
HAL Id: hal-01078573
https://hal.science/hal-01078573

Submitted on 29 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Efficiency and Performance Management of
Parallel Dataflow Applications

Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond, Johan
Lilius

To cite this version:
Simon Holmbacka, Erwan Nogues, Maxime Pelcat, Sébastien Lafond, Johan Lilius. Energy Efficiency
and Performance Management of Parallel Dataflow Applications. The 2014 Conference on Design &
Architectures for Signal & Image Processing, Oct 2014, Madrid, Spain. �hal-01078573�

https://hal.science/hal-01078573
https://hal.archives-ouvertes.fr

Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Energy Efficiency and Performance Management of
Parallel Dataflow Applications

Simon Holmbacka∗, Erwan Nogues†, Maxime Pelcat†, Sébastien Lafond∗ and Johan Lilius∗
∗Department of Information Technologies, Åbo Akademi University, Turku, Finland

Email: {sholmbac,slafond,jolilius}@abo.fi
†UMR CNRS 6164 IETR Image Group, INSA de Rennes, France

Email: {erwan.nogues,maxime.pelcat}@insa-rennes.fr

Abstract—Parallelizing software is a popular way of achieving
high energy efficiency since parallel applications can be mapped
on many cores and the clock frequency can be lowered. Perfect
parallelism is, however, not often reached and different program
phases usually contain different levels of parallelism due to data
dependencies. Applications have currently no means of expressing
the level of parallelism, and the power management is mostly done
based on only the workload. In this work, we provide means of
expressing QoS and levels of parallelism in applications for more
tight integration with the power management to obtain optimal
energy efficiency in multi-core systems. We utilize the dataflow
framework PREESM to create and analyze program structures
and expose the parallelism in the program phases to the power
management. We use the derived parameters in a NLP (Non
Linear Programming) solver to determine the minimum power
for allocating resources to the applications.

Keywords—Power manager, Multi-core, Application Parallelism,
Dataflow framework

I. INTRODUCTION

Energy efficiency in computer systems is a continuous
coordination between the power dissipation of the used re-
sources and the execution time of the applications. In multi-
core systems energy efficiency is a question of both the time
and space sharing of resources, and is highly dependent on
the application characteristics such as its level of parallelism
(referred to as P-value). Many studies have investigated the
relationship between power dissipation and parallel execution
[1], [11], [17]. The general solution to reach energy efficiency
is to map parallel applications onto several cores to exploit
the parallelism and hence enable clock frequency reduction
without any performance degradation.

The parallelization will, however, in practice be restricted
by the application’s own internal scalability i.e. the P-value(s)
in the application. This factor is a crucial parameter which de-
scribes the application’s behavior and directly influences which
power saving techniques to use and what resources to allocate.
For example, resource control for sequential applications is
only possible by scaling the clock frequency, while parallel
applications are both influenced by the number of available
processing elements and their clock frequency.

To extract the P-value is, however, a non-trivial task since
a) the value depends on the programming techniques, usage
of threads, tasks etc. and b) the P-value usually varies in the
execution phases of the program because of non-parallel paths,

synchronization points etc. This means that resource allocation
should be done differently in different program phases.

Power saving techniques such as DVFS (Dynamic Voltage
and Frequency Scaling) and DPM (Dynamic Power Manage-
ment based on sleep states) can be utilized to bring the CPU
into the most power efficient state, but is currently only driven
by the system workload. This means that hardware resources
can be over allocated even though the application does not
provide useful work. To provide applications with a sufficient
amount of resources, the application performance should be
monitored rather than the CPU workload. For example in
a parallel phase of an application, DVFS and DPM could
be utilized to enable many cores and to reduce their clock
frequency to save power. On the other hand during a sequential
phase, DVFS could be used to increase the clock frequency
on the active core to gain performance, and the unused cores
could be shut down to save power. This interplay between
DVFS and DPM during the program phases is only possible
when describing the program performance and parallelism and
when observing the program progression during runtime.

Rather than providing this information by hand, dataflow
frameworks such as PREESM [16] provides tools for explicit
parallelization by single rate Synchronous Data Flow (SDF)
transforms, which can be exploited for extraction of the P-
value in the program phases. We use this framework to show
how dataflow tools can be used for energy efficient program-
ming and tight integration of the resource management. We
provide the following contributions:
a) We demonstrate the extraction of the P-values at compile-
time with the PREESM framework.
b) The P-values are injected together with QoS (Quality of
Service) parameters at runtime into the program phases to steer
the power saving features of the multi-core hardware.
c) A NLP solver is used to allocate resources with minimum
power dissipation for given QoS requirements.

Our approach demonstrates up to 19% energy savings for
real world applications running on multi-core hardware and
using a standard Linux OS without any modifications.

II. RELATED WORK

Various ways of using parallelization for achieving energy
efficiency have been studied in the past. The key goal has been
to spread out the workload [21] on several cores in order to

lower the clock frequency [9], hence lowering the dynamic
power dissipation while keeping constant performance.

Video applications have been popular use cases to demon-
strate such energy efficiency; Yang et. al. [23] presented smart
cache usage tailored for a MPEG-2 decoder to steer cache
usage for energy efficiency by utilizing application specific
information during runtime. The work in [14] formulated a
rigorous scheduling and DVFS policy for slice-parallel video
decoders on multi-core hardware with QoS guarantees on the
playback. The authors presented a two-level scheduler which
firstly selects the scheduling and DVFS utilization per frame
and secondly maps frames to processors and set their clock
frequencies. In our work, we lift the level of abstraction to
any kind of application while retaining video processing only
as a suitable use-case. Our QoS and power manager is hence
not tied to a certain application or system but is intended as a
more generic solution for energy efficient parallel systems.

Jafri et. al. [11] presented a resource manager which maps
parallel tasks on several cores in case energy efficiency can
be improved. The authors used meta data in the applications
to describe different application characteristics such as task
communication, and based on this data determine the paral-
lelization by calculating the corresponding energy efficiency.
Complementary to this work, we inject meta data in form
of QoS and the P-value, but orthogonally to compile-time
information we address runtime information which requires
no specific compiler knowledge and can be changed during
runtime.

On a fundamental level, energy- and power efficiency is
dependent on the proper balance between static and dynamic
power dissipation of the CPU. Rauber et. al. [17] provided the
mathematical formulation for the scheduling and the usage of
clock frequency scaling to minimize the energy consumption
for parallel applications. The results indicate that execution
on very high clock frequencies are energy inefficient even
though the execution time is minimized. This is a result of the
high dynamic power dissipation when executing on high clock
frequencies and the increase in static power due to high temper-
atures. Similarly in [1], Cho et. al. formulate mathematically
the best balance between dynamic and static power to achieve
minimal energy consumption. We acknowledge these findings
in our work and aim to realize the outcomes by utilizing DPM
and DVFS to obtain minimal power while keeping the QoS
guarantees defined in the applications. Furthermore we also
take the temperature into account, which significantly affects
the static power dissipation [5]. We also create our power
model specifically for a given CPU type, which gives us the
total power dissipation as a function of resource usage.

Finally we evaluate our system on real consumer hardware
to demonstrate the feasibility of integrating the proposed
strategies into real-world applications.

III. QOS & PARALLELISM AWARE STRATEGY

In this work we focus on general streaming applications in
which 1) QoS requirements can be defined and 2) performance
can be measured. An example is a video processing applica-
tion, which processes and displays a video for a set amount
of time. From this application we demand a steady playback
(e.g. 25 frames per second) for the whole execution, but the

execution speed of the internal mechanisms such as filtering
is usually completely dependent on the hardware resource
allocation.

Applications demand resources in order to perform the
intended functionality, which results in a power dissipation
Pw of the CPU over a time t. Since the energy consumption
is the product of Pw and t, an energy efficient execution
is obtained as the product is minimized. The power Pw is
further divided into the sum of the dynamic power Pwd and
the static Pws, hence Pw = Pwd + Pws. The dynamic
power is given by Pwd = C · f · V 2, where C is the
effectively switched capacitance, f is the frequency and V
is the voltage of the processor. The static power consists
mainly of leakage currents in the transistors and increases
with smaller manufacturing technologies and temperature [13].
The static power is hence present during the whole execution
and becomes the dominating power factor as clock frequencies
decrease and execution time increase [1].

The popular (and easily implementable) execution strategy
called race-to-idle [18] was implemented to execute a task as
fast as possible, after which the processor enters a sleep state
(if no other tasks are available). The ondemand (OD) frequency
governor in Linux supports this strategy by increasing the clock
frequency of the CPU as long as the workload exceeds an
upthreshold limit. Race-to-idle minimizes t, but on the
other hand results in high power dissipation Pw during the
execution. A strategy such as race-to-idle will have a negative
impact on energy efficiency if the decrease in time is less
than the increase in power i.e. ∆−t < ∆+Pw compared to
running on a lower clock frequency. Depending on the CPU
architecture and the manufacturing technology this relation
varies, but with current clock frequency levels, is it usually
very energy inefficient to execute on high clock frequencies
[24], [17]. It is also (usually) inefficient to execute on very low
clock frequencies [5] since the execution time becomes large
and the static power is dissipated during the whole execution.

Our strategy is to execute as slow as possible while still
not missing a given deadline; we call it QP-Aware (QoS and
Parallel). Figure 1 Illustrates two different execution strategies
for a video processing application: Part A) illustrates the race-

Fig. 1. Two execution strategies: A) Race-to-idle B) QP-Aware

to-idle strategy in which the operations are executed as fast
as possible for a short time, after which it idles for the rest

of the video frame window. Part B) illustrates the QP-Aware
strategy in which the operations are executed as slowly as
possible while still keeping the frame deadline of the playback.
If the execution time in case A) is twice as fast but the power
dissipation is more than twice as high, case B) will be more
energy efficient. Moreover, frequently switching the frequency
and voltage introduces some additional lag, which also impacts
on the energy consumption.

We argue for the B-type of execution in streaming applica-
tions, in which the application executes on more energy effi-
cient frequency [6] with the appropriate amount of active cores,
which is dependent on the application P-values injections and
the QoS requirements. In the general case a QP-aware strategy
is possible whenever the performance of an application can be
measured, either with an application specific metric such as the
framerate or with a more generic metric such as heartbeats [7].

IV. POWER OPTIMIZER

To set QoS requirements and to scale the performance of
the software according to the requirements of the application,
we implemented a power optimizer to regulate the hardware
such that minimal power is dissipated for the required per-
formance. Current power managers, such as the frequency
governors in Linux, base the resource allocation purely on sys-
tem workload levels. Resources are allocated as the workload
reaches a certain upthreshold, which is usually done on
CPU level rather than on core level. This means that the power
management has no information of the program behavior such
as its parallelism, nor any notion of how the workload should
be mapped on the processing elements.

The structure of our power manager supports: P-value in-
jections and QoS declarations in the applications. The P-values
are easily injected by the programmer with a function call to
a provided power management library for each application.
Similarly, the QoS requirements are set using any performance
metric [8] with a function call to the QoS library.

Applications are provided with an interface to the power
manager, which in turn regulates the power saving techniques
(called actuators) as illustrated in Figure 2. Actuator regulation
is calculated from two defined cost models describing power
and performance. The models are mathematical representations
of the real system used for calculating the effect of resource
usage. Since different chip architectures behave differently
when using various combinations of DVFS and DPM, the
models are easily interchangeable and can be re-engineered for
any chip architecture by a chosen system identification method.
Figure 2 illustrates the information flow from application to
actuator.

Fig. 2. Information flow from application to actuator

The blocks are defined as follows:

1) Applications are normal user space programs con-
nected to the optimizer and are capable of expressing
QoS and P-value(s)

2) The Optimizer determines the optimal combination
of actuator utilization based on the QoS and P-value
inputs from the Applications and the mathematical
cost models

3) Actuators are power saving techniques (DPM and
DVFS), with a degree of utilization determined by
the Optimizer

Figure 3 illustrates the structure of the application ecosystem
together with the power optimizer compared to the default
Linux Completely Fair Scheduler (CFS) Scheduler and the

Fig. 3. Structure of the application ecosystem

ondemand (OD) frequency governor. Compile-time tools such
as PREESM are used to simplify the P-value extraction (Sec-
tion V) and QoS declaration in the applications by automatic
time analysis of the application. While the default CFS+OD
is only able to scale the system according to the workload,
the power optimizer can exploit extracted P-values and QoS
requirements previously defined.

A. System Identification

The key issue for model based control systems is to identify
the system as a mathematical expression used for control
decisions. The model should be as accurate as possible to the
real case, but also remain simple in order to not introduce
unnecessary computational overhead. The system identification
is, in this paper, made for an Exynos 4412 microprocessor
based on the quad-core ARM Cortex-A9 which is an off-
the-shelf microprocessor used in many mobile phones and
tablets. We show in this section how to set up the NLP solver
for minimizing the power dissipation while keeping the QoS
guarantees in the applications.

1) Power model identification: We trained the power model
of the Exynos chip by increasing the frequency and the number
of active cores step-wise while fully loading the system. As
workload we ran the stress benchmark under Linux on four
threads during all tests, which stressed all active cores on the
CPU to their maximum performance.

The dissipated power was measured with hardware probes
for each step and is shown Figure 4. As seen in the figure,
the power dissipation of the chip peaked the highest using
high clock frequency and with many cores. Even though the
stress benchmark does not reflect the power trace of any
application exactly, we still consider its power output as a
sufficiently close compromise.

Since the power trace in Figure 4 is clearly not linear, we
used a similar approach to [19] for deriving our power model.

Fig. 4. Power as function of nr. of cores and clock frequency (fully loaded).
Hot temperature on top and cold on bottom

We denote the control variables for DVFS and DPM as q and
c respectively. Since these variables are only used as control
variables in the optimization algorithm, the variables are unit-
less and chosen in the range [1 - 8] where 1 is minimum
utilization and 8 is maximum utilization of a specific actuator.
The goal is to define a surface as close as possible to the data
values in Figure 4. The third degree polynomial

P (q, c) = p00 + p10q + p01c+ p20q
2 + p11qc+ p30q

3 + p21q
2c

(1)

where pxx are coefficients was used to define the surface.
We used Levenberg-Marquardt’s algorithm [10] for multi di-
mensional curve fitting to find the optimal coefficients, which
minimizes the error between the model and the real data.
Table I shows the derived parameters and Figure 5 illustrates
the model surface with the given parameters. To verify our

TABLE I. COEFFICIENTS FOR POWER MODELS

p00 p01 p10 p11 p20 p21 p30

2.34 0.058 0.598 -0.025 -0.161 0.010 0.012

Fig. 5. Surface of the hot use case derived from Equation 1. Dots are real
data measurements

model we calculated the error difference between the real
data and the derived model. The maximum difference of
10,2% was obtained when using four cores and running on
the highest clock frequency, while the average difference was
only 0.6%. With the rather small average difference and with
a computationally simple model, we considered the model
feasible for our experiments.

2) Performance model identification: In order to determine
which power saving technique to use, the optimizer requires

knowledge on how much it affects the applications. For ex-
ample a sequential program would not gain any performance
by increasing the nr. of cores, while a parallel application
might save more energy by increasing the nr. of cores instead
of increasing the clock frequency. Similarly to the power
model, the performance model is equally flexible and can be
exchanged during runtime.

We modeled DVFS performance as a linear combination
of clock frequency q as:

Perfq(Appn, q) = Kq · q (2)

where Kq is a constant. This means that e.g. 2x increase in
clock frequency models a double in speed-up. Even though
the performance in reality could fluctuate by memory/cache
latencies etc., we consider the approximation in the general
case as close enough.

In contrast to the simpler relation between performance and
clock frequency, modeling the performance as a function of nr.
of cores is more difficult since the result depends highly on
the inherited parallelism and scalability in the program.

To assist the optimizer, we added the notion of expressing
parallelism (P-value) directly in the applications. The program-
mer is allowed to inject the P-value in any phase of a program
in the range [0, 1] where 0 is a completely sequential program
phase and 1 is an ideal parallel program phase. This value can
either be static or change dynamically according to program
phases [20]. Calculating the P-value can be done by using
various methods such as [22], [2], [15], but in this paper we
chose to utilize the functionality of PREESM to automatically
determine the P-value directly from the dataflow graph.

Our model for DPM performance uses Amdahl’s law:

S(N) =
1

(1− P) + P
N

(3)

where P is the parallel proportion of the application and
N is the number of processing units. The final performance
model for DPM is rewritten as:

Perfc(Appn, c) = Kc ·
1

(1− P) + P
c

(4)

where Kc is a constant and c is the number of cores. This
models a higher performance increase as long as the nr. of
cores is low but decreases as the nr. of cores increase. It means
that as more cores are added the speed-up becomes ever more
sub-linear, until increasing performance by DVFS eventually
becomes more energy efficient.

To describe the performance of the whole system we
calculate the sum of both DVFS and DPM performance as:
PerfTot = Perfq + Perfc

B. NLP optimization solver

With the derived models, we adopted a non-linear Se-
quential quadratic programming (SQP) solver for calculating
the optimal configuration of clock frequency and number of
active cores (DVFS vs. DPM) under performance criteria. The
required resources are given as a setpoint S, and the lack of
resources is monitored in the applications and is sent as a

positive error value E to the optimizer. The application can
request more resources by setting a lower bound QoS limit Q,
which indicates the lowest tolerable performance. We set-up
the power optimization problem as follows:

Minimize{Power(q, c)}Subject to:
∀n ∈ Applications :En − (Perfq + Perfc) < Sn −Qn

(5)

where q is clock frequency, c is the number of cores and Perfq
and Perfc is the performance of DVFS and DPM respec-
tively. Sn is the performance setpoint, En is the difference
(error value) between the performance setpoint and the actual
performance and Qn is the lower QoS limit. The optimization
rule states to minimize the power while still providing sufficient
performance to keep above the QoS limit. This is achieved by
setting the actuators (q, c) to a level sufficiently high such that
enough errors En are eliminated for each application n.

Our chosen baseline method implemented the SQP [4]
solver with the plain objective function and side constraints
given in Eq. 5. For a faster solution we added the gradient

function g =

[∂f
∂q

∂f
∂c

]
which approximates the search direction

with a first order system. We also provided the analytical
partial derivatives of the side constraints C =

[
∂C

∂q,∂c

]
to the solver for a more accurate solution, where ∂C

∂q,∂c are
the first order derivative of actuators with respect to the side
constraints.

The SQP solver was implemented in the c-language and
compiled for the ARM platform with -O3. The time for
obtaining a solution for one iteration was timed to roughly
500 - 900 µs on the ARM platform clocked to 1600 MHz,
which is fast enough to not interfere with the system.

V. PARALLELISM AND QOS IN DATAFLOW

For rapid development and a more pragmatic view of the
application, we use the dataflow framework PREESM for the
software implementation. Indeed, the capabilities of dataflow
programming is exposed and we show how such tools can in
practice be used for integration of QoS and P-value extraction
of the applications.

A. Static Dataflow

In many cases a signal processing system can work at
several levels where actors fire according to their in- and output
rates. The concept of SDF graphs for signal processing systems
was developed and used extensively by Lee and Messerschmitt
[3]; it is a modeling concept suited to describe parallelism. To
enlighten the purpose of the discussed method within static
parallel applications, we describe the general development
stages briefly. The first step in the design process is a top-
level description of the application, which is used to express
the data dependency between the actors, so called edges. An
SDF graph is used to simplify the application specifications.
It represents the application behavior at a coarse grain level
with data dependencies between operations. An SDF graph is
a finite directed, weighted graph G =< V,E, d, p, c > where:

• V is the set of nodes.

• E ⊆ V ×V is the set of edges, representing channels
which carry data streams.

• d : E → N ∪ {0} is a function with d(e) the number
of initial tokens on an edge e

• p : E → N is a function with p(e) the number of data
tokens produced at e’s source to be carried out by e

• c : E → N is a function with c(e) representing the
number of data tokens consumed from e by e’s sink
node.

This model offers strong compile-time predictability properties
but has limited expressive capability. Several transformations
are available to transform the base model and optimize the
behavior of the application ([16]).

The Single rate SDF (srSDF) transformation (Figure 6)
transforms the SDF model to an srSDF model in which
the amount of tokens exchanged on edges are homogeneous
(production = consumption), which reveals all the potential
parallelism in the application. As a consequence, the system

Fig. 6. A SDF graph and its srSDF transformation – multi-rate link to is
transformed to several single-rate links to enable parallelism

scheduling can easily benefit of the srSDF to process data
in parallel. The data edges of the original graph is used for
the data synchronization of the exploded graph and is used to
defined sequences of processing from which P-values can be
extracted.

B. Extracting QoS and P-value with PREESM

A flexible prototyping process has an important role in
system architecture to optimize performance and energy con-
sumption. The purpose is to find a way of explore architecture
choices with a good adequacy for the application. PREESM
[16] is an opensource tool for rapid prototyping which au-
tomatically maps and schedules hierarchical SDF graphs on
multi-core systems. Using what is called a scenario (Figure
7), the user can specify a set of parameters and constraints
for the mapping and scheduling of tasks. This restricts for
instance the mapping of an actor on a subset of cores of
the architecture. The workflow is divided into several steps

Fig. 7. Rapid prototyping description to extract QoS and P-value

as depicted in Figure 7, which can be used to extract the
parallelism of the application:

• Single rate transformation (srSDF) exposes the pos-
sible parallelism

• Mapping & Scheduling finds the best adequacy be-
tween the architecture parameters and the application
graph

• Gantt chart generation illustrates the parallelism of
the application as a function of time

• Code generation provides a rapid test code to run on
the platform using the outputs of the previous steps

Dataflow representation increases the predictability of the
applications, which enables an accurate description of the par-
allelism. The PREESM tool was used to generate applications
with different behavior and extract their P-values used by the
Optimizer to design energy efficient systems.

Fig. 8. Extracting P-value from the Gantt chart in PREESM

Figure 8 illustrates different considered behaviors of ap-
plications: the sequential case maps a single actor A on a
single core, while in the parallel case the actor can be divided
up into smaller pieces and executed on all cores. The mixed
application has non-dividable actor A which must be executed
on a single thread before the B actors can execute, which is a
typical behavior in general parallel applications. We extract the
P-value in the range [0.0, 1.0], where 0.0 is a serial sequence
and 1.0 is a ideal parallel sequence for the used hardware
platform. Consequently a value of 0.5 describes a scalability
to half of the processing elements. From the Amdahl’s law
(Eq. 3) and the Gantt chart (Figure 8) we calculate the P-value
as:

P-value = (
1
S − 1
1
N − 1

) (6)

where S is the speed-up factor between the sequential and
optimized applications after parallelization and N > 1 is
the total number of cores. The P-value can furthermore be
calculated as an average of the whole sequence or dynamically
for each sub-sequence for enhanced precision.

VI. EXPERIMENTAL RESULTS

We evaluated a video processing application, which is
a typical streaming application and is dependent on QoS
guarantees to provide a requested playback rate. The evaluation
platform was the previously mentioned quad-core Exynos 4412
board. We implemented and mapped the power optimizer and
its infra structure on Linux (kernel version 3.7.0) with the NLP
solver and communications backbone implemented in the c-
language.

A. Application description

The video processing application consisted of a sequence
of filters and a buffer connected to the display output. With
our designing framework, we added QoS requirements on the
filtering to match the intended playback rate of 25 frames per
second (fps) with an additional small safety margin i.e. 26 fps
to ensure that no framedrops would occur during the playback.
This means that it filters frames with a rate of 26 fps and sleeps
for the remaining (very short) time window; with this behavior,
the filter follows the QP-Aware strategy illustrated in Figure 1
part B rather than executing as fast as possible and then sleep
for a longer time (part A).

To cover the different use cases, we chose three types
of video processing implementations: fully sequential, fully
parallel and mixed-parallel as seen in Figure 8.

For performance evaluation an edge detection algorithm
is used to filter the decoded image. The Sobel filter is an
image transformation widely used in image processing to
detect the edges of a 2-dimensional video. It is a particularly
good application to explore architecture strategies as it can
be made parallel for the filtering part and sequential for
any preprocessing function [12]. Once the data is processed,
the output can be displayed with a real-time video display
at 25 fps. By optimizing the execution time using parallel
processing, the difference between the filtering and displaying
rates can be used for energy optimization.

Fig. 9. Top level description - Original dataflow and after single rate
transformation extracting data parallelism via slicing

Figure 9 shows the system description of an edge detection
sequence for a YUV video. The video is firstly read from a
source (Read YUV) after which it passes through a sequence
of filters and finally is displayed (Display). The filtering part
can be parallelized by multi-threaded execution [12] since the
picture on which the filter is applied can be divided into several
slices without internal data dependencies as seen in the right
part of Figure 9. The DC Cancellation filter is an optional
choice for preprocessing the video. This algorithm cannot be
parallelized and was added to the third use-case, the mixed-
parallel application, in order to force mixed parallelism into the
application. In the other use-cases, this filter was not applied.

The three applications were generated automatically using
PREESM. The P-values were injected into the automatically
generated code by adding function calls for sending the P-
values to the optimizer. For fully serial sequences, we injected
P = 0.0, which (according to Amdahl’s law) means a
scalability up to 1 core in the 4 core system. For completely

parallel sequences we naturally injected P = 1.0, and for
mixed sequences we injected P values according to Eq. 6. With
these setups we ran the three different use-cases with both the
default CFS+OD and the optimizer for a 5-minute run.

B. Sequential application

We firstly evaluated the sequential implementation of the
application in order to have a reference for comparison. The
sequential application run only a single threaded Sobel filter
(Figure 9) after which the frame is displayed. Figure 10

Fig. 10. Power trace from the sequential application using default CFS and
with power optimizer

shows the power trace from a 500 sample part of the run. As
predicted, the CFS with the OD governor decodes the video
very fast for a given time after which it idles for the rest of
the time frame. This is clearly seen in the figure as the power
dissipation of the CFS+OD case oscillates heavily. By using
the optimizer, the power dissipation is more stable and the
average power dissipation is much lower partly by using the
QP-Aware strategy and partly by disabling the unused cores.

C. Parallel application

The second application performed the same functionality
as the sequential case, but with the Sobel phase parallelized
and mapped on all four cores as the parallel case in Figure
8 and 9. This configuration would (in theory) speed-up the
software roughly four times, which would allow the power
saving features to scale down the hardware resources to save
power. Figure 11 shows interestingly roughly the same power

Fig. 11. Power trace from the parallel application using default CFS and
with power optimizer

output for the optimized case compared to Figure 10. This
is because the static power increase when using more cores is
almost identical to the dynamic power decrease of reducing the
clock frequency – this is an occurring phenomenon as systems
run on very low clock frequencies with many cores [5]. The
situation could be improved by fine tuning the power model

to enable higher precision. The CFS+OD case, on the other
hand, shows more power reduction since the workload of the
cores most of the time is below the upthreshold limit for
the OD governor.

D. Mixed-parallel application

The third use-case was the mixed-parallel application with
a serialized DC Cancellation filter added before the parallel
Sobel filter. This means that the filtering job will be more
computational heavy than in the previous two cases. We
profiled the execution with gprof, with the timing portion
of 66% for the DC Cancellation filter and 25% for the Sobel
filter.

We evaluated this use-case with both the Average P-value
for the whole sequence and with Dynamic P-values for each
sub-sequence. For the first case we calculated the average
speed-up and injected the P-value P = 0.53 according to Eq. 6.
For the dynamic case we injected P = 0.0 on the serial phase
and P = 1.0 on the parallel phase. Figure 12 shows three

Fig. 12. Power trace from the mixed parallel application using default CFS
and with power optimizer

power traces: The CFS+OD case oscillates heavily as predicted
according to the race-to-idle strategy. By using one average P-
value the power dissipation becomes more stable and is on
average significantly lower than the CFS+OD case. By further
fine tuning the application with dynamic P-values, the power
optimizer is able to better scale the hardware according to the
different program phases. The optimizer increases the clock
frequency and shuts down cores during the serialized phase,
and enables the cores during the parallel phase and decreases
the clock frequency.

We also mapped the mixed application to a single thread in
order to illustrate the power savings of using parallel hardware.
Figure 13 shows a rather steady power trace when mapping
both the DC cancellation filter and the Sobel filter on the same
core. Both the optimized case and the ondemand case show a
higher average power dissipation than the partly parallel case
(in Figure 12) since the CPU is forced to run on the higher
clock frequencies.

Table II shows the total energy consumption for all use-
cases and the energy savings by using the optimizer in the
last row. The energy reductions is the result of allowing
applications to better express intentions and behavior. By fine
tuning the application to use dynamic P-values, the energy
consumption can be further decreased as the optimizer is able
to scale the hardware more close to the software requirements.
The optimized case was at most able to save as much as 19%
for executing the same amount of work as the CFS+OD case,
which can be considered as significant.

Fig. 13. Power trace from the mixed parallel application using default CFS
and with power optimizer running on one thread

TABLE II. ENERGY CONSUMPTION (IN JOULES) FOR A 5 MIN RUN

Serial Parallel Mixed
CFS+ondemand 839.31 735.21 1089.8
Optimized (avg. P) 705.03 719.91 936.1
Optimized (dyn. P) n/a n/a 874.4
Energy savings (avg. P) 16.0% 2.1% 14.1%
Energy savings (dyn. P) n/a n/a 19.8%

VII. CONCLUSIONS

Parallelism in software is an important parameter for ef-
ficient power management in multi-core systems. It describes
the possible utilization of multiple processing elements which
determines the relation between dynamic and static power
dissipation. Today’s power managers do not consider the static
power dissipation of enabling cores which becomes more
significant as the manufacturing technologies decrease and the
amount of cores on a chip increase. To optimize for energy
efficiency, applications should be able to express the level of
parallelism (P-value) in order to select the appropriate amount
of cores to execute on.

We have, in this paper, demonstrated an approach to
integrate fast parallel software directly with the power man-
agement by injecting QoS guarantees and the P-value into the
software as meta data to the power manager. In the presented
use-case, the P-values are extracted by a dataflow programming
framework, PREESM, and is injected into code segments
and used as a parameter in a NLP optimization problem for
minimizing total power. With our approach supporting energy
efficient programming we can a) find the necessary perfor-
mance required for an application and b) allocate resources
optimally in multi-core hardware.

REFERENCES

[1] S. Cho and R. Melhem. On the interplay of parallelization, program per-
formance, and energy consumption. Parallel and Distributed Systems,
IEEE Transactions on, 21(3):342–353, 2010.

[2] A. Cristea and T. Okamoto. Speed-up opportunities for ann in a time-
share parallel environment. In Neural Networks, 1999. IJCNN ’99.
International Joint Conference on, volume 4, pages 2410–2413 vol.4,
1999.

[3] D. M. E. Lee. Static scheduling of synchronous data-flow programs
for digital signal processing. IEEE Transactions on Computers, pages
24–35, 1987.

[4] P. E. Gill, W. Murray, Michael, and M. A. Saunders. Snopt: An sqp
algorithm for large-scale constrained optimization. SIAM Journal on
Optimization, 12:979–1006, 1997.

[5] F. Hällis, S. Holmbacka, W. Lund, R. Slotte, S. Lafond, and J. Lilius.
Thermal influence on the energy efficiency of workload consolidation
in many-core architectures. In Digital Communications - Green ICT
(TIWDC), 2013 24th Tyrrhenian International Workshop on, pages 1–
6, 2013.

[6] M. Haque, H. Aydin, and D. Zhu. Energy-aware task replication
to manage reliability for periodic real-time applications on multicore
platforms. In Green Computing Conference (IGCC), 2013 International,
pages 1–11, 2013.

[7] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and
A. Agarwal. Application heartbeats for software performance and
health. SIGPLAN Not., 45(5):347–348, Jan. 2010.

[8] S. Holmbacka, D. Agren, S. Lafond, and J. Lilius. Qos manager for en-
ergy efficient many-core operating systems. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromicro International
Conference on, pages 318–322, 2013.

[9] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivastava.
Power optimization of variable voltage core-based systems. In Design
Automation Conference, 1998. Proceedings, pages 176–181, 1998.

[10] K. Iondry. Iterative Methods for Optimization. Society for Industrial
and Applied Mathematics, 1999.

[11] S. Jafri, M. Tajammul, A. Hemani, K. Paul, J. Plosila, and H. Ten-
hunen. Energy-aware-task-parallelism for efficient dynamic volt-
age, and frequency scaling, in cgras. In Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013
International Conference on, pages 104–112, 2013.

[12] N. Khalid, S. Ahmad, N. Noor, A. Fadzil, and M. Taib. Parallel approach
of sobel edge detector on multicore platform. International Journal of
Computers and Communications Issue, 4:236–244, 2011.

[13] N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin,
M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets
static power. Computer, 36(12):68–75, 2003.

[14] N. Mastronarde, K. Kanoun, D. Atienza, P. Frossard, and M. van der
Schaar. Markov decision process based energy-efficient on-line schedul-
ing for slice-parallel video decoders on multicore systems. Multimedia,
IEEE Transactions on, 15(2):268–278, 2013.

[15] A. M’zah and O. Hammami. Parallel programming and speed up
evaluation of a noc 2-ary 4-fly. In Microelectronics (ICM), 2010
International Conference on, pages 156–159, Dec 2010.

[16] M. Pelcat, J. Piat, M. Wipliez, S. Aridhi, and J.-F. Nezan. An open
framework for rapid prototyping of signal processing applications.
EURASIP journal on embedded systems, 2009:11, 2009.

[17] T. Rauber and G. Runger. Energy-aware execution of fork-join-based
task parallelism. In Modeling, Analysis Simulation of Computer
and Telecommunication Systems (MASCOTS), 2012 IEEE 20th
International Symposium on, pages 231–240, 2012.

[18] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch. Adagio: Making dvs practical for complex hpc
applications. In Proceedings of the 23rd International Conference on
Supercomputing, ICS ’09, pages 460–469, New York, NY, USA, 2009.
ACM.

[19] M. Sadri, A. Bartolini, and L. Benini. Single-chip cloud com-
puter thermal model. In Thermal Investigations of ICs and Systems
(THERMINIC), 2011 17th International Workshop on, pages 1–6, 2011.

[20] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discov-
ering and exploiting program phases. Micro, IEEE, 23(6):84–93, Nov
2003.

[21] I. Takouna, W. Dawoud, and C. Meinel. Accurate mutlicore pro-
cessor power models for power-aware resource management. In
Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE
Ninth International Conference on, pages 419–426, 2011.

[22] C. Truchet, F. Richoux, and P. Codognet. Prediction of parallel speed-
ups for las vegas algorithms. In Parallel Processing (ICPP), 2013 42nd
International Conference on, pages 160–169, Oct 2013.

[23] C.-L. Yang, H.-W. Tseng, and C.-C. Ho. Smart cache: an energy-
efficient d-cache for a software mpeg-2 video decoder. In Information,
Communications and Signal Processing, 2003 and Fourth Pacific Rim
Conference on Multimedia. Proceedings of the 2003 Joint Conference
of the Fourth International Conference on, volume 3, pages 1660–1664
vol.3, 2003.

[24] D. Zhi-bo, C. Yun, and C. Ai-dong. The impact of the clock frequency
on the power analysis attacks. In Internet Technology and Applications
(iTAP), 2011 International Conference on, pages 1–4, 2011.

