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Constrained spacecraft relative motion

using non negative polynomials
Georgia Deaconu' and Christophe Louembet? and Alain Théron?
CNRS; LAAS; 7 avenue du colonel Roche, F-31400 Toulouse; France

Univ de Toulouse; UPS, LAAS; F-31400 Toulouse; France

The article presents a new method for designing an optimal plan of impulsive maneu-
vers for spacecraft rendezvous that accounts for the presence of continuous constraints
on the relative trajectory. Impulsive control and continuous constraints are brought
together through the parameterization of the spacecraft relative positions between two
consecutive maneuvers. By using a variable change and a polynomial approximation
of the integral term in the expressions of the relative positions, the continuous con-
straints on the trajectory can be transformed into non negativity constraints of some
polynomials on a given interval. The resulting optimal control problem is solved using

semi-definite programming.

I. Introduction
In the recent years, the needs and requirements of spacecraft on-orbit servicing missions have
been thoroughly analysed [1]. This kind of operations demand flexible control algorithms, capable
of handling the type of hard constraints associated to spacecraft proximity maneuvers. During
close vicinity rendezvous operations, in addition to the input constraints usually considered, hard
constraints on the trajectory must also be addressed [2-5]. If, for instance, the LIDAR sensor is

used in the estimation of the spacecraft relative state, the limited field of view of the equipment
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must be accounted for. This usually translates in constricting the rendezvous trajectory to remain
within the visibility cone of the sensor [6-8].

The ability of the spacecraft to hover inside a specified volume in a fuel optimal manner is
also a major feature in the on-orbit servicing missions. Target monitoring introduces some hard
constraints on the relative trajectory since it requires for the chaser spacecraft to remain in a
specified zone defined in the target-centered frame. This problem has been recently studied by
[9, 10] with the purpose of maximizing the time spent by the spacecraft in a specified cylindrical
region. The hovering capabilities are also used during the ATV (Automated Transfer Vehicle) flights
to the International Space Station. For these missions, the rendezvous trajectory consists of several
way-points that the spacecraft must reach and where it must wait for the authorisation to proceed
[11]. The spacecraft is in fact placed on a periodic parking orbit around the desired waiting point
since it is more efficient from a fuel consumption point of view than maintaining a fixed position.
In this paper, the hovering operation refers to periodic relative orbits exclusively since they allow
the chaser spacecraft to remain inside the specified region on an infinite time horizon with no fuel
consumption.

The previous examples have in common the necessity of imposing constraints on the spacecraft
relative trajectory. They express the need for a generic algorithm that can provide rigorous solutions
to the constrained optimal control problems that follow from these different guidance scenarios. An
algorithm that can be used for the design of such constrained spacecraft relative trajectories is
presented in this paper.

The spacecraft relative motion with respect to arbitrary elliptical orbits was investigated by
Tschauner and Hempel in [12]. A transition matrix that enables the usage of the closed form
solutions for the spacecraft relative motion was presented in [13]. Conventional methods use this
tool and the discretization of the constraints in order to obtain a desired relative trajectory: the
relative motion is propagated at specified instants where the trajectory constraints are explicitly
checked [5]. The main advantage of these methods is that they transform the optimal control
problem into a tractable program. However, they do not account for the behaviour of the obtained

trajectory in between the discretization points and violations of the constraints might occur on these



intervals.

Precise parametric characterisation of the geometry of the spacecraft relative trajectories would
enable the designer to choose only those that continuously satisfy the given set of guidance con-
straints. Works in this area focused mainly on the case of periodic relative motion. Periodic
trajectories can be obtained by imposing the equality between the semi-major axes of the spacecraft
orbits [14]. A periodicity condition valid for the Cartesian non-linear model of relative motion was
proposed by Gurfill in [15]. However, the periodicity condition alone does not provide any insight
with respect to the geometry of the obtained trajectory and further investigations are necessary.
Analytical expressions for the the minimum and the maximum distance between two spacecraft on
elliptical orbits are given in [16] as a function of the orbital elements of the satellites. An eighth
degree trigonometric polynomial must be solved in order to obtain the true anomalies correspond-
ing to the worst case extremal distances, rendering the method too complex and too conservative
to be used within a guidance algorithm. A step forward into the study of the geometry of the
spacecraft relative motion was achieved in [17] where the effects of the eccentricity on the shape
of the periodic trajectories are analyzed by means of a parametrization of the relative motion. A
similar parametrization is presented in [18] in order to show that when satellites on elliptical orbits
are considered the relative periodic trajectories are usually three-dimensional and then compute
the number of self-intersections. In [19], the periodic trajectory is expressed as a function of the
difference between the spacecraft orbital elements but the extremal separation distances are analyti-
cally calculated only for some particular cases. A constraints-discretization based method is used in
[20] in order to obtain periodic relative trajectories that respect the imposed dimension constraints.
The results present the same benefits and drawbacks inherent to this types of methods that were
previously mentioned.

It becomes clear that the geometry of spacecraft relative periodic orbits can be studied using
different kinds of parametric representations. While some interesting conclusions can be drawn, these
parametrizations still lack a clear link between the parameters and the dimensions of the resulting
trajectories in the general case. We propose a parametric representation for the spacecraft relative

position that is based on the Yamanaka-Ankersen transition matrix [13] and we show how it can be



used for designing constrained relative trajectories. The vector of parameters is directly linked to the
initial conditions of the relative motion of the satellites through a linear function and the periodic
motion can be treated as a particular case by requiring one of the parameters to be zero. In our
approach, the linear constraints imposed on the spacecraft relative trajectory are translated into a
linear relation between the proposed vector of parameters and the cone of the positive semi-definite
matrices. The obtained solution is guaranteed to satisfy the trajectory constraints continuously
in time. This represents a major improvement over the conventional discretization based methods
which, for a similar algorithmic complexity, require a specific a posteriori checkout procedure in
order to validate the solution. Furthermore, in the case of periodic relative motion, the proposed
approach provides an analytical description of the set of states belonging to periodic trajectories
that respect a given set of linear constraints.

The article is organized as follows. Section II presents the parametrization for the spacecraft
relative trajectory, with the highlight on the link between the vector of parameters and the main
design parameter, the initial spacecraft relative state. Rational expressions are given for the relative
motion by using an appropriate variable change and a polynomial approximation of the drifting term
J of the Yamanaka-Ankersen transition matrix. In section III the spacecraft rendezvous guidance
problem is stated as an optimal control problem with impulsive input under saturation constraints
and under continuous state constraints. By using the rational expressions for the relative motion,
the constraints on the state are translated into non negativity constraints on some polynomials.
Results on non negative polynomials are then used to formulate the guidance problem as a semi-
definite program. In section IV, several examples demonstrate the large range of rendezvous guidance

problems that can be addressed using the proposed method.

II. Parameterization of the spacecraft relative motion
Consider two spacecraft on arbitrary elliptic Keplerian orbits, one spacecraft called the leader
and the other called the follower or the chaser. The spacecraft are depicted as My, and Mg respec-
tively in figure 1. The true anomaly v expresses at each moment the position of the leader on its

orbit and it is measured in the perifocal basis (}3 , Q, W) The relative dynamics are projected in a



rotating Cartesian local-vertical/local-horizontal (LVLH) basis attached to the leader, (Zr, %L, ZL)

in figure 1.
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Fig. 1: The local LVLH frame attached to the leader and the spacecraft relative position

We assume that the distance between the leader and the follower spacecraft is much smaller

than the distance between the leader and the center of the Earth. In this case, the linearized

spacecraft relative motion expressed in the leader’s LVLH frame can be described using the well-

known Tschauner-Hempel equations:

i 2Dz’+ﬂz+v2x—%x+ux
.. 1
i=-—gmytu (1)
Z = —QDx'—Da:—l—z'/Qz—F?ﬁz—Fu
R3 ‘
where p is the gravitational constant of the Earth,
2
. H A2 _a(l=-é)
V= m(l—keco&u), R=———=

2
1+ ecosv @)

and a and e are the semi-major axis and the eccentricity of the leader spacecraft. To obtain a

simplified form of equations (1), the independent variable can be changed from the time to the

leader’s true anomaly v through:



and the following variable scaling can be introduced:

z x T x T
. 1+ ecosv
g| =@ +ecosv) |y|, |§| =—esinv |y —l—f g (4)
z 2 Z z z
This leads to the following equations for the relative motion:
" = 27 + iy
g = —j+1y, (5)
3
M= ———— 227 41,
1+ ecosv

Starting from equations (5), Yamanaka and Ankersen [13] presented a transition matrix that can be
used for the propagation of the relative motion starting from an initial state X (vp), under impulsive

control AV:
X(v) = @4 X(v) + @Y, BAV;. (6)

where X (v) = [Z(v) §(v) 2(v) #(v) ¥ (v) Z(v)]T. The matrix B is given by B = [03 I3]T, since the
effect of the impulsive control is modelled as an instantaneous change in the relative speed.

Based on the definition of the transition matrix given in [13], a parametrization for the spacecraft
relative positions is presented next. This parametrization is then used for designing impulsive
maneuvers leading to spacecraft relative trajectories that respect continuously in time different

types of linear constraints that are usually associated to spacecraft proximity operations.

A. Non periodic spacecraft relative motion
The evolution of the spacecraft relative trajectory between two consecutive impulsive controls,
applied at 1y and vy respectively, can be seen as the open loop propagation of the relative motion

starting from the state right after that the first impulse is fired:

X(v) =@ (X(v0) + BAVy) = @5 X (), v € [0, v] (7)



Starting from the definition given in [13] for the transition matrix ®, the parametric equations for
the autonomous relative trajectory are given by:

(2 + ecosv)(dy sinv —dg cosv) +ds +3dy J(v) (1 + ecosv)?

ds cosv + dg sinv

(1+ ecosv)(dy sinv +dy cosv) —3edy J(v) sinv (1 4+ ecosv) + 2dy
where the independent variable v belongs to [, vy¢] and the vector of parameters D =

[dy da d3 dy ds dg]T depends linearly on Xo = X+(V0), the relative state from which the satel-

lites motion is propagated:

D = C(n) Xo (9)
where:
0 0 3(e+cosv) —(2 cos v+e cos? vte) 0 sin v(14-e cos v)
e2—1 e2—1 e2—1
0 0 3sin v(14e cos v4e?) —sinv(2+ecosv) 0 —(cos v+e cos® v—2¢)
(e2—1)(1+ecosv) e2—1 e2—1
1 0 —3esinv(24ecosv) esinv(2+ecosv) 0 e? cos® v+ecosv—2
(e2—1)(14+ecosv) e2—1 e2—1
Cv) = (10)
0 0 —(3ecos v+e?42) (1+ecosv)? 0 —esinv(l+ecosv)
e2—1 e2—1 e2—1
0 cosv 0 0 —sinv 0
0 sinv 0 0 cos v 0

The relative motion on the y axis is naturally periodic, while the motion in the orbital plane is
defined by a combination between periodic trigonometric terms and a drifting term denoted J(v).

This latter grows linearly in time and expressed as a function of the independent variable v is given

by:
v dr n(t —to)
J(v) = / - (11)
v (I+ecosT)? (1 —e2)3/2
The following variable change can be used in order to remove the trigonometric terms in (8):
t (V) il sinv 2w (12)
w=tan (-] cosv= =
2 14+ w? 14+ w?



Thus the parametric equations of the relative motion become:

) = s o)+ 3ds Py () T(w)
Jw) = = Pyw) (13)

Hw) = m [P (w) + 2dy Py (w) J(w)]

where w € [wo, wy] and:
w 27242
J(w):/wo or e ™ (14)
4 ‘ 2 ) 4 )

Px(w) = me wl; Py(U}) = ZPW wlv Pz(w) = me wlv (15)

=0 =0 =0
Pro(w) = (1+€) + (1 —e)w?)®, Pr(w)=—3e((1+e)+ (1 —e)w?) w (16)

]T ]T and p, = [on Pz1 Pz2 P23 pz4]T of

The coefficients Pz = [pa:O Pz1 Px2 Px3 Pz4| 5, Py = [py() DPy1 Dy2

the polynomials P, (w), Py(w) and P.(w) respectively depend linearly on the vector of parameters

D:
Pe=CeD py=CyD p.=C.D (17)
with:
0 -2-¢1000 e+l 0 0200
442 0 0000 0000 1 0 0 2+20000
C.=1| o 2 2000l Cy=l0000 0 2| Co:=| -2 0 0400 (18
4—2% 0 0000 0000 —10 0 2-2¢0000
0 2-¢ 1000 e—1 0 0200

Hence the coefficients of these polynomials depend linearly on X, the relative state starting from
which the satellites motion is propagated.

The presence of the drifting term J causes the spacecraft relative trajectory to have an irrational
form, regardless of whether the variable v or the variable w is used. Analytical rational expressions

for the relative motion are instead needed in order to impose continuous constraints on the relative



trajectory. They could allow the extension of the technique we developed in [21] to the case of non
periodic relative motion. One way of obtaining the necessary rational expressions is presented next

and it is based on using a polynomial approximation of the term J.

B. Polynomial approximations for the drifting term J(w)

The closed form expression of the integral (14) is given by:

Ve—1 s
) - 96w B 2 arctanh<ﬁw>
(e2—1)((1—-e)w?+e+1) (62_1)%

wo

O, (w) respectively, such that: It must be noted that the interval on which J(w) may be approxi-

mated by a polynomial must be a finite subset of R. In fact, J(w) is discontinuous on the bounds

of its definition set i.e. lim J(w) # lim J(w) since lim arctanh(t) # lim arctanh(¢). Con-
w——00 w—~+00 t——1 t—+1

sequently, no polynomial or rational function can approximate J(w) on R. If the term J(w) is

replaced in (13) by a polynomial approximation O, (w), valid on a finite interval W = [wq, wy],

then the expressions describing the spacecraft relative trajectory become rational:

~ 1

x(w) = m [ng(w) +3dy PJm(w) @T(w)]

J(w) = 1+1w2 By(w) Y € [wo, wy] (19)
_ 1

z(w) = m [PZ(U/) +2dy PJz(w) Gr(w)]

Recent results from [22] show that a fixed-degree polynomial approximation ©, (w) with a certified

mazimum error can be obtained for the term J(w):

J(w) = 0, (w) + e(w) (20)
where ©,. is of degree r and for wg = tan % we have:

O, (wp) = J(wp) =0

The certified maximum error € provided by the algorithm in [22] € = max e(w) is used in order to
we

obtain upper and lower polynomial bounds on the term J(v):

O;(w) < J(w) < Oy(w), Yw € W = [wy, wy] (21)



and

C. Periodic spacecraft relative motion

From expressions (8) it can be noticed that the influence of the non periodic term J(w) on the
relative trajectory depends on the value of the parameter dy. A periodic relative trajectory may be
obtained by requiring the parameter d4 to be zero and thus removing the drifting term. Imposing
dy = 0 in (9) leads to a linear periodicity constraint on the relative state starting from which the

spacecraft motion is propagated:
M(V()) X() =0 (23)
where the matrix M (v) € R'*6 is defined by:

M) =10 0 3ecosv+e2+2 —(1+ecosv)? 0 esinv(l+ ecosv) (24)

Assuming that the initial state X satisfies the constraint (23), the trigonometric expressions for

the propagation of the periodic trajectory are given by:

Z(v) = (2+ecosv)(d] sinv —df cosv) + df
g(v) = d& cosv+ dE sinv , W= (25)
Z(v) = (1 +ecosv)(ds sinv + df cosv)

where the vector of parameters D, = [d} db db df d%]T is obtained from the substitution in (9) of

the periodicity condition (23):

D, = Cy() Xo (26)
and:
0 0 Pgmemesr 0 0 iy
sin v(14-2e cos v) cosv
0 0 (1+ecosv)? 0 0 1+ecosv
— esinv(2+ecosv) 2+ecosv
Gv)= |1 o e g 2becoy &7
0 cosv 0 0 —sinv 0
0 sinv 0 0 cosv 0

10



Introducing the variable change (12) in equations (25) leads to very similar expressions with respect

to the non periodic case. As expected, these expressions no longer contain the term J(w):

1 1 1

mpmp(w), g(w) = mPy(w), Z(w) = m

i(w) = Py (w). (28)

The coefficients of the polynomials P,,(w) and P,,(w) depend linearly on the initial state of the

propagation of the periodic motion through the vector of parameters D,:

Pzp = Ce Dp Pzp = C. Dp (29)

where matrices C, and C, are defined in (18).

It is important to notice that in the periodic case the expressions for the relative positions are purely
rational. Approximations are no longer required since the drifting term J(w) has been removed.
Expressions (28) are the same as those presented in [21] and we showed here that they are just a

particular case of a more general parametrization of the spacecraft relative trajectory.

ITII. Constrained spacecraft relative trajectory design

The previous section showed that the spacecraft relative motion between two impulsive controls
can be parametrized with respect to the state immediately after the first thrust: X+ (1) = X (1) +
B AV,. Thus the choice of AV; plays a crucial role in obtaining a trajectory that continuously
satisfies a specified set of constraints on the interval between the two consecutive controls. A new
method for calculating the impulsive control AV leading to admissible trajectories is presented.
The method is based on the previously developed parametrization for the relative motion. Let us
assume that the constraints on the spacecraft relative path can be written in the general form of

linear inequalities:

where V € R®%3, K € R®, s is the number of constraints and K = (14 ecosv)K since the usage of

the variable change (4) must be taken into account when writing the constraints.

11



By using expressions (13) and the variable change (12), constraints (30) can be written as:

1 1-— 2
Vi1 T(w) + v 2 G(w) + v;.3 Z(w) < +6;——|(— 2 e)w ki,Vw € [woy, wy], i =1..5 (31)
Let us define the rational expressions =;(w) as:
1 1—e)w? 1
Ez(w) = —U;1 i(w) — Vi,2 gj(w) — Vi3 Z(w) + te j__’(_ 02 6) v kj7 = (1 T wz)zI‘i(w), 1=1..8 (32)

where:

Li(w) = —v;1 [Po(w) + 3ds Prp(w) J(w)] — vi2 Py(w) — v; 3 [Pe(w) + 2ds Py (w) J(w)] + k; T(w)

(33)
P,(w) = (1 + w?), P,(w) and the coefficients of the polynomial T'(w) are t = [I+e 020 1—¢]T. As
previously shown, the coefficients of the polynomials P, (w), P,(w) and P,(w) depend linearly on

X *(vp), the relative state from which the satellites motion is propagated:

pe = Co C(w) (X(wo) + BAVy) By = Cy C(w) (X(wo) + BAVY) ps = C Clw) (X (o) + BAT,)
(34)
Hence, expressions I';(w) depend linearly on the decision variable AVy. Constraints (30) on the

relative trajectory are satisfied if there exists an impulsive control AV, such that:
JAV st Ei(w) >0, Yw € [wo, wy], Vi=1.s (35)

Since the common denominator for Z;(w) is (1 + w?)? which is non negative for all w € R, finding
AV} such that the expressions T'; (w) are non negative on the given interval guarantees that the

constraints (30) are respected:
IAV, st Tyi(w) > 0,Yw € [wo, ws],Vi=1.s (36)

It has been evidenced in the previous section the fact that the expressions I';(w) are irrational
functions. The usage of the polynomial approximations for the term J(v) allows constraints (36) to
become polynomial non negativity constraints which can be reformulated as linear matrix inequality
constraints [23]. These latter can be solved efficiently using convex programming methods. The
uncertainties resulting from the approximation process can be directly accounted for. expressions
I';(w) contain the integral term J(w), they can be transformed into polynomial expressions by

replacing J(w) with a polynomial approximation.

12



A. The non-periodic case: using the polynomial approximation of the drifting term J(w)
Expressions (33) can be transformed into polynomials by using the approximation (20). This

introduces an unknown but bounded error e(w) such that:
I =T(w, 0, (w), e(w))
Thus the satisfaction of the uncertain constraints:
IAVy st Ti(w,0.(w),e(w))) > 0,Ve(w) € [-& &, w € [woy, wy],i=1.5 (37)

is a sufficient condition for the satisfaction of constraints (36). Results from convex robust analysis

[24] provide a robust counterpart to (37):

N I}(w, 01(w)) >0
JAV,  s.t. ,w E [wo, wyl,i=1.s (38)

I (w, Oy (w)) 20
where ¥ (w, O, (w)) and I'}(w, ©;(w)) are the polynomials obtained after replacing the term J(w)
in (33) with its certified upper and lower polynomial bounds, ©,(w) and O;(w) respectively
(22).Therefore finding an impulsive control AV, such that polynomials I'*(w) and T'}(w) are non
negative guarantees that initial constraints (36) are satisfied, although solving this problem intro-

duces some conservatism.

Reference [23] provides necessary and sufficient LMI conditions to check whether the coefficients
of an univariate polynomial belong to the cone of coefficients of polynomials that are non negative
on a finite interval. Since the coefficients 4! and v¥ of the polynomials I':(w) and I'#(w) depend

linearly on AV}, these conditions can be used to find a suitable AV, such that the constraints (38)
on the propagated trajectory are satisfied.

Theorem 1 (Non negative polynomial on finite interval).

Let Ko be the convezx, closed and pointed cone of polynomials that are non negative on a finite

interval [a, b] € R:

Kap={p e R" P(w) = Zpiwi >0, Vw € [a, b}
i=0

A polynomial P(w), represented through its vector of coefficients p = [po, ..., pn]T, belongs to Kap

if and only if there exist two symmetric positive semi-definite matrices Y1 and Yy such that:
p=A"(Y1,Y2) (39)

13



where the operator A* is defined below.

Using this result, designing a relative trajectory for which the infinitely many constraints (30) are

satisfied becomes equivalent to finding an impulsive control AV, such that:

V=05 20) sty = A (¥i, V)
,1=1.s (40)

YT Z0,Y5 20) st v =AY, Yig)
The definition of the operator A* depends on whether the polynomial P(w) has an odd or an even
degree. For n odd, take m = (n —1)/2 and Y3, Yy € ROPHDX0m+D) . Tet Hy,; € REFDX(RHD) he
some Henkel matrices that contain ones on the i-th anti-diagonal and zeros everywhere else. Then

the operator A* is defined by:

tr (Yi(—aHm,1)) +tr (Ya(bHpm 1))

tr (Vi (Hmt — aHpms)) + tr (Ya(bHpmo — Hyt))

A*(Y,Ys) = ' (41)
tr (Yl(Hm,ifl — (LHm’i)) + tr (YQ(meJ‘ — Hm’ifl))

tr (HHm,2m+1) + tr (YQ(_Hm,Qm—i-l))

For n even, take m = n/2 and Y; € RO?+Dx(m+1) (Y, € R™*™ = (. Then the operator A* is

defined by:
tr (Yle’l) +tr (}@(—ame,Ll))
tr (YiHp2) +tr (Yo((b+a)Hpm—1,1 — abHyp—12))
tr (Yle’g) +tr (Yé((b + G)Hm,LQ — Hm,1’1 — (Lme,Lg))
A (Y1, Y2) = ' (42)

tr (YiHp, i) +tr (Yo((b+a)Hy—1i-1 — Hp1,i-2 — abHp 1))

tr (YiHpmom) +tr (Y2((b+ a)Hpm—1,2m-1 — Hm-1,2m-2))

tr (Y1, Hm2m+1) +tr (Yo(—Him—1.2m-1))

14



B. The periodic case
When constraints (30) must be imposed on a periodic relative trajectory, expressions I'; (w) are

directly polynomial and no approximation is needed:
Ii(w)=—v;1 Prp(w) — v 2 Py(w) — 03 Pop(w) + k; T'(w) >0, i=1.5 (43)
Their coefficients can be written directly as a linear function of the decision variable AVp:
Y = (_Ui,l Cp —vi2Cy —vi3 Cz) Cp(v0) (X(VO) +B AVO) + kit (44)

Note that in order for the expressions (43) to be valid the initial state for the propagation of the

relative motion must satisfy the periodicity condition:
M (1) (X(uo) +B Affo) =0 (45)

If constraints must be imposed on the periodic trajectory for an entire period, one must take into
account the fact that the variable change (12) maps the trigonometric circle to R, an infinite interval.
The necessary and sufficient LMI conditions for non negativity of univariate polynomials on infinite
intervals are slightly different with respect to the case where finite intervals are considered. Reference
[23] demonstrates that a polynomial P(w) is non negative on R if and only if there exists a symmetric
positive semi-definite matrix ¥ € R(m+Dx(m+1) quch that the coefficients of the polynomial P(w)

verify:
p=A"(Y) (46)

where:
A (Y)(j) =tr YHpy), j=1.2m+1. (47)

It is interesting to notice that the polynomial non negativity constraints (43), along with the peri-
odicity constraint (45), describe the set of spacecraft relative states that at vy belong to periodic
trajectories that evolve inside the polytope defined by (30). This set represents an invariant set for
the spacecraft relative motion [25]. The presented method allows the design of impulsive maneu-
vers leading to spacecraft relative trajectories that respect a set of linear constraints continuously

in time. It is based on the parameterization of the spacecraft relative motion and makes use of

15



the link between the cone of coefficients of non negative polynomials and the cone of symmetric
positive definite matrices. The technique can easily be extended to accommodate a larger number
of impulsive controls AV over a larger time horizon. This aspect is detailed in the applications

section.

IV. Applications

The method developed in the previous section can be used to design impulsive maneuvers for
constrained spacecraft relative motion. In this section, we present three types of space missions
where our approach can be effective. The hovering mission [9] requires the design of periodic
trajectories that evolve inside a specified region. This type of trajectory should enable the visual
inspection of a given target with an infinite time horizon for the observation task and with zero
fuel cost. The passively safe rendezvous mission [7, 26| requests rendezvous trajectories that
guarantee passive collision avoidance in case of anomalous system behaviour. Lastly, for the vis-
ibility constrained rendezvous mission [4, 7| visibility cone constraints must be satisfied all
along the rendezvous path. If the first two scenarios belong to the periodic motion framework, for
the rendezvous under visibility constraints scenario the constraints are continuously imposed on the
non periodic relative motion. In each of these scenarios, it is assumed that the number of impulses

N, the thrusting positions v; and the initial relative state X are known.

A. Generating a hovering trajectory

The term hovering refers to the ability of a deputy spacecraft to remain in a specified area close
to the target satellite [9], in order to inspect or to monitor it. The design of fuel efficient maneuvers
leading to proximity naturally periodic relative trajectories between two satellites is an important
aspect of the on-orbit inspection and on-orbit servicing missions. Moreover, this objective must
to be achieved while taking into account the necessity of restricting the evolution of the resulting
periodic trajectory to a specified region of the space. Starting from an initial state X;, a final
state X (vn) must be reached, state that respects the periodicity condition and guarantees that the
resulting periodic trajectory remains inside a given tolerance region Ri,. This must be done while

minimizing the fuel cost necessary to attain this final state and respecting the saturation constraints
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on the amplitude of the thrusts. The general semi-infinite optimal control problem can be written
as:
min 1.0, [|AVi[L
AV
|AVi| < AV, Vi=1..N
X(Vl) = X1 (48)

S.t.

(v),2(v)) € Riot, Yv > vy

—
S
—
S
:_/
<

The state at the end of the maneuvers plan, X(VN), can be expressed as a function of the initial

state X (1) and the impulsive controls AV by using the Yamanaka-Ankersen transition matrix ®:
X(vn) = ANAVY + By (49)

where:
A;=[®)B ... 0 BB] B,=0iX(n) AVI=[AV; ... AT i=1...N  (50)

For convenience we choose the tolerance region Ry, to be a box centred around a desired position
X; = [z5 yr z¢]", whose dimensions are defined by X;o, = [@to1 Ytor 2tor]’- The tolerance box

constraints can be easily written in the general linear form (30) where the V' and K matrices are

given by:
1 0 0 Tf — Ttol
-1 0 0 —Tf —+ Ztol
0 1 0 Yf — Ytol
V= y K = ’ [VO, Vf]:[VNa VN+27T] (51)
0 -1 0 —Y¢ + Ytol
0 0 1 Zf — Ztol
0 0 -1 —2zf + Ztol

Following the previously developed procedure, the infinitely many tolerance box constraints can be
transformed into a finite number of non negativity constraints on some polynomials whose coeffi-

cients depend linearly on the decision variables AV:
Di(w) = T(w) ki — vig Pep(w) — vi2 Py(w) —v;3 Pop(w) >0, VweR,i=1...6 (52)
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The coefficients ; of the polynomials T';(w) depend linearly on the state at the end of the maneuvres

plan:
Vi =thi — (v,1 Co + 052 Cy + 033 C.) (ANAVN + BN) (53)

Thus, using the previously developed results, the problem of finding the impulsive controls AV; such
that the chaser satellite reaches at the end of the prediction horizon a trajectory that is periodic

and contained in a specified tolerance region is transformed into a semi-definite program:

min Efil Zi
AV,Z
~Z; <AV, < Z;
, Vi=1..N
Z; < A—~7
(54)
s.t. X(Vl) — Xl

M(vn)X(vy) =0

3Y; = 0st. v = A*(Y;), Vi=1...6

To illustrate this particular guidance problem, we use the rendezvous mission summarized in table
1. The purpose is to reach a periodic parking relative orbit by applying the computed impulsive
maneuvers. OQur method for imposing continuous constraints on the resulting periodic trajectory is
compared with a method based on constraints discretization [5]. Yalmip [27] along with the SDPT3
solver [28] is for solving the semi-definite programming (SDP) problem (54). The linear program

(LP) corresponding to the method used for comparison is solved with the linprog function from

Matlab.
Table 1: Simulation data for constrained periodic relative motion
e alkm] N X1 [m,m/s] t1 [s] Xy [m] Xiot [m] tn [s] AV [m/s]
0.023776 7011 10 [1000,50,50,0,0,0] 1282 [100,0,0] [20,10,10] 18 808 0.26

The obtained rendezvous trajectory is presented in figure 2. Both methods reach a periodic
trajectory at the end of the plan. The difference is that, for the discretization based method, the

tolerance region constraints are sometimes violated between the verification points. No constraints
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Fig. 2: The rendezvous trajectory

violations occur when using our method since it allows for the constraints on the relative trajectory

to be imposed continuously in time.
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=== SDP
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| | | | |
75 80 85 90 95 100 105 110 115 120 125 130
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Fig. 3: The periodic trajectories obtained for each method
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For the discretization based method, the precision of the solution is influenced by the number
of points where the constraints on the trajectory are explicitly checked. The resulting trajectories
when considering 10, 20 and 30 points respectively are depicted in figure 3. Table 2 shows the
comparison between the fuel cost, the solver time and the time spent outside the tolerance region
for each scenario. Increasing the number of verification points reduces the amount of constraints
violations but it also increases the solver time and the fuel cost. For almost equal fuel cost, the SDP

method has the advantage of guaranteeing zero constraints violation.

Table 2: Comparison between the SDP and LP based methods

Method LP10 LP20 LP30 SDP
Fuel cost [m/s] 0.48907 0.48922 0.48927 0.48927
Solver time [s] 0.1972 0.6499 1.6241 0.9325
Time out of bounds [s] 1269 737 339 0

B. Orbital rendezvous under passive safety constraints

An important issue for the guidance algorithms for spacecraft proximity operations like orbital
rendezvous and docking is the ability to handle abnormal system behaviour. The purpose is to
ensure a safe behaviour for a large class of possible malfunctions. Passive safety implies the design
of rendezvous trajectories such that disabling the follower’s thrusters in the event of a failure will
cause the satellites to remain on a relative fail trajectory that is guaranteed to be collision free
[26]. Security constraints must be imposed both on the rendezvous trajectory and the predicted fail
trajectories in order to guarantee this kind of behaviour.

The passive safety constraints can be imposed on any of the IV steps of the rendezvous plan
but adding too many constraints will increase the total fuel cost of the mission without further
improving the overall probability of collision [7]. That is why the security constraints will only be
enforced on the last S steps of the plan. In order to guarantee that the fail trajectories Xp.; are
collision free, they are designed to be periodic and to evolve inside a specified area in proximity of

the target Xsare- This has to be achieved while minimizing the overall fuel cost of the mission and
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while respecting the saturation constraints on the amplitude of the thrusters. Therefore the optimal

control problem can be written as:
min 357, ([ AVl
AV

|AV| < AV;, Vi=1...N

X(n) =X
(55)
s.t. M(Vl)f((l/i) =0 Vi=N-—-S...N—1

Xfiail(y) € Xsate, YV > 1

Xf_Xtol SX(VN) SXf+)~(tol

The fail trajectories Xpail are obtained through the open loop propagation of the spacecraft au-
tonomous relative motion starting from the states on the rendezvous trajectory that must be ren-
dered passively safe. The safe area X,z is considered to be an open polytope behind the chaser

defined by :
o (V) < Fsate, YW >v, Vi=N-5...N-1 (56)
Following the same procedure as before, constraints (56) can be written as:
Fi(w) >0, YweR
with:
Li(w) = T(w) Teate — Php(w), Vi=N-S5...N-1 (57)

where Pjp(w) is the polynomial for the propagation of the autonomous periodic motion on the x axis
starting from each state X (v;). In addition, the state X (1;) must verify the periodicity condition
(23). The coefficients ~; of the polynomials I';(w) can be written directly as a linear function of the

decision variables AV;:
%= =Co Cp(v) (AAV' +B,) + tuaret, Vi=N-S...N-1 (58)

Using the LMI conditions (46), the semi-infinite optimization problem (55) can be transformed into
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a semi-definite program:

min Zfil Z;
AV.Z
—Z; <AV, < Z;
,Vi=1...N
Z; < AV,
X(l/l) ZXl
s.t.

M) (AiAf/“rBi) ~0
 Vi=N-§...N-1

3Y; = 08t — Cyp Cp(1) (AiAf/i T Bi) F Tt = A*(Y7)

X — Xiot < ANAVN + By < X; + Xt
(59)

The data presented in table 3 corresponds to the rendezvous and docking mission with passive
security constraints that is considered for illustration.

In order to identify a suitable value for the security horizon S, the rendezvous mission without

Table 3: Simulation data for the rendezvous mission with passive security constraints

e a [km)] N X1 [m,m/s] t1 [s] Xy [m,m/s] Vol [m/s]  tn [ Tsafe [m]

0.023776 7011 15  [-30,0,-3,0,0,0] 0 [-5,0,0,0,0,0] 0.01 5 843 5

security constraints is solved first. The fail trajectories are propagated starting from every controlled
state on the second half of the rendezvous plan. The resulting trajectories are presented in figure
4. The states which originate fail trajectories leading to a collision between the two satellites are
then included in the safety horizon S. Figure 4 suggests that a security horizon of S = 4 should
remove the collision risk in case of system failure (please note that some fail trajectories overlap for
the states where the optimized AV equals zero).

Figure 5 presents the fail trajectories obtained when the passive security constraints are enforced
in the control synthesis problem for a security horizon of S = 4. The fail trajectories are indeed
periodic and evolve in the security area defined by Zg.f., removing the risk of collision in case of

system error.
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Fig. 4: The rendezvous trajectory without the security constraints (the dashed lines represent the

fail trajectories starting from the points evidenced by the * symbol)

Table 4 shows the evolution of the mission fuel cost with respect to the choice of the security
horizon S. As expected the fuel cost increases as the security horizon increases since more and more

constraints are added to the problem.

Table 4: Evolution of the mission fuel cost with the length of the security horizon

S ‘ 0 1 2 3 4 5 6 7

Fuel cost [m/s] 0.0116 0.0121 0.0135 0.0146 0.0156 0.0163 0.0168 0.0174

The security constraints considered in this example were very simple in order to highlight the
principle of the method without too much formal complexity. The presented method can easily

accommodate different descriptions of the safe region, like for instance a visibility cone as in [7].

C. Orbital rendezvous under visibility constraints
The previous examples featured scenarios where the constraints are imposed on periodic relative

trajectories. A rendezvous mission with visibility constraints is now considered in order to illustrate
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Fig. 5: The rendezvous trajectory with security constraints (the dashed lines represent the fail

trajectories starting from the points evidenced by the * symbol)

the use of the non negative polynomials in imposing continuous constraints on non periodic space-
craft relative trajectories. The chosen mission requires for the follower to remain inside the leader’s
visibility cone for the entire duration of the rendezvous and docking maneuvers. The optimal control

problem can be formulated as follows:
min 327, AVl
AV
IAV;| < AV, Vi=1.N

X(Vl) = Xl (60)
S.t.
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Using the previously developed method, continuous satisfaction of the visibility constraints can be

guaranteed for each time segment between two thrust positions [v;, v;q1]:

min 331, AVl
AV

s.t.

The set X, is associated to

|AV;| < AV, Vi=1..N

(v),2(v)) € Xyis, YV € [11, 12]

(@(v),

<

(V)72(V)) € X, YV € [VQ, Vg] (61)

—~
IS
—~
X
?/
<

(@(v), (), 2(v)) € Xuis, YV € [vn-1, vN]

X(VN) :Xf

the visibility cone of the leader’s camera. It is represented by an

open polytope behind the leader satellite (figure 6), defined by the aperture angle 5 and the offset

distance zg.fe between the docking port of the leader satellite and its center of gravity.

Tsafe
Visibility cone
M1 T
aE S L
J-‘L
B
Mg
z
Zr,

Fig. 6: The leader spacecraft visibility cone

The visibility constraints can easily be written as a linear inequality like in (30) with the V and
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K matrices defined by:

_1 0 p_ _ 0 |
1 0 —p 0
V=11 p o0 K=1| o (62)
1 —p O 0
1 0 0 Tsafe

o
and p = tan(§ - B).
Expanding the visibility cone constraints leads to polynomial non negativity constraints similar

to (36). For the sake of completeness, the procedure for the first visibility constraint is fully detailed:

() —piv) >0, Vv € [y, Vip], Vi=1...N-1 (63)

Using the variable change (12) and the expressions (13) for the propagation of the relative motion
starting from each controlled state X (v;) on the rendezvous trajectory, the first visibility constraint

can further be transformed in:
Ii(w) >0, Vw € [w; wipq], Vi=1...N—1 (64)
where:

I (w) = — [PH(w) 4 3dj Pra(w) J,(w)]—p [PLw) +2d} (Pyo(w) J})] >0,V w € [w;, wis1), Vi=1...N-1
(65)

The term J!(w) in (65) is replaced on each segment [w;, w;11] by its upper and its lower polynomial

bounds, ©!(w) and ©i(w) respectively. This leads to the following polynomial non negativity

constraints:

D4y (w) = — [Pi(w) + p Pi(w)] — di [3Pyo(w) +2p Py.] O}(w) >0

NVw € [U}i, wi+1], Vi=1...N-1
i, (w) = = [Pi(w) + p Pi(w)] — ds [3 Pra(w) + 2 pPy:] 67 (w) >0
(66)

The degree of the polynomials I'i (w) and T (w) is 7 + 4, where 7 is the degree of the polynomial

approximation for the drifting term J’(w) on each interval. The vectors of coefficients for I'}(w)

26



and T (w), denoted by ~/(w) and % (w) respectively, depend linearly on the decision variables AV;
through the coefficients of the polynomials P!(w) and P!(w). We remind that the coefficients pi
and p’ of the polynomials P!(w) and P!(w) depend linearly on the relative state starting from which

the satellites motion is propagated on the current time segment:

pl =C, C(vy) (Ai AV 4 Bi)

P =C.C0W) (Ai AV + Bi)

where A;, B; and AV' are defined in (50). This dependence implies that a wise choice of the
impulsive controls AV, can guarantee the continuous satisfaction of the visibility constraints all
along the rendezvous path. As seen in the previous section, constraints (66) are satisfied if and only
if:
3 (Y = 0,Y5, = 0) st 4] =A"(Y), Yy)
,Vi=1...N—1 (67)
3 (Yliu i 05 YQiu i 0) s.t. ’Y;LL :A* (Yliua YQiu)
The constrained rendezvous problem (61) is finally written as the concatenation of the LMI condi-

tions (67), for each visibility constraint and for each time segment [w;, w;+1] :

min Zivﬂ Z;
AV.Z

~Zi <AV, < Z;

, Vi=1...N
Zi < AV,
(68)
5.8 %i'l = A*(qua Yféz)a Y}iu =0, Y}im =0
, Vi=1,...,.N—1V¥j=1,...,5
rY;u = A" (}/}ilu’ inQu)’ inlu t 07Y?2u t 0
X(vn) = X

where the superscript ¢ identifies the time segment and the subscript j identifies the index of the
visibility constraint in (62).

The rendezvous mission summarized in table 5 is used to illustrate this approach. The initial
position for the rendezvous is v; = —n/2, chosen negative so that the maneuvers start before
the current passage through the perigee. This choice is motivated by the fact that the values of

w must be strictly increasing on each interval [w;, w;4+1] in order to obtain accurate polynomial
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approximations of the drifting term J(w). The variable change (12) maps the interval of one orbital
period [—7, 7] to R and the duration for the rendezvous is chosen to be half of an orbital period in
order to get an interval where the polynomial approximations are more precise. A tolerance of 0.001

m/s is allowed on the final speed and the visibility cone is defined by the parameters Zsafe = —5 [m]

and = 20°.

Table 5: Simulation data for the rendezvous mission with visibility constraints

e a [km)] N v [rad] X1 [m,m/s] vy [rad] Xy [m,m/s] AV [m/s]

0023776 7011 5  —m/2  [=50;—10;15;0;0;0]” /2 [—6; 0;0; 0; 0; 0] 0.26

The software Sollya [29] is used for obtaining the polynomial approximations for the term J(w) on
each segment of the rendezvous plan. The degree of the approximations is fixed to » = 2. The
maximal certified approximation error € is about 0.25 % (figures 7).

Time segment 1 Time segment 2 Time segment 3 Time segment 4

[ N B
-1 —-0.8 —0.6 —0.4-0.3-0.2-0.1 0 0 01020304
w w

Fig. 7: Drifting term J(w) and its approximation on each time segment

28



The solution of the final semi-definite programming problem is obtained using Yalmip [27] and
the SDPT3 [28] solver. A method based on constraints discretization is used for comparison [5].
The discretized problem amounts to a linear program (LP) whose solution is obtained using the

[ i nprog function from Matlab.

|
—— LP trajectory
20 —— SDP trajectory |
o e pif
7 /1
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_20 [ 6 | | [/ 3 | | |
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| | | | |
—60 —50 —40 —-30 —20 —10 0
X[m]

Fig. 8: Comparison between the xz projections of the rendezvous trajectories

Figures 8 and 9 present the comparison between the trajectories obtained with each method,
where 10 collocation points are used for constraints discretization. It can be seen that the trajectory
obtained for the discertized problem sometimes goes outside from the visibility cone in between the
points where the constraints are explicitly checked. Unlike our method, the constraints discretization
based method cannot guarantee continuous satisfaction of the constraints even if the amount of
constraints violation may be reduced by increasing the number of collocation points (table 6). The
obtained solution, even if slightly less fuel expensive, is only optimal for the discrete problem.

It is worth noting that when the number of collocation points is increased, the AV cost issued by
the LP problem tends towards the value given by the SDP problem. This suggests that the LP
problem is a relaxation of the SDP problem (68) through discretization.

Both the LP and the SDP problems can be solved using interior point algorithms. The resolution
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Fig. 9: Comparison between the xy projections of the rendezvous trajectories

Table 6: Performance comparison between the two methods

SDP LP5 LP10 LP20 LP50

AV cost [m/s] 10.99 9.33 10.67 10.97 10.98
Time out of bounds [s] 0 1133 307 249 47
CPU time [3] 1.38 0.09 0.10 0.10 0.10

of the linear program for 10 collocation points takes on average 0.1 seconds, while the semi-definite

program (68) is solved in about 1.5 seconds.

The difference comes mainly form the increased

number of variables in the SDP program, the price to pay for guaranteed continuous satisfaction of

the constraints on the spacecraft relative path.

V. Conclusion

The article presents a method for designing spacecraft relative trajectories for proximity oper-

ations that respect continuously in time different types of linear constraints. The presence of con-

tinuous constraints leads to an infinite optimisation problem that is usually rendered finite through
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constraints discretization. Even if effective, the discretization may lead to constraints violations in
between the verification points. Using a rational parametrization of the linearised spacecraft rela-
tive motion, we are able to transform the infinitely many constraints on the trajectory into a finite
number of polynomial non negativity constraints. This formulation provides a priori guarantees on
the obtained solution. The optimization problem is finally formulated as a semi-definite program
that can be effectively solved using interior point methods.

The efficiency of the method is demonstrated using several spacecraft mission scenarios corre-

sponding to different types of proximity operations.
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