioriexpected probability of picking a ball with inscriptionx1 can be
computed with Eq.(7) asE(p(x1)) = 2

3
, which is the same as before the coarsen-

ing, as illustrated in Fig.3.b This shows that the coarsening does not influence the
probability expectation value of specific events.

4 Mapping Between Dirichlet Distribution and Belief Distri bution Functions

In this section we will define a bijective mapping between Dirichlet probability
distributions described in Sec.3, and Dirichlet bbas described in Sec.2.
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Let X = {xi; i = 1, · · ·k} be a frame where each singleton represents a possible
outcome of a state variable. It is assumed thatX represents the powerset of a frame
of discernmentΘ according to Eq.(eq:powerset). Letm be a general bba onΘ and
therefore a Dirichlet bba onX, and letf(~p | ~r,~a) be a Dirichlet distribution over
X.

The bijective mapping betweenm and f(~p | ~r,~a) is based on simple intuitive
criteria specified below. The mathematical expressions forthe bijective mapping
can be directly derived from the criteria.

As first criterion we require equality between the pignisticprobability values℘(xi)
derived fromm, and the probability expectation valuesE(p(xi)) of f(~p | ~r,~a). For
all xi ∈ X, this constraint is expressed as:

℘(xi) = E(p(xi) | ~r,~a) ⇐⇒ m(xi) + a(xi)m(X) =
r(xi) + a(xi)C

C +
∑k

t=1 r(xt)
(10)

We also requirem(xi) to be an increasing function ofr(xi), andm(X) to be a
decreasing function of

∑k
t=1 r(xt). In other words, the more evidence in favour of

a particular outcome, the greater its belief mass. Furthermore, the less evidence
available in general, the more vacuous the bba (i.e. the greater m(X)). These in-
tuitive requirements together with Eq.(10) imply the bijective mapping defined by
Eq.(11).

For m(X) 6= 0 :






























m(xi) = r(xi)

C +
∑

k

t=1
r(xt)

m(X) = C

C +
∑

k

t=1
r(xt)

⇐⇒



























r(xi) = Cm(xi)
m(X)

1 = m(X) +
∑k

i=1 m(xi)

(11)

Next we consider the case of zero uncertainty. In casem(X) −→ 0, then necessar-
ily

∑k
i=1 m(xi) −→ 1, and

∑k
i=1 r(xi) −→ ∞, meaning that at least some, but not

necessarily all, of the evidence parametersr(xi) are infinite.

We defineη(xi) as the the relative degree of infinity between the corresponding in-
finite evidence parametersr(xi) such that

∑k
i=1 η(xi) = 1. When infinite evidence

parameters exist, any finite evidence parameterr(xi) can be assumed to be zero in
any practical situation because it will haveη(xi) = 0, i.e. it will carry zero weight
relative to the infinite evidence parameters. This leads to the bijective mapping de-
fined by Eq.(12).
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For m(X) = 0 :


























m(xi) = η(xi)

m(X) = 0

⇐⇒































r(xi) = η(xi)
k
∑

t=1
r(xt) = η(xi)∞

1 =
k
∑

t=1
m(xt)

(12)

In caseη(xi) = 1 for a particular evidence parameterr(xi), thenr(xj) = ∞ and
all the other evidence parameters are finite. In caseη(xj) = 1/l for all j = 1 . . . l,
then all the evidence parameters are all equally infinite.

5 Deriving the Cumulative Rule of Belief Fusion

The cumulative rule is equivalent toa posterioriupdating of Dirichlet distributions,
and is based on the bijective mapping described in the previous section.

Assume a process with possible outcomes defined by the frame of discernmentΘ.
Let X = {xi; i = 1, · · ·k} represent the powerset ofΘ according to Eq.(3). Let
agentsA andB observe the outcomes of the process over two separate time periods,
assuming that they apply the same base rate vector~a to Θ. Let the two observers’
respective observations be expressed as~rA and~rB. The Dirichlet distributions re-
sulting from these separate bodies of evidence can be expressed asf(~p | ~rA,~a) and
f(~p | ~rB,~a)

The fusion of these two bodies of evidence simply consists ofvector addition of~rA

and~rB. In terms of Dirichlet distributions, this can be expressedas:

f(~p | ~rA⋄B,~a) = f(~p | ~rA,~a) ⊕ f(~p | ~rB,~a)

= f(~p | (~rA + ~rB),~a) .
(13)

The symbol “⋄” denotes the cumulative fusion of two observersA andB into a
single imaginary observer denoted asA ⋄B. All the necessary elements are now in
place for presenting the cumulative rule for belief fusion.

Theorem 1 (Cumulative Fusion Rule)
LetmA andmB be bbas respectively held by agentsA andB over the same frame of
discernmentΘ. LetX = {xi; i = 1, · · ·k} represent the powerset ofΘ according
to Eq.(3). LetmA⋄B be the bba such that:
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Case I: For mA(Θ) 6= 0 ∨ mB(Θ) 6= 0 :


























mA⋄B(xi) = mA(xi)mB(Θ)+mB(xi)mA(Θ)
mA(Θ)+mB(Θ)−mA(Θ)mB(Θ)

mA⋄B(Θ) = mA(Θ)mB(Θ)
mA(Θ)+mB(Θ)−mA(Θ)mB(Θ)

(14)

Case II: For mA(Θ) = 0 ∧ mB(Θ) = 0 :


























mA⋄B(xi)= γA mA(xi) + γBmB(xi)

mA⋄B(Θ)= 0

where



























γA= lim
mA(Θ)→0
mB(Θ)→0

mB(Θ)
mA(Θ)+mB(Θ)

γB= lim
mA(Θ)→0
mB(Θ)→0

mA(Θ)
mA(Θ)+mB(Θ)

(15)

ThenmA⋄B is called the cumulatively fused bba ofmA and mB, representing an
imaginary agent[A ⋄B]’s bba, as if that agent represented bothA andB. By using
the symbol ‘⊕’ to designate this belief operator, we definemA⋄B ≡ mA ⊕mB.

In Case II,γA andγB are relative weights satisfyingγA + γB = 1. The default
values areγA = γB = 0.5.

The proof below provides details about how the expression for the cumulative rule
is derived.

Proof 1 Let mA and mB be Dirichlet bbas. The mapping from Dirichlet bbas to
Dirichlet distributions is done according to the right handsides of Eq.(11) and
Eq.(12), expressed as:

mA 7−→ f(~p | ~rA,~a)

mB 7−→ f(~p | ~rB,~a)
(16)

These Dirichlet distributions can now be fused according toEq.(13), expressed as:

f(~p | ~rA,~a)⊕ f(~p | ~rB,~a) = f(~p | (~rA + ~rB),~a) (17)

Finally, the result of Eq.(17) is mapped back to a (cluster) Dirichlet bba again using
Eq.(11). This can be written as:

f(~p | (~rA + ~rB),~a) 7−→ mA⋄B (18)

By inserting the full expressions for the parameters in Eqs.(16), (17) and (18), the
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expressions of Eqs.(14) and (15) in Theorem 1 emerge.

It can be verified that the cumulative rule is commutative, associative and non-
idempotent. The non-idempotence means that cumulative fusion of two equal ar-
gument bbas will result in a different bba. In Case II of Theorem 1 (Bayesian bbas,
which can also be described as dogmatic Dirichlet bbas), theassociativity depends
on the preservation of relative weights of intermediate results, which requires the
additional weight variableγ. In this case, the cumulative rule is equivalent to the
weighted average of probabilities.

It is interesting to notice that the expression for the cumulative rule is independent
of the a priori weight C. That means that the choice of a uniform Dirichlet dis-
tribution in the binary case in fact only influences the mapping between Dirichlet
distributions and Dirichlet bbas, not the cumulative rule itself. This shows that the
cumulative rule is firmly based on classical statistical analysis, and not dependent
on arbitrary choices of prior.

The consensus operator [5,12,16] is a special case of the cumulative rule, and
emerges directly from Theorem 1 by assuming a binary frame.

6 Deriving the Averaging Rule of Belief Fusion

The averaging rule is equivalent to averaging the evidence of Dirichlet distributions,
and is based on the bijective mapping between the belief and evidence notations
described in Sec.4.

Assume a process with possible outcomes defined by the frame of discernment
Θ. Let X = {xi; i = 1, · · ·k} represent the powerset ofΘ according to Eq.(3).
Let two sensorsA andB observe the same outcomes of the process, i.e. over the
same time period, assuming that they apply the same base ratevector~a to Θ. Let
the two sensors’ respective observations be expressed as~rA and~rB. The Dirichlet
distributions resulting from these separate bodies of evidence can be expressed as
f(~p | ~rA,~a) andf(~p | ~rB,~a)

The averaging fusion of these two bodies of evidence simply consists of the average
vector value of~rA and~rB. In terms of Dirichlet distributions, this is expressed as:

f(~p | ~rA⋄B,~a) = f(~p | ~rA,~a) ⊕ f(~p | ~rB,~a)

= f(~p | (~rA+~rB

2
),~a) .

(19)

The symbol “⋄” denotes the averaging fusion of two observersA and B into a
single imaginary observer denoted asA⋄B.
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Theorem 2 Averaging Fusion Rule

LetmA andmB be bbas respectively held by agentsA andB over the same frame
Θ. LetX = {xi; i = 1, · · ·k} represent the powerset ofΘ according to Eq.(3). Let
mA⋄B be the bba such that:

Case I: For mA(Θ) 6= 0 ∨ mB(Θ) 6= 0 :


























mA⋄B(xi) = mA(xi)mB(Θ)+mB(xi)mA(Θ)
mA(Θ)+mB(Θ)

mA⋄B(Θ) = 2mA(Θ)mB(Θ)
mA(Θ)+mB(Θ)

Case II: For mA(Θ) = 0 ∧ mB(Θ) = 0 :


























mA⋄B(xi)= γA mA(xi) + γBmB(xi)

mA⋄B(Θ)= 0

where



























γA= lim
mA(Θ)→0
mB(Θ)→0

mB(Θ)
mA(Θ)+mB(Θ)

γB= lim
mA(Θ)→0
mB(Θ)→0

mA(Θ)
mA(Θ)+mB(Θ)

(20)

ThenmA⋄B is called the averaged bba ofmA andmB, representing the averaging
fusion of the bbas ofA and B. By using the symbol ‘⊕’ to designate this belief
operator, we definemA⋄B ≡ mA⊕mB.

It can be verified that the averaging fusion rule is commutative, and idempotent,
but not associative. The non-associativity means that averaging fusion of three ar-
gument bbas will produce different results depending on which two bbas are fused
first. The cumulative rule represents a generalisation of the consensus rule for de-
pendent opinions [12].

In Case II,γA andγB are relative weights satisfyingγA + γB = 1. The default
values areγA = γB = 0.5.

The proof below provides details about how the expression for the averaging rule
is derived.

Proof 2 Let mA and mB be Dirichlet bbas. The mapping from Dirichlet bbas to
Dirichlet distributions is done according to the right handsides of Eq.(11) and
Eq.(12), expressed as:

mA 7−→ f(~p | ~rA,~a)

mB 7−→ f(~p | ~rB,~a)
(21)

The average of these Dirichlet distributions can now be obtained according to
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Eq.(19), expressed as:

f(~p | ~rA,~a)⊕f(~p | ~rB,~a) = f(~p | (~rA+~rB

2
),~a) (22)

Finally, the result of Eq.(22) is mapped back to a Dirichlet bba again using Eq.(11).
This can be written as:

f(~p | (
~rA + ~rB

2
),~a) 7−→ mA⋄B (23)

By inserting the full expressions for the parameters in Eqs.(21), (22) and (23), the
expressions of Eqs.(20) and (20) in Theorem 2 emerge.

7 Examples

In this section, we will illustrate by examples the results of applying the cumulative
and averaging rules, as well as Dempster’s rule of fusing beliefs. Each example is
chosen to illustrate that it is crucial to select the appropriate rule for modelling a
specific situation.

To make the presentation self contained, we also include thedefinitions of Con-
junctive Rule and of Dempster’s Rule below:

Definition 2 (The Conjunctive Rule) .

[mA ∩©mB](x) =
∑

y∩z=x

mA(y)mB(z) ∀ x ⊆ X. (24)

This rule is referred to as the conjunctive rule of combination, or the non-normalised
Dempster’s rule. If necessary, the normality assumptionm(∅) = 0 can be recovered
by dividing each mass by a normalisation coefficient. The resulting operator known
as Dempster’s rule is defined as:

Definition 3 (Dempster’s Rule) .

[mA ⊙mB](x) =
[mA ∩©mB](x)

1− [mA ∩©mB](∅)
∀ x ⊆ X, x 6= ∅ (25)

The use of Dempster’s rule is possible only ifmA andmB are not totally conflicting,
i.e., if there exist two focal elementsy andz of mA andmB satisfyingy ∩ z 6= ∅.
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7.1 Zadeh’s Example

This well known example was put forward by Zadeh [19] to show that Dempster’s
rule can produce counter-intuitive results when applied toparticular situations.

The averaging rule produces results well in line with intuition when applied to this
example, as will be shown below.

Suppose that we have a murder case with three suspects; Peter, Paul and Mary,
and two witnessesWA andWB who give highly conflicting testimonies. The ex-
ample assumes that the most reasonable conclusion about thelikely murderer can
be obtained by fusing the beliefs expressed by the two witnesses. Table 1 gives the
witnesses’ belief masses in the case of Zadeh’s example and the resulting belief
masses after applying Dempster’s rule. The abbreviations “CR”, “AR” and “DR”
stand for Cumulative Rule, Averaging Rule, and Dempster’s Rule respectively.

WA WB CR AR DR

m(Peter) = 0.99 0.00 0.495 0.495 0.00

m(Paul) = 0.01 0.01 0.010 0.010 1.00

m(Mary) = 0.00 0.99 0.495 0.495 0.00

m(Θ) = 0.00 0.00 0.000 0.000 0.00
Table 1
Zadeh’s example (averaging situation)

In case of Bayesian bbas such as in Zadeh’s example, the cumulative rule and the
averaging rules are equivalent, and represent the weightedaverage of probabilities.

The question now arises whether Zadeh’s example representsa cumulative, an av-
eraging or a conjunctive situation. Said differently, in case the testimonies can be
considered as statistical evidence which is accumulated during the trial, then the cu-
mulative rule should be applied. In case the testimonies should be weighted against
each other to produce a balanced opinion, then the averagingrule should be ap-
plied. In case the testimonies can be considered as two different logical statements
that are to be conjunctively combined as a function of their respective belief values,
then Dempster’s rule should be applied. In our view, an adequate model for the
court case in Zadeh’s example should reflect how a judge or a jury would weigh
the testimonies against each other, which implies that the averaging rule is the best
alternative.
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7.2 Zadeh’s Example Modified

Fusion of highly conflicting beliefs is problematic when applying Dempster’s rule
as in the original Zadeh’s example. Many authors [20] explain this by saying that
problem to certain degree can be remedied by discounting thetestimonies before
being fused, in order to reduce their degree of conflict. Thisapproach is illustrated
by theModified Zadeh’s example[21] below.

By introducing a small amount of uncertainty in the witnesses testimonies (see
Table 2), the cumulative and averaging rules produce different but still very similar
results. Dempster’s Rule now produces almost the same results as the cumulative
and averaging rules, but which are very different from thoseit produced in the
original Zadeh’s Example.

WA WB CR AR DR

m(Peter) = 0.98 0.00 0.4925 0.4900 0.4900

m(Paul) = 0.01 0.01 0.0100 0.0100 0.0150

m(Mary) = 0.00 0.98 0.4925 0.4900 0.4900

m(Θ) = 0.01 0.01 0.0050 0.0100 0.0050
Table 2
Modified Zadeh’s example (averaging situation)

The introduction of a small amount of ignorance in the bbas was sufficient to make
Dempster’s rule produce intuitive results. Although it canbe argued that witness
testimonies should always be considered with a degree of uncertainty, it is prob-
lematic that Dempster’s rule breaks down when the argument bbas are certain as in
the case of Zadeh’s original example. The discontinuity of the results demonstrates
that Dempster’s rule is inappropriate in this situation. The correct model for both
the original and the modified Zadeh’s example is the averaging rule because it does
not produces any discontinuity between the two situations,and because testimonies
of witnesses having observed the same murder should be considered as dependent
statistical evidence.

7.3 Fusing Independent Sensor Evidence

This example will illustrate the fusion of cumulative evidence.

Assume that a GE (Genetical Engineering) process can produce fish eggs that are
either Male (M) or Female (F), and that two sensors observe whether Male and
Female eggs are produced. For the purpose of independence itis here assumed that
the sensors observe the processes at different time periods, which means that none
of the eggs observed by the first sensor are also observed by the second sensor. The
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frame has two elements:Θ = {M, F} and so does the corresponding powersetX
which can be expressed asX = 2Θ\Θ = {M, F}.

Assume that the observations by the two sensors produce equal and non-conflicting
beliefs as given in the Table 3 below over the two time periods:

SA SB CR AR DR

m(M) = 0.99 0.99 0.994975 0.99 0.9999

m(F) = 0.00 0.00 0.00 0.00 0.00

m(Θ) = 0.01 0.01 0.005025 0.01 0.0001
Table 3
Fusion of independent beliefs from two sensors (cumulativesituation)

Applying the cumulative rule and Dempster’s rule to these beliefs results in a reduc-
tion in uncertainty, and a convergence towards the largest belief mass of the sensor
outputs. Applying the averaging rule preserves the values of the input observation
bbas, because both are equal.

Intuitively, fusion should reduce the ignorance because more evidence is taken into
account in this situation. The averaging rule can thereforebe dismissed because it
does not reduce the ignorance.

In case of the cumulative rule, the input beliefs are equivalent to each sensor having
observed 198 Male eggs (r(M) = 198), and no Female eggs (r(F) = 0), with the
uncertainty computed asmA⋄B(Θ) = 2/(r(M) + r(F) + 2) = 0.01. The output
beliefs is equivalent to the observation of2r(M) = 396 Male eggs, with the uncer-
tainty computed asm(Θ) = 2/(396 + 2) = 0.005025. The output uncertainty of
the cumulative rule is thus halved, which is what one would expect in the case of
cumulative fusion.

In case of Dempster’s rule, the uncertainty is reduced to theproduct of the input
uncertainties computed as:

[mA ⊙mB](Θ) = mA(Θ) mB(Θ) = 0.0001 (26)

i.e. by a factor of1/100 which represents a very fast convergence. In fact, when
considering that the amount of evidence has only been doubled, a reduction in
uncertainty by a factor of1/100 is too fast when considering this as a cumulative
situation. When fusing two equal sensor outputs, one shouldexpect the uncertainty
to be reduced by1/2, because the double amount of observations have been made.

The difference in convergence i.e. the rate of uncertainty reduction, is noteworthy,
and clearly illustrates that Dempster’s rule in fact is not applicable to this situation,
even in the case of non-conflicting beliefs. This is because the example describes a
cumulative situation, and that it would be meaningless to model it with a conjunc-
tive fusion rule.
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7.4 Conjunctive Fusion of Beliefs

In this example we consider the case of a loaded dice, whereΘ = {1, 2, 3, 4, 5, 6} is
the set of possible outcomes. An informant has special knowledge about the loaded
dice, and an observer is trying to predict the outcome of throwing the dice based on
hints from the informant.

First the informant provides hintA which says that the dice will always produce an
even number. The observer translates this into the belief massmA({2, 4, 6}) = 1.
Then the informant provides hintB which says that the dice will always produce a
prime number. The observer translates this into the belief massmB({2, 3, 5}) = 1.

Table 4 shows the results of applying the cumulative, averaging and Dempster’s
rule to these bbas.

mA mB CR AR DR

m({2, 4, 6}) = 1.00 0.00 0.50 0.50 0.00

m({2, 3, 5}) = 0.00 1.00 0.50 0.50 0.00

m({2}) = 0.00 0.00 0.00 0.00 1.00

m(Θ) = 0.00 0.00 0.00 0.00 0.00
Table 4
Fusion of hints about loaded dice (conjunctive situation)

The two hints are sufficient to determine that{2} is the only possible outcome. This
result is obtained by conjunctive combination of the input evidence, as dictated by
Dempster’s rule. The conjunctive approach of DR is appropriate in this situation
because the input evidence applies to different and orthogonal focal sets, which
would make it problematic to apply either the cumulative or averaging rules.

The correct answer could be obtained by applying a normalised version of the cu-
mulative rule [22], but this approach should be considered as ad-hoc. The situation
is clearly conjunctive in nature, which means that Dempster’s rule or the conjunc-
tive rule is appropriate.

8 Discussion

The cumulative and averaging rules of belief fusion make it possible to use the the-
ory of belief functions for modelling situations where evidence is combined in a
cumulative or averaging fashion. Such situations could previously not be correctly
modelled within the framework of belief theory. It is worth noticing that the cumu-
lative, averaging rules and Dempster’s rule apply to different types of belief fusion,
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and that, strictly speaking, is meaningless to compare their performance in the same
examples. The notion of cumulative and averaging belief fusion as opposed to con-
junctive belief fusion has therefore been introduced in order to make this distinction
explicit.

There is however considerable confusion regarding the applicability of Dempster’s
rule, which e.g. is illustrated by applying Dempster’s ruleto the court case situation
in Zadeh’s example. Often the problem is to identify which model best fits a partic-
ular situation. The court case of Zadeh’s example intuitively requires an averaging
approach, the fusion of independent evidence from sensors that measure the same
phenomenon intuitively requires a cumulative approach, and logical conjunction of
evidence intuitively requires a conjunctive approach as through Dempster’s rule.

To be more specific about the applicability of Dempster’s rule, the two bbas to
be fused are required to be orthogonal. Being orthogonal means that the bbas are
obtained by deliberately considering different subsets ofthe frame. This is for ex-
ample the case in the application of Dempster’s rule in the framework of Kohlas’
theory of hints [23]. In the example of the loaded dice from Sec.7.4, the informant
deliberately provides only a part of the truth when giving the hints, and each hint
focuses on a specific subset.

The following scenario will illustrate using the cumulative and the averaging fu-
sion rules, as well as Dempster’s rule. Assume again that GE process can produce
Male (M) or Female (F) eggs, and that in addition, each egg canhave genetical
mutation 1 or 2 independently of its gender. This constitutes the quaternary frame
Θ = {M1, M2, F1, F2}. Sensors IA and IB simultaneously observe whether each
egg is M or F, and Sensor II observes whether the egg has mutation 1 or 2.

Assume that Sensors IA and IB have derived two separate bbas regarding the gender
of a specific egg, and that Sensor II has produced a bba regarding its mutation.
Because Sensors IA and IB have observed the same aspect simultaneously, the
bbas should be fused with the averaging rule. Sensor II has observed a different
and orthogonal aspect, so the output of the AR fusion and the bba of Sensor II
should be combined with Dempster’s Rule. This is illustrated in Fig.5.

This result from fusing the two orthogonal beliefs with Dempster’s Rule can now
be considered as a single observation. By combining beliefsfrom multiple obser-
vations it is possible to express the most likely status of future eggs as a predictive
belief. We are now dealing with two different situations which must be considered
separately. The first situation relates to the state of a given egg that the sensors have
already observed. The second situation relates to the possible state of eggs that will
be produced in the future. A bba in the first situation is basedon the sensors as
illustrated inside Observation 1 in Fig.5. The second situation relates to combining
multiple observations, as illustrated by fusing the beliefs from Observation 1 and
Observation 2 in Fig.5.
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Figure 5. Applying different types of belief fusion according to the situation

In order to fuse observations, the bba for each observation must be normalised to
carry the weight corresponding to a single Bayesian observation. This is done by
multiplying all belief masses on proper subsets ofΘ with the factorλ expressed as:

λ =
m(Θ) + C(1−m(Θ))

2C
(27)

The belief mass onΘ is then increased to compensate for the decreased belief
masses on the proper subsets ofΘ. This produces the normalised bba:

m′ :











m(x′
i) = λm(xi)

m′(Θ) = m(Θ) + (1− λ)(1−m(Θ)
(28)

Table 5 provides a numerical example that relates directly to the situations of Fig.5.
Table entries with zero value are omitted. For simplicity itis assumed that Obser-
vation 2 produces the same beliefs as observation 1.

From Table 5 it can be seen that most likely egg in Observation1 is Male with
mutation 1, which is supported with belief massb(M1) = 0.7.

To proceed from the results of DR to the values of Obs.1, the computation of the
normalisation factorλ is required. By using Eq.(27) and settingC = 2 we getλ =
0.498125. By using Eq.(28) the values in the column of Obs.1 can be computed,
which represents the predictive bba resulting from one observation. For simplicity
the bba of Obs.2 is set identical to that of Obs.1. It is then possible to fuse the two
observations with the cumulative rule, as expressed by the rightmost column, to get
a more accurate predictive bba of future observations.

It can be observed that the application of Dempster’s rule inthe examples above
did not require any normalisation. In that case Dempster’s rule is equivalent to the
conjunctive rule of Def.2 could have been used.
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SIA SIB AR SII DR Obs.1 Obs.2 CR

m({M1,M2}) 0.90 0.80 0.875 0.0875 0.0436 id. 0.0583

m({F1,F2}) 0.05 0.05 0.050 0.0050 0.0025 id. 0.0033

m({M1,F1}) 0.80 0.0600 0.0299 id. 0.0400

m({M2,F2}) 0.10 0.0075 0.0037 id. 0.0050

m({M1}) 0.7000 0.3487 id. 0.4667

m({M2}) 0.0875 0.0436 id. 0.0583

m({F1}) 0.0400 0.0199 id. 0.0267

m({F2}) 0.0050 0.0025 id. 0.0033

m(Θ) 0.05 0.15 0.075 0.10 0.0075 0.5056 id. 0.3384
Table 5
Application of different types of belief fusion according to the situations in Fig.5

9 Conclusion

Different situations require different types of belief fusion. We have described the
cumulative and the averaging belief fusion rules which can be used for belief fusion
in situations where Dempster’s rule is inadequate. The two new rules represent gen-
eralisations of the corresponding fusion operators for opinions used in subjective
logic, and have been derived from classical Bayesian analysis through a bijective
mapping between Dirichlet distributions and belief functions.

This simple mapping positions belief theory and statistical theory closely and firmly
together. This is important in order to make belief theory more practical and easier
to interpret, and to make belief theory more acceptable in the main stream statistics
and probability communities.
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