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I. Introduction

The ability to robustly and precisely control the spacecraft relative motion will play an important
role in future on-orbit inspection and on-orbit servicing missions [1]. Model Predictive Control
(MPCQC) is considered to be an effective control strategy for these types of spacecraft operations,
that can easily handle mission specific constraints while explicitly minimizing the fuel consumption
[2]. The maneuvers plan is obtained by solving a finite horizon open-loop optimal control problem
starting from the spacecraft relative state and the optimal solution consists of a series of control
actions {u1,us, ..., un }, out of which only the first one is executed [3].

The MPC strategies are inherently robust to arbitrarily small perturbations [4] and new mea-
surement information is included every time the maneuvers plan is re-computed. However, in the
case of spacecraft relative motion, navigation uncertainties and orbital perturbations can cause the
real relative trajectory to differ significantly from the prediction used for obtaining the control plan.
Reference [5] shows that small errors in the estimation of the spacecraft relative velocity can result
in very large prediction errors for the relative state. Since trajectory planning relies heavily on the
knowledge of the relative state, not accounting for navigation errors may have some undesirable
effects such as poor performances, constraints violations and/or infeasibility of the control problem.

For circular reference orbits, a method for constraints tightening in the MPC problem was
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presented in [6, 7]. The method uses a precomputed static feedback gain that makes the system
nilpotent in at most N steps. It guarantees constraints satisfaction and recursive feasibility of the
optimisation problem, even when sensor noise is considered. The method however is not applicable
for eccentric reference orbits, where the spacecraft relative dynamics are Linear Time Varying (LTV).

The presence of unknown but bounded navigation errors in the case of eccentric reference orbits
is dealt with in [8] by propagating the uncertainties set over the prediction horizon and tightening
the constraints to account for their effects. A similar idea is used in [9], combined with an on-
line estimation of the uncertainties bounds. Reference [10] identifies the disturbance sequence that
can cause the maximum variation of the spacecraft relative state and then uses this sequence to
tighten the constraints of a deterministic MPC spacecraft trajectory control problem. These types
of methods do provide more accurate information about the evolution of the system, but they have
no control over the spread of the predicted trajectories. Moreover, tightening constraints using the
open-loop propagation of the uncertainties imposes the choice of short prediction horizons in order
to ensure the feasibility of the problem.

A method that directly optimizes the final spacecraft rendezvous precision without restricting
the duration of the maneuvers is proposed in this article. The method is based on the so-called feed-
back MPC' [11], which uses a sequence of feedback policies {p11(-), ..., pn—1(-)} as decision variables,
instead of a sequence of control actions {u1,...,un—1}. The computation of such feedback laws can
be extremely difficult in the general case since the decision variables are infinite dimensional [12].
However, restricting the admissible feedback policies to the class of affine state feedback control
laws can reduce the complexity of the problem.

For circular reference orbits, a static feedback term combined with the nominal optimal solution
to the classical MPC problem could ensure that, in presence of sensing noise, all possible spacecraft
relative trajectories remain inside a tube centered around the nominal trajectory [12]. When eccen-
tric reference orbits are considered, time-varying feedback policies need to be computed in the same
time as the nominal control and the problem may become non-convex. However, re-parametrising
the control as affine disturbance feedback policies can remove this issue [13].

Some ideas from tube-based MPC are used in this paper to solve the robust fized-time spacecraft



rendezvous problem for eccentric reference orbits. The purpose is to obtain a sequence of feedback
policies that steers the spacecraft from an initial relative state towards an ellipsoidal set centred
around a desired final state, in presence of navigation uncertainties. This must be done while
respecting the actuators saturation constraints and while pursuing a double objective: minimise the
fuel cost of the mission and minimise the size of the arrival set to guarantee a good rendezvous
precision. The control policies are restricted to affine disturbance feedback policies to ensure a
convex formulation of the control synthesis problem. The obtained sequence of feedback policies

drives the system to the guaranteed arrival set without any need for recurrent optimization.

II. Spacecraft relative dynamics
The fixed-time rendezvous between two spacecraft on arbitrary elliptical orbits consists of bring-
ing the system from an initial state X; to a desired final state X; at a specified time. This needs to
be achieved by firing the thrusters a fixed number of times N at some predefined instants. Our goal
is to determine a sequence of feedback policies that guarantees the best final rendezvous precision in
presence of navigation uncertainties, while minimising the mission’s fuel cost and robustly satisfying

the actuators saturation constraints.

!

Fig. 1: The local Cartesian frame attached to the leader spacecraft

The relative state between the two spacecraft is defined as the relative position and the relative
velocity, expressed in a local Cartesian frame (Figure 1) attached to the leader spacecraft X € RS,

X = [z y 2 vy vy v;]T. The following operation can be used to transform the time domain state



variables into scaled state variables depending on the true anomaly of the leader v:

(1+ecosv)is 03
X(v) = X(t) (1)
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where p is the Earth’s gravitational parameter, e is the eccentricity of the orbit of the leader
spacecraft and a its semi-major axis. The variable change (1) has been used by Tschauner and
Hempel in [14] to obtain linearised spacecraft relative dynamics valid for arbitrary values of the
eccentricity. Yamanaka and Ankersen presented in [15] a closed form solution for the Tschauner-
Hempel equations under the form of a transition matrix ® € R6%6, This transition matrix is used
here to propagate the spacecraft relative trajectory without numerical integration. The spacecraft

relative dynamics under impulsive control Av € R3 can be written as:
X (k1) = (i1, vi) (X () + BAwg) (2)

where the matrix B = [03 I3]7 models the instantaneous relative velocity change caused by the
impulsive control Avg. The spacecraft relative dynamics in (2) can also be seen as an LTV system

defined as:

Trp+1 = Apxr + Brug (3)

where xp = X (g), Ax = ®(Wrt1, k), Bx = P(vikt1,v)B and ux, = Avg. This description of the

relative dynamics will be used next to write the robust fixed-time spacecraft rendezvous problem.

ITI. Disturbance feedback control
Consider the spacecraft relative dynamics in (3) where the knowledge of the state is affected
at each instant k& by unknown navigation errors dzy. The navigation errors dzj belong to some
ellipsoidal sets E(0,Qy) = {z € RS | 27Qrx < 1}. Note that the defining matrices @ € R6*6
are not necessarily identical. The real spacecraft relative state xj is unknown but at each step is

connected to the measured state z7' through:
T = CEZL + dxg, 0x) € E(O, Qk) (4)
The prediction of the state that will be measured at the next step x;’”“k 41 1s given by:

Thlkp1 = Tht1 — 0Tpq1 = ApTp + Brug — 02k41, 0241 € E(0, Qi) (3)



Using (4) to replace the unknown state of the system with the current measure leads to:
.’L'Z‘lkJrl = Ak;v}c" + Bruy + Apdxy — 5.%%.,.1 (6)

Let wy be the total contribution of the measurement noise over one prediction step. From (6) wg

can be defined as:
w = Apdxy — 6$k+17 oy € E(O,Qk), 5.%%.,.1 € E(Oan-i-l) (7)

Since the navigation errors belong to ellipsoidal sets that are symmetric with respect to the origin,

the domain for wy is defined by:
wi € B(0, A" QrAy") & B(0,Qrir) € E(0,QF) (8)

where @ denotes the Minkowski sum of the two sets. The ellipsoidal set E(0,Q}’) represents an
outer approximation of the real domain and it can be computed analytically, using for instance the
procedure described in [16].

Denoting x = [967172 xﬁg :v’lr“N]T, u=[u; uz uz ... uy—1]7 and w = [wy we w3 ... wx_1]7, the

evolution of the measured state over the prediction horizon is given by:
x = Az + Bu+ Cw (9)

where the matrices A € RSN-1x6 B ¢ REN-Dx3(N=-1) ¢ ¢ RSWN-1x6(N-1) yre defined as:

Aq By 0 0 0 .. 1 00 O
Ao Ay Ao By By 0 0 As 10 0
An_1... A4 An_1...AsB1 ... .. Bn_1 An_1...As An_1 1

10)
The structure chosen for the control policies uy is based on the results in [13] and it consists of
an impulsive component plus some disturbance feedback terms used to compensate the effects of

navigation errors:

k—1
up = Avg, + Z Lkﬂ-wi (].].)

=1



Past disturbance terms until k£ — 1 are considered in order to use the maximum amount of available
information while making sure that the control law is causal. This also ensures that the disturbances
will not be propagated in open loop for longer than the interval between two consecutive controls.

Denoting Av = [Av; Avs ...Avy_1]T, a more compact expression can be obtained:
u=Av+Lw (12)

where the matrix L € R3V-1Dx6(N=1) j5 defined by:

0 0 O 0
Loy 0 0 0

L= L371 L372 0 0 (13)
Ly-11 ... ... Ln-1n—2 0

The spacecraft closed-loop relative dynamics can be written as:
x = Az" + BAv + (BL + C)w (14)

Let X = [T1)2 Zy)3 .- a‘:l‘N]T be the nominal trajectory obtained when assuming perfect state infor-

mation and using only the impulsive part of the control:
X =Az" + BAv (15)

The impulsive plan Av must be such that the nominal trajectory satisfies the final rendezvous

objective:
Ty N = Xy (16)

In this case, the error between the perturbed trajectory and the nominal trajectory can be written

as a linear function of the disturbance vector w:
e=x—Xx=(BL+C)w (17)

The purpose is to find the impulsive plan Av and the correction gains matrix L that guarantees
the smallest error at the end of the prediction horizon ey and the lowest fuel cost for the nominal

trajectory, all while robustly satisfying the saturation constraints on the thrusters.



Assuming that the spacecraft are equipped with thrusters rigidly mounted on the body axes,
the cost function corresponding to the fuel consumption for the nominal trajectory is defined by the

sum of the ¢;-norm of the thrust vector [17]:
Jav = AV (18)
The variables z; € R3 are introduced to linearise the objective function Ja, [18] and are such that:
|Avg| <z, k=1.N—1 (19)

The actuators saturations are defined by |ug| < tumax where uy is defined by (11). The constraints
must hold for all admissible values of the disturbances w € E(0,Q"). This can be written as

row-wise conic constraints on z; that account for the presence of the correction terms:

k—1
% < Umax — Y | LeiPll2, k= 1..N — 1 where P = (Q¥)~*/? (20)

i=1

The objective for the final error ey translates into computing the smallest ellipsoidal set F(0, Q;l)

that bounds ey for all admissible values of the disturbances w:
min tr (Qy) s.t. eJTVQ;leN <1, Vw; € E(0,Q}), i=1.N -1 (21)

Minimizing the trace of ()¢ corresponds to minimizing the sum of squares of the semi-axis of the

ellipsoidal set E(0, Q;l). From (17), the quadratic constraint on ey can be written as:
w'(BNL+Cn)"Q; ' (BNL+Cn)w < 1, Vu; € E(0,Q)), i =1.N -1 (22)

where Bn and Cn are obtained by selecting the appropriate lines in the B and C matrices. Using
the S-procedure [19] and the Schur complement, constraint (22) can be transformed into a linear
matrix inequality:

I, 7, o TN-120, QF >0

1= 0 0 QY
(23)
0 Qu (BNL + CN)T >0, Qu=
0 (BnL 4 Cn) Qy TN-1QN_1
The conic optimization problem that must finally be solved is given by:
. N—1
min tr + 1 Z
Q7 2oBue L (Qr) + 2k=rt 2k (24)

s.t. (16), (19), (20), (23)



The structure chosen for the control u, other than leading to a convex optimization problem, also
presents the advantage that the corrections for the effects of previous measurement errors are made
in the same time as the burns for the nominal trajectory. This ensures that the total number of

maneuvers remains constant and that no extra stress is put on the thrusters.

IV. Simulation results

The fixed-time rendezvous scenarios summarized in Table 1 and 2 are used to illustrate the
effectiveness of disturbance feedback control in solving this type of problem. The maneuvers plan is
computed based on the linearised spacecraft dynamics and then tested on an industrial non-linear
simulator. The initial spacecraft relative state used in the simulations is obtained by adding random
noise to the initial state used for control computation. Random noise is also added to every other
state measure and the magnitude of the noise is bounded by a 0.02 m ellipsoidal set for position
and 0.002 m/s for velocity.

The control uy is obtained from (11), where Av and L have been obtained by solving (24)
before the simulation. The disturbance terms w are estimated during the closed loop simulations

using the perturbed state measures and (6) and (7), : wg—1 = x* — Ap—12]" ] — Br—1Up—1.

Table 1: Prisma mission simulation data

e afkm] i[°] Q] w[] »u[] X1 [mm/s] Xy [m,m/s] duration [s] Umax [m/s]

0.004 7011 98 190 0 0 [10000,0,0,0,0,0] [330,0,30,0,0,-0.0158] 18 000 0.26

Table 2: Simbol X mission simulation data

e akm|] 1[°] Q] w[°] i [°?] X1 [mm/s] Xy [m,m/s| duration [s] %max [m/s]

0.7988 106246.975 5.2 180 90 135 [-305,0,396,0,0,0] [-60.2,0,79.85,0,0,0] 8 000 0.8

First, the dimension of the guaranteed ellipsoidal arrival set defined by the matrix Qs is com-
pared against the estimation provided by a classical MPC approach based on the open-loop propa-

gation of the state uncertainty [8]. The results obtained for the two missions using N = 10 control



instants and for different rendezvous durations are given in Tables 3 and 4 respectively. For the
Prisma mission, the disturbance feedback control method guarantees in every case a smaller arrival
set if the sum of the semi-axes is considered. For the Simbol X mission, the duration of the mis-
sion is a lot smaller than the orbital period of the leader. In this case, the estimates provided by
the disturbance MPC method are larger for shorter horizons but this changes as the length of the

duration of the mission increases.

Table 3: Semi-axes of the arrival set in the zz plane for the Prisma mission and N = 10

mission duration [s] 6 000 9 000 12 000 18 000

disturbance feedback MPC [m] 3.66 2.83 5.77 3.53 8.76 4.31 17.49 5.41

open-loop MPC [m] 35.03 0.31 56.82 1.4 70.08 0.61 105.2 0.9

Table 4: Semi-axes of the arrival set in the zz plane for the Simbol X mission and N = 10

mission duration [s] 8 000 12 000 16 000 20 000

disturbance feedback MPC [m] 22.61 22.61 26.51 26.51 29.02 29.02 31.34 31.33

open-loop MPC [m] 16.15 15.92 24.48 23.75 33.04 31.5 41.86  39.08

It should be noted that while the size of the arrival set for the open-loop MPC depends solely
on the duration of the mission, the performances of the disturbance feedback scheme also depend
on the number of control instants. The trajectories obtained for the Prisma rendezvous mission
when using the disturbance feedback control technique with N = 6 and N = 10 control instants are
presented in Figure 2. Fifty perturbed initial conditions are considered and the control is applied
without any re-computation of the impulsive part or of the correction gains. The errors with respect
to the desired final position X belong each time to the ellipsoidal arrival set defined by the matrix
Qy, as guaranteed by the algorithm. The dimensions of the estimated arrival set are bigger when
N = 6, reflecting the fact that the interval between two consecutive controls is larger (3600 s with
respect to 2000 s for N = 10).

Figure 3 presents the closed loop trajectories obtained for the Simbol X rendezvous mission.
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Fig. 2: Closed-loop trajectories and final errors for the Prisma mission

The final errors are all contained inside the guaranteed arrival set, but for this mission where the

reference orbit is highly eccentric the estimation given for the final set seems to be more conservative.
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Fig. 3: Closed-loop trajectories and final errors for the Simbol X mission

V. Conclusion

The article shows that the disturbance feedback Model Predictive Control (MPC) can be used
for effectively solving the fixed time rendezvous problem in presence of navigation uncertainties. It
provides several advantages over the classical MPC approaches such as better a priori guarantees
for the closed-loop system behaviour for any admissible value of the uncertainty. It also avoids
problems linked to infeasibility when the satellites are in close range since it does not rely on
repeated re-computations to achieve robustness. If a feasible solution is found, the rendezvous
maneuvers plan can be applied without modifications, at the cost of only some simple algebraic

computations for the on-line estimation of the disturbance terms. The plan can be computed by the

10



ground control station and then uploaded to the satellite. The corrections accounting for the effects

of the navigation uncertainties are made in the same time as the burns for the nominal trajectory

thus keeping the number of firing of the thrusters constant.
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