
HAL Id: hal-01078508
https://hal.science/hal-01078508

Submitted on 29 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Robust Rendezvous Planning Under Maneuver
Execution Errors

Christophe Louembet, Denis Arzelier, Georgia Deaconu

To cite this version:
Christophe Louembet, Denis Arzelier, Georgia Deaconu. Robust Rendezvous Planning Under Ma-
neuver Execution Errors. Journal of Guidance, Control, and Dynamics, 2015, 38 (1), pp.76-93.
�10.2514/1.G000391�. �hal-01078508�

https://hal.science/hal-01078508
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Robust rendezvous planning under maneuver

execution errors

Christophe Louembet1, Denis Arzelier2, Georgia Deaconu3

CNRS; LAAS; 7 avenue du colonel Roche, F-31400 Toulouse; France

The problem of designing rendezvous guidance maneuver plan robust to thrusting

errors is addressed in this paper. The aim of this paper is to develop tractable and

robust guidance algorithms. Solving the rendezvous guidance problem via a direct

approach leads to uncertain optimization problems while accounting for the Guidance,

Navigation and Control (GNC) systems uncertainties and errors. A worst-case ap-

proach is considered in order to obtain tractable robust counterparts. The robustness

certificates derived from these guidance algorithm provide the means to analyze the

effects of the considered errors on the rendezvous mission. Several types of missions

tested in a linear environment are used to illustrate the methodology.

Nomenclature

a = semi-major axis ;

e = eccentricity ;

µ = Earth gravitational constant;

ν = true anomaly ;

X = relative motion state;
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Φ(νi, νj)= transition matrix of relative motion from instant νj to νi;

N = number of velocity increments ;

νi = impulses application times i = 1, · · · , N ;

∆Vi = velocity increment vector at νi ;

∆Vmax= actuators saturation in meter per second;

u= disturbance variable;

V= uncertainty set;

T = tolerance set;

Γ= tolerance vector;

0l= null matrix of dimension l;

Il= identity matrix of dimension l;

1l= vector of length l where every entry is 1;

‖ · ‖l= the l-norm of a vector;

| · |= the absolute value function;

I. Introduction

Any orbital operation involving at least two vehicles (satellite or International Space Station ser-

vicing, debris removal and formation flight) include a rendezvous process which consists in bringing

the actuated vehicle (chaser) into the proximity of the passive vehicle (target) via a series of elemen-

tary phases (phasing, far range rendezvous and close range rendezvous). Each phase is composed

of orbital maneuvers that must be carefully planned to reach their goal. This paper is particularly

dedicated to the far range rendezvous operations, which begins when the separation between the

chaser and the target is sufficiently small to allow the relative navigation between the two spacecraft.

From a mathematical point of view, the rendezvous guidance problem consists in an impulsive

fuel-optimal control problem when the gas ejection thrust is assumed to be impulsive. This particular
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optimal control problem can be solved using the so-called primer vector theory that originates from

the seminal work of Lawden [1]. This theoretical corpus relies on optimality conditions derived

from Pontryagin’s Maximum principle. This indirect approach has been the base for numerous

studies addressing the orbital rendezvous problem [1–6]. However, the algorithms from previously

cited works are, in general, tailored for off-line computations and are not intended to be part of the

spaceborne guidance software. In this context, numerical solutions based on direct methods [7] are

particularly appealing. In fact, direct methods consists in parametrizing the original rendezvous

guidance problem and converting it into a programming problem for which efficient solvers are

available. These approaches are known to be particularly effective in presence of state and input

constraints even if they generally do not provide the optimal solutions but only an approximation.

The application of direct methods to the rendezvous guidance problem was initiated by Waespy [8]

and later developed by Robertson et al. in the late nineties [9]. In these works, the constraints

are usually discretized in order to obtain a linear program. However, paper [10] recently proved ,

by converting the rendezvous problem in an semi-definite programming problem, that it is possible

to satisfy the continuously in time without discretisation. Numerous paper addressing different

rendezvous control problems, ranging from coordination between several spacecraft [11, 12], to

collision avoidance [13–15] often in conjunction with the Model Predictive Control (MPC) [11, 12, 16]

have been published since then. If impulsive thrust and linearized dynamics are assumed in the

previous cited papers[8–16], the direct methodology also permits to assume different type of thrust

model or non linear dynamics for rendezvous problem. In the case of continuous thrust, the solution

of the constrained and non linear optimal control problem has been obtained in [17] by performing a

sequence of convex and linear constrained optimal control problems solved by either a transcription

or a shooting method. The advantage of such a method is that the model can be augmented easily

with orbital disturbances without increasing its complexity. In [18], the thrust is modelled by pulse

and the optimal control is obtained by modulating the amplitude of the pulse addressing the fact

that the thrust time can be of few minutes width. In [19], the pulse width modulation is considered

and the optimal control problem is transformed in a 2-step linear program.

Among the challenges that arise from the needs of more spacecraft autonomy, the robustness
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of the control method to the uncertainties inherent to GNC systems is a key issue [20]. These

uncertainties may originate from errors in the navigation system and/or the propulsion devices. For

example, in the far-range rendezvous phase, the chaser relative position and velocity provided by

the navigation system may be corrupted by measurement noise. In addition, the thrusts delivered

by the propulsion devices may be inaccurately executed. These errors usually lead, in real imple-

mentation, to the fact that open-loop maneuvers might steer the system far from the rendezvous

objectives.

In the case of infinite control horizon, closed-loop schemes may help to mitigate GNC system’s errors

and ensure system stability. In the literature, numerous works propose solutions to reject pertur-

bations and disturbances of various types. The case of impulsive rendezvous has been addressed

using the discrete linear quadratic regulator (LQR) techniques [21] (see the review paper [22] and

references therein). Adaptive control techniques compose a family of control laws that enables the

rejection of propulsion errors in the context of formation flight by exploiting Lyapunov stability cri-

teria as in [23]. The receding horizon MPC techniques (see, for instance, [24, 26, 27]) have also been

successful to tackle the problem of thrust errors mitigation. However, when it comes to the finite

horizon rendezvous problem, it is much more complicated to get equivalent closed-loop certificates

of stability and performances (in terms of precision) using these previously mentioned techniques.

In [25], a tube-MPC scheme has been tailored to compute feedback control laws robust to navigation

uncertainties while guaranteeing a given precision at the end of the rendezvous mission. Note that

the errors addressed in [25] are different in nature from the propulsion errors tackled in this paper.

Indeed, navigation uncertainties are usually treated, in the literature, as additive disturbances while

thrust errors are addressed in the sequel as multiplicative disturbances (see [23]). At the best of our

knowledge, the generalization of tube-MPC schemes to cope with multiplicative uncertainties like

the ones affecting propulsion system is a very difficult challenge.

In this paper, the rendezvous planning problem is solved using linear programming problems

arising from the application of a direct methodology. In order to compute a robust maneuver plan

that provides a given level of rendezvous precision, the idea is to define an a priori model of the

uncertainties and errors affecting some data of the program. It is therefore necessary to resort to
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specific techniques for solving robust optimization problems. The usual way to address an uncertain

program is to introduce in the program the probabilistic description of the uncertain data, consid-

ering them as random values. Then, the techniques from the stochastic programming theory can be

applied [29]. This has been done in numerous papers in the case of continuous thrust rendezvous

(see [30] and references therein), but few are those that treat the impulsive case. For instance, Luo

et al. modelled the impulse execution error as a zero-mean white noise process, leading to a multi-

objective program that is solved using genetic algorithms with no polynomial time convergence [31].

Other than the numerical complexity, this type of probabilistic approach can only provide proba-

bilistic guarantees for the constraints satisfaction.

The other way to deal with uncertain program consists in a deterministic worst-case approach. Sev-

eral works in the literature have addressed the robustness of the maneuver plan in the context of

navigation errors. How and Tillerson described in [28] a "multiple-model" robust approach, that

consists in designing the input sequence to simultaneously satisfy the constraints for several initial

conditions. It is stated in [11] that testing between 1 and 10 initial conditions can lead to satisfying

results. However, the authors do not provide any certificate of robustness for this approach, they

only assert that such a choice is acceptable in practice thanks to properties of the linear propagation

of a convex hull. A worst case approach for dealing with navigation uncertainties which provides

a guaranteed certificate is described in [15]. Mueller and Larsson modelled the errors affecting the

initial state as belonging to an ellipsoid and then, presented a algorithm based on linear program-

ming that ensure the collision avoidance on a discrete time horizon.

If stochastic programming take advantage of the fact that probability distributions governing the be-

havior of GNC systems are usually available, the resolution technique have a high level of numerical

complexity. In addition, stochastic programming approach will provide probabilistic guarantees for

the constraints satisfaction while most of constraints cannot be softened in the rendezvous guidance

problem. For these reasons, a deterministic worst-case approach guaranteeing a priori robustness

and with good tractability is preferred in this paper.

The contribution of the present paper is to provide robust rendezvous planning algorithms

that guarantee the final rendezvous conditions in the presence of GNC uncertainties and errors.
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Technically, the aim of the proposed guidance algorithm is to prevent the spread of these GNC

systems errors by working out the direct method algorithms through robust convex optimization

[33]. The main advantage is to provide the mission designer with constructive numerical algorithms

built on direct optimization schemes that also give a certificate of robust optimality as a by-product.

This approach makes it possible to analyze the worst possible effects of the GNC errors on a specific

mission. Note that uncertainties must be described through their bounds to match the requirement

of the robust optimization contrary to the stochastic programming.

The proposed guidance algorithms are built based on a three step methodology. First, a de-

terministic modelling of uncertainties model is proposed. Then, the effects of these errors on the

optimal rendezvous guidance algorithm are exposed. Finally, a rendezvous guidance algorithm ro-

bust to above uncertainties that computes the best guaranteed precision performance is proposed.

Please note that the scope of this paper is limited to propulsion devices errors (i.e. firing time and

impulse execution errors). In fact, the proposed approach is not relevant to preclude the effects of

the measurement noise. This issue is tackled separately by the authors using a different methods in

the article [25].

This paper is organized as follows. Sections II provides a description of the rendezvous guidance

problem as it is usually presented in the literature and proposes a polytopic relaxation of the

rendezvous condition. Section A presents the general guidance problem for relaxed final conditions

when uncertainties are considered along with the paradigms of the robust convex optimization.

Propulsion devices errors are treated in sections III, IV and robust guidance programs are presented.

Finally, section V presents the results obtained for several mission examples in order to validate the

methodology, together with nonlinear simulations results.

II. Direct resolution methods for the rendezvous guidance problem

After presenting the relative motion model and the guidance problem, the rendezvous guidance

problem is formulated as a linear program using a direct approach. If the rendezvous condition is

first defined as an exact condition, it is then shown that rendezvous condition must be relaxed to

handle errors and uncertainties in the rendezvous guidance algorithm.
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A. the rendezvous guidance problem

This paper concentrates on the homing phase of the spacecraft rendezvous mission, which be-

gins when the separation between spacecraft is sufficiently small to allow the guidance of the chaser

spacecraft using relative navigation. In this framework, the spacecraft relative motion can be char-

acterized expressed in the Local-Vertical-Local-Horizontal (LVLH) frame centered at the target

spacecraft position (see figure 1).

target orbit

~Zlvlh

~Xlvlh

~Ylvlh

~rt

T

~ωt

~Xi

~Zi

~Yi

Oi

Fig. 1: Illustration of the LVLH frame

It is assumed that the chaser is moved using several ergol thrusters rigidly mounted on the

vehicle frame. Under this assumption, the control can be modelled as impulsive signals that instan-

taneously affect the velocity component of the chaser relative state, X ∈ R
6, in the LVLH frame.

Under the impulsive control assumption, the linearized spacecraft relative dynamics of the relative

state (position and velocity) X expressed with the true anomaly of the leader spacecraft ν as the

independent variable are given by

dX(ν)

dν
= AX(ν) +B

∑

i

∆V(νi) (1)

where A and B are the matrices corresponding to the Tshauner-Hempel linearized and simplified

dynamic equations [35]. The control vectors ∆V(νi) are defined in the leader LVLH frame such

that ∆V(νi) = ∆Viδ(ν − νi) where the vector ∆Vi belongs to R
3 and δ(ν − νi) denotes the Dirac

impulse at time νi .
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The rendezvous guidance problem requires the computation of a plan of N impulsive maneuvers

{∆Vi}i=1,...,N such that the finite-time trajectory ν 7→ X(ν) satisfies the exact initial condition

X(ν1) = X1, the final condition X(νf ) = Xf (see Fig. 2) and the actuators constraints, while

minimizing a given cost (generally the ergol consumption).

Initial state

Final state

Target

Fig. 2: Deterministic rendezvous illustration

The spacecraft rendezvous guidance problem can be stated as follows:

min
∆V,νi

J(·)

under







dX(ν)
dν

= AX(ν) +B
∑N

i=1 ∆Viδ(ν − νi)

X(ν1) = X1, X(νf ) = Xf

−∆viI3 ≤ ∆Vi ≤ ∆viI3 , ∀ i = 1, · · · ,N

(2)

where ∆vi denote the saturation bounds for the spacecraft thrusters. Note that ∆vi depend on the

impulse time, νi and on the actuators limitation ∆Vmax

∆vi =

√

a3(1− e2)3

µ

1

1 + e cos νi
∆Vmax (3)

B. Direct approach: Linear Programming

Direct shooting methods have shown their relevance for solving the rendezvous guidance problem

in the last decade [11, 13, 15, 37, 38]. Their usage are handy since closed form solutions of the

linearized dynamics (1) exist. For instance, Yamanaka and Ankersen developed in [36] a transition

matrix Φya that enables the propagation of the chaser spacecraft relative state starting from an
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initial state X1(ν1) under the action of N impulsive controls:

X(ν) = Φya(ν, ν1)X(ν1) +
N∑

i=1

Φya(ν, νi)B∆Vi = Φya(ν, ν1)X(ν1) +B∆V (4)

where ν1 < ν2 < · · · < νN ≤ ν. ∆V denotes the stacked control vector

∆V =
[
∆VT

1 , . . . ,∆VT
N

]T
(5)

and

B = [Φya(ν, ν1)B . . . Φya(ν, νN )B] , with B =







O3

I3







(6)

where O3 ∈ R
3×3 is the null matrix and I3 ∈ R

3×3 is the identity matrix.

By using the closed form solution provided by the transition matrix, the dynamic program (2) can

be transformed into the following static one

min
∆Vi,νi

J(·)

under







Xf = Φya(νf , ν1)X(ν1) +B∆V

X(ν1) = X1, X(νf ) = Xf

−∆viI3 ≤ ∆Vi ≤ ∆viI3 , ∀ i = 1, · · · ,N

(7)

The previous optimal control problem can be recast into a linear program by setting the impulse

times {νi}i=1,...,N a priori and electing a optimization criteria, J(·),that is linear in the decision

variables ∆V = {∆Vi}
T
i=1,...,N. Usually in the rendezvous problem, the the criteria represents the

fuel consumption. However, it will be showed next that, in the presence of GNC system errors,

the choice of the optimization criteria is of importance and needs to be made carefully in order to

include the robustness requirements. The nature of the objective and the description of the cost

function are discussed further in a dedicaded section after presenting the GNC system errors and

their impacts on the the rendezvous guidance problem.

C. Effects of the GNC errors on the rendezvous guidance problem

As part of the GNC system, the performances of the guidance algorithms are tightly related to

the performances of the navigation devices and propulsion equipment. Errors from these devices
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and equipment can greatly deteriorate the guidance precision performances.

The navigation errors affect the initial state X1 used for the calculation of the guidance plan:

X1 ∈ Unav (8)

The uncertainty set Unav is directly related to the accuracy of the sensors and to the performances

the navigation filter.

The impulses execution errors are twofold: errors on the firing times, νi, and errors on the

impulses execution. The spacecraft thrusts have been modelled as pure impulsive control, but

practical execution of the maneuver make the trust profile looks like a continuous functions. To

account for the modelling errors of the impulsive assumption, the firing times, νi can be considered

as uncertain:

νi ∈ [νi, νi], i = 1, . . . , N (9)

The impulses ∆Vi, are computed in the leader’s LVLH frame, but the global effort is allocated

on the different available gas thrusters. The follower’s thrusters also need to be aligned before

each impulse execution by means of attitude slew maneuvers. Hence, the precision of the control

execution depends on the precision of this alignment. Thus, the thrust allocation and the alignment

process introduce uncertainties in the impulses execution:

∆Vi ∈ U∆Vi
(10)

Previously, the rendezvous guidance problem has been defined with strict initial and final ob-

jectives [see Fig. 2 and Eq. (7)]. However, when the GNC uncertainties and errors (8) (9), (10) are

integrated in the trajectory propagation (4), the final relative state X(νf ) can no longer be exactly

computed;

X(νf ) = Φya(νf , ν1)X(ν1) +

N∑

i=1

Φya(νf , νi)B∆Vi ∈ Xf ,







X1 ∈ Unav

νi ∈ [νi, νi]

∆Vi ∈ U∆Vi

(11)

In this case , the final rendezvous condition must be relaxed to enable for some tolerances on the

final objective. The rendezvous terminal condition is replaced by a set membership constraint on
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the spacecraft final relative state for all the possible instances of the uncertainties:

Xf −X(νf ) = Xf −Φya(νf , ν1)X1 −B∆V ∈ T ,







∀X1 ∈ Unav

∀νi ∈ [νi, νi]

∀∆Vi ∈ U∆Vi

(12)

The set T defines on admissible tolerance around the original rendezvous objective in presence

of GNC errors. The rendezvous guidance problem (7) can be amended as the following uncertain

program:

min
∆V

J(·)

under







Xf −Φya(νf , ν1)X(ν1)−B∆V ∈ T

(X1, ν,∆V) ∈ V,

−∆viI3 ≤ ∆Vi ≤ ∆viI3 , ∀ i = 1, · · · ,N

(13)

where the set of uncertainties, V, as the direct product of the errors from (8) (9) and (10). It should

be outlined that the tolerance set, T , can interpreted as an inclusion set of all possible instance of

the final state X(νf ) under GNC device errors.

In the sequel, the proposed work is focused on the impulses execution errors i.e. uncertainties

on impulses time, ν and the mis-realization of the impulses, ∆V.

D. Relaxed polytopic rendezvous condition

In the proposed approach, T is chosen to be a polytopic set defined by the matrices HT ∈ R
nT ×6

and KT ∈ R
nT . The spacecraft relative state at the end of the rendezvous maneuver plan, X(νf ),

is required to satisfy the following matrix inequality:

HT X(νf ) ≤ KT (Xf ) ⇔ HT (B∆V +Φya(νf , ν1)X1) ≤ KT (Xf ) (14)

The KT vector is chosen such that the final set T is centered around the original rendezvous

objective Xf see figure 3. Thus, the polytopic version of the uncertain optimal control problem (13)
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is described by the following program:

min
∆V

J(·)

under







HT (B∆V +Φya(νf , ν1)X1) ≤ KT (Xf )

(ν,∆V ) ∈ V,

−∆viI3 ≤ ∆Vi ≤ ∆viI3 , ∀ i = 1, · · · ,N

(15)

Initial state final arrival set

Fig. 3: Relaxed rendezvous illustration: Polytopic tolerance arrival set

Without loss of generality, the tolerance polytope T can be specified as a parallelotope with the

defining matrices HT and KT given by:

HT =







I6

−I6






, KT =







Γ +Xf

Γ−Xf







with R
6 ∋ Γ > 0 (16)

Specifying a final tolerance in the form (16) presents computational advantages that will be ex-

ploited in what follows. Among these advantages, it enables to reduces the numbers of the defining

parameters (the vector Γ for instance). Moreover, the definition (16) of HT and KT defines the set

T as the inclusion set, in the interval analysis sense, for the spread zone of the different errors.

E. The objective function J(·)

The typical objective for a rendezvous guidance algorithm is the minimization of the fuel cost of

the computed plan [20]. Assuming that the chaser spacecraft is equipped with six identical thrusters

rigidly mounted in its axes, the total fuel consumption cost is given by [32]:

J = ‖∆V‖1 (17)
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This piecewise linear cost function can be linearized by introducing slack variables Z ∈ R
3N in the

guidance problems (7) and (15) such that

∆Vi ≤ Zi

−∆Vi ≤ Zi

, ∀ i = 1, · · · , 3N (18)

and setting J =
3N∑

i=1

Zi. The reader will note that:

min
∆V

‖∆V‖1 ⇔ min
∆V,Z

3N∑

i=1

Zi (19)

On the other hand, in presence of GNC errors, besides minimizing the fuel cost, certifying the best

rendezvous precision is of great interest. This precision objective can be described in terms of the

dimensions of the tolerance set T which contains all the possible final states for the considered

uncertainties. By considering the tolerance vector Γ as decision variable, the dimensions of the final

inclusion set can be minimized while maintaining the linear structure of the cost function. In this

cas the cot function can be chosen as:

J =

6∑

i

Γi (20)

By choosing the cost function (20), the objective becomes able to compute the maneuver plan, ∆V,

that is the least sensitive to the considered errors. Once computed, the tolerance set T gives a

certified prediction of the spread zone for all the possible trajectories. It is also interesting to notice

that the tolerance set has not to be set a priori but its size is minimized during the process.

Fuel is a critical ressource for the spacecraft applications and even when it is not explicitly included in

the objective function, it must be ensured that the total consumption does not exceed the allocated

budget. For a given fuel budget,M∆V, the robust plan must be such that:

‖∆V‖1 ≤

3N∑

i=1

Zi ≤ M∆V (21)

The cost function (20) will be used in the robust algorithm presented in the next section along with

the budget constraint (21) in order to achieve the best rendezvous precision while respecting the

required limitations even in presences of errors.

The aim of this work is to obtain a tractable robust counterpart of the uncertain program (13)

by using robust optimization concepts (cf appendix A). The uncertainties on impulse time and the
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errors affecting the impulses execution are considered separately and for each case a linear program

is obtained.

III. Rendezvous guidance algorithm robust to uncertainties on impulses application time

A. Modeling impulses firing time uncertainties using interval analysis

In this section, the maneuver plan will be affected by some uncertainties on the maneuver firing

time. The uncertainties are defined as:

νi = ν0i + uiδνi, i = 1, . . . , N (22)

where ν0i is the nominal firing time, δνi is the maximal disturbance and the perturbation vector

u ∈ R
N belongs to the normalized interval [−1, 1]. The entries of u are supposed to be independent

from each other.

Uncertainties on the impulses times have two consequences on the linearized relative motion. First,

since the transition matrix Φya depends on the true anomaly, the propagation of the relative tra-

jectory will be affected. Second, the bounds on the control amplitudes, ∆v, also become uncertain

since they depend on the position of the target spacecraft on its orbit (cf equation (3)). The present

study does not address the uncertainties on the impulses bounds as their effect can be neglected

since δνi is relatively small with respect to the orbital period.

In order to build the robust counterpart that accounts for the impulses time uncertainties, it is

necessary to evaluate the maximum variation of the elements of the Yamanaka-Ankersen transition

matrix on a given impulse time interval. Such information can be obtained through the computation

of the interval inclusion function. Let a interval, denoted [x], be a connected and finite set of R

defined by:

[x] = [x−, x+] = {x ∈ R|x− ≤ x ≤ x+} (23)

Let mid ([x]) denote the middle of the interval [x] and IR denote the set of all intervals of R

Definition 1. Consider a function f from R
n to R

m. The interval function [f ] from IR
n to IR

m is

an inclusion function for f if:

∀[x] ∈ IR
n, f([x]) ⊂ [f ]([x]) (24)
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The inclusion function can be computed using several methods, such as the natural inclusion

function, the centered inclusion function or the Taylor inclusion function [39]. To reduce the conser-

vatism of the inclusion function, the Centred Inclusion Function (CIF) method is chosen to estimate

the transition matrix inclusion denoted [Φya](νf , [νi]).

B. Polytopic rendezvous robust counterpart

The final rendezvous condition is relaxed to polytopic final set to account for the presence of

the impulse firing time uncertainties (see Fig. 4).

Under impulse firing time uncertainties, the polytopic rendezvous constraint (14) becomes uncertain

since the matrix B is unknown and belongs to the interval matrix [B] such that

[B] =

[

[Φya](νf , [ν1])B . . . [Φya](νf , [νN ])B

]

(25)

Initial state

[ν1]

Final arrival set

[ν2] [ν1]

Fig. 4: polytopic rendezvous condition under impulse firing time uncertainties

Thus, the uncertain polytopic rendezvous condition is given by

HT

(

Φya(νf , ν1)X(ν1) +

N∑

i=1

Φya(νf , νi)B∆Vi

)

≤ KT (26)

where

[Φya](νf , [νi]) ∋ Φya(νf , νi) = Φ̂0
ya(νf , νi) + δΦya(νf , νi) (27)

The matrix Φ0
ya(νf , νi) is the center matrix of the inclusion matrix [Φya](νf , [νi]). The matrix

Φ0
ya(νf , νi) is generally different from the nominal transition matrix, Φya(νf , νi). The perturbation

matrix δΦya(νf , νi) belongs to the interval matrix [−δΦi, δΦi], δΦi being the radius matrix of the

inclusion matrix [Φya](νf , [νi]). The uncertain set V can be then expressed as:

V = {Φ̂ya(νf , νi)|Φ̂ya(νf , νi) = Φ0
ya(νf , νi) + uiδΦi, |ui| ≤ 1, i = 1, . . . , N} (28)
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According to [34], the robust counterpart of the uncertain rendezvous condition (26) can be written

as:

HT

(

Φya(νf , ν1)X(ν1) +

N∑

i=1

Φ0
ya(νf , νi)B∆Vi +max

ui

{uiδΦiB∆Vi}

)

≤ KT (29)

which is equivalent to

HT Φya(νf , ν1)X(ν1) +
N∑

i=1

HT Φ
0
ya(νf , νi)B∆Vi +HT |δΦiB∆Vi| ≤ KT (30)

By observing that the slack variables Zi, such that |δΦiB∆Vi| ≤ |δΦiB||∆Vi| ≤ |δΦi|Zi, the

previous inequality can be linearized to obtain the robust program to uncertain impulse times:

min
∆V,Γ,Z

6∑

i=1

Γi

under







HT Φya(νf , ν1)X(ν1) +HT

N∑

i=1

Φ0
ya(νf , νi)B∆Vi + |δΦiB|Zi ≤ KT

∆Vi ≤ Zi

−∆Vi ≤ Zi

3N∑

i=1

Zi ≤M∆V

[Z3i+1, Z3i+2, Z3i+3]
T ≤ ∆vi+1I3 , ∀ i = 0, · · · , N − 1

(31)

Note that the problem (31) has a linear structure.

IV. Rendezvous guidance algorithm robust to errors in impulses execution

A. Modeling the uncertainties

The performances of the thrust devices are described here in terms of amplitude and orientation

precision (see figure 5).

∆Vi = (1+ λi)Mci∆V0
i (32)

where the coefficient λi represents the amplitude error and is such that

λi ∈ [−ε, ε] (33)

and the Cardan rotation matrix Mci(ψi, θi, φi) represent the orientation error (see figure 6).
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Fig. 5: Impulse execution errors description
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Fig. 6: Cardan angles: rotation frome frame (~x0, ~y0, ~z0) to (~x3, ~y3, ~z3)

As long as the Cardan angles ψ, φ, θ remain small, the Cardan rotation matrix can be approx-

imated by

Mci =











1 −ψi θi

ψi 1 −φi

−θi φi 1











(34)

where the Cardan angles are bounded by β, the maximal error angle

|ψi| ≤ β, |θi| ≤ β, |φi| ≤ β (35)

Let Mi denote the perturbation matrix such that

Mi = (1 + λi)Mci =











1 + λi −(1 + λi)ψi (1 + λi)θi

(1 + λi)ψi 1 + λi −(1 + λi)φi

−(1 + λi)θi (1 + λi)φi 1 + λi











(36)

Note that Mi is composed by four independent element. thus, four perturbation variables uij are
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required to describe the affine uncertainty set V.

V = {Mi | Mi = I3 +

4∑

j=1

uijM
j , |uij | ≤ 1, i = 1, . . . , N} (37)

where

M1 =















ε 0 0

0 ε 0

0 0 ε















, M2 =















0 −(1 + ε)β 0

(1 + ε)β 0 0

0 0 0















, M3 =















0 0 (1 + ε)β

0 0 0

−(1 + ε)β 0 0















, M4 =















0 0 0

0 0 −(1 + ε)β

0 (1 + ε)β 0















(38)

B. Polytopic rendezvous robust counterpart

The rendezvous mission under errors on the impulse execution with a relaxed polytopic arrival

set is illustrated in Fig 7. The uncertainties on the impulses execution can be translated into

uncertainties on the transition matrix by using the description of the uncertainty set (37). In this

case, the uncertain polytopic rendezvous condition can written as:

HT Φya(νf , ν1)X(ν1) +HT BM(u))∆V ≤ KT (39)

where

M(u) = diag ({M1, . . . ,MN}) = I3N +











∑4
j u1jM

j

. . .

∑4
j uNjM

j











︸ ︷︷ ︸

M̆(u)

, ‖u‖∞ ≤ 1 (40)

and the perturbation variable u ∈ R
4N is norm-bounded such that ‖u‖∞ ≤ 1.

Initial state

∆V1

∆V3

∆V2

Fig. 7: Rendezvous affected by impulses execution errors with polytopic arrival set
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A robust counterpart can be formulated by applying the results from [40]:

HT Φya(νf , ν1)X(ν1) +HT B∆V + max
‖u‖∞≤1

{HT BM̆(u)∆V} ≤ KT (41)

Then, it comes that

max
‖u‖∞≤1

{HT BM̆(u)∆V} = max
‖u‖∞≤1







N∑

i=1

HT Φya(νf , νi)B





4∑

j

uijM
j



∆Vi






(42)

=
N∑

i=1

4∑

j

max
‖u‖∞≤1

{
HT Φya(νf , νi)BM

j∆Viuij

}
(43)

=

N∑

i=1

4∑

j=1

∣
∣HT Φya(νf , νi)BM

j∆Vi

∣
∣ (44)

The robust counterpart to the relaxed guidance problem (13) under uncertainties on impulses exe-

cution (32) is finally obtained:

min
∆V,Γ

6∑

i=1

Γi

under







Φya(νf , ν1)X(ν1) +HT B∆V +
∑N

i=1

∑4

j=1

∣
∣HT Φya(νf , νi)BMj∆Vi

∣
∣ ≤ KT

X(ν1) = X1

‖∆V‖1 ≤ M∆V

−∆viI3I3 ≤ ∆Vi ≤ ∆viI3 , ∀ i = 1, · · · ,N

(45)

By using the slack variables Z defined by (18) and the variables Y ∈ R
4N such that

−Yij ≤ HT Φya(νf , νi)BM
j∆Vi ≤ Yij, i = 1, . . . ,N, j = 1, . . . ,4 (46)

the problem (45) can be reformulated as the following linear program

min
∆V,Γ,Z,Y

6∑

i=1

Γi

under







Φya(νf , ν1)X(ν1) +HT B∆V +
∑N

i=1

∑4

j=1 Yij ≤ KT

−Yij ≤ HT Φya(νf , νi)BM
j∆Vi ≤ Yij

−Zi ≤ ∆Vi ≤ Zi

3N∑

i=1

Zi ≤ M∆V

[Z3i+1, Z3i+2, Z3i+3]
T ≤ ∆vi+1I3 , ∀ i = 0, · · · , N − 1

, i = 1, . . . , N, j = 1, . . . , 4

(47)
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V. Numerical examples

Table 1: Rendez-vous missions repertory

Missions parameters ATV 1 ATV 2 Proba 3

Semi-major axis, a [km] 6763 6763 37039.887

Eccentricity 0.0052 0.0052 0.80621

Inclination [degree] 52 52 60.15

Argument of Perigee [degree] 0 0 180.6

Right Ascension of the Ascending Node [degree] 0 0 173

Saturation [m/s] 5 5 0.8

Initial anomaly [degree] 0 0 0

Mission duration [s] 2767 7200 141888

Initial relative state [m,m/s]
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The optimal deterministic guidance algorithm (7) minimizing the ∆V-consumption objective

(17) on one hand and the robust algorithms (31) and (45) on the other hand are compared on the

benchmark missions from Table 1. The proposed rendezvous missions are chosen to cover low and

high eccentricity target orbits and a large range of mission durations. The missions from Table 1 will

be simulated in a Keplerian and linear environment first. Then, simulations are run in a nonlinear

environment for a specific Prisma type mission to validate the approach described in this paper.
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Most of the results are obtained considering a number of impulses, N , set to 50, equally distributed

on the mission time horizon. Note that the influence of the number of impulses is also studied as

well. It should be noted that all the simulations presented here are run in an open-loop fashion.

For the robust algorithms (31) and (45), the allocated ∆V budget, M∆V , is calculated with respect

to J∗
∆V , the optimal ∆V -consumption obtained by solving (7) along with the cost function (17):

M∆V = αJ∗
δV (48)

The aim of comparison is twofold. First, the numerical simulation must validate that the

computed inclusion set T contains the spread the of errors included in the defined uncertainty sets.

The second aim of this numerical study is to ascertain the gain of the robust open-loop approach

with respect to the deterministic algorithm (7) in terms of errors propagation by deterministic and

robust maneuver plans and in terms of ∆V consumption. To make this study, for each case of

uncertainties for tested mission, several graphics are proposed. On one hand figures 8, 10, 13, 15,

18, 19 propose four plots. Two plots present the fuel-optimal and the robust maneuver plans along

Xlvlh and Zlvlh axis. Two plots depict the results of Monte-Carlo simulations: the spread of the

final relative states obtained by the propagation of the different errors by the fuel-optimal plan

and the unrestricted-budget robust plan is exposed. On figures 9, 11, 12, 14, 16, 17, bar diagrams

are presented. On this bar diagram, the level of guaranteed tolerance and spread are exposed for

different fuel budget. For the tolerance this level corresponds to the robust cost (20). For the

"Errors spread" bars, it is the sum of the widths of the spread along each axis. "Errors spread" bars

can only be estimated from the Monte-Carlo runs contrary to the computed minimal tolerances. In

sake of comparison, two information are added to the bar graphics: the level of errors spread for

the fuel-optimal plan is indicated through the light grey line and the consumed ∆V is given by the

black line.

A. Uncertainties affecting the impulse firing time: numerical examples

In order to illustrate the efficiency of the algorithm (31), simulations are run considering random

disturbances on each nominal firing location. Those disturbances are bounded within δνi such that

it corresponds to 1 second errors.
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In the case of the ATV 2 (Automated Transport Vehicle) mission (figures 8), the fuel-optimal

plan consists of 4 impulses out of the possible 50, the robust plans are also of 4 impulses. The

research of the robustness with respect to firing location errors is achieved by shifting the two first

impulses to the left. In the robust plan the second and third impulses consume most part the fuel

while the first and third ones are the most demanding for the fuel-optimal plan. One can also note

that the impulses are only on Xlvlh-axis thrusts for the three plans.

On figures 8, one can observe that the precision of the mission is improved by the robust algorithm

as expected after the computation of the optimal tolerance. The improvements are mainly on Zlvlh

axis on position and Xlvlh axis on velocity. The bar graphic 9 exposed the level of guaranteed

tolerance and the errors spread for different budgets. Different facts can be observed from 9. First,

a budget of 100% of the fuel-optimal consumption is needed to guarantee a better precision than

the spread by the fuel optimal plan of the firing time errors. In fact, the level of spread of errors

by the non robust plan is 10% larger than the guaranteed tolerance while the actual level of spread

by the robust plan is 10% smaller. Moreover, when the budget is not restricted, it can be seen that

the consumption is very similar to the minimal fuel cost J∗
∆V . This fact infers that the robustness

do not necessarily imply an increase of the ∆V consumption but it is also a matter of impulsive

thrusts location.

the advantages of using robust algorithm are more obvious in the case of Proba 3 mission.

Figures 10 show that the final states obtained by the propagating of the optimal plan are largely

spread over 1800 m on Z axis and 5 m/s on Vx axis while the optimal certified precision is about

of 1 m along Xlvlh and 7 m along Zlvlh in position and 20 mm/s and 1 mm/s in velocity. These

results are obtained at the price of an 200% increase of the ∆V consumption.

However, for this difficult mission, improvement, with respect to the spread of the fuel-optimal

plan, can be obtained with less than the fuel-optimal cost . In fact, It can be seen on figure 11 that

only 90% of the nominal optimal consumption, J∗
∆V , is needed to certify a much better inclusion

set and to greatly reduce the spread of the final disturbed states. Note that the level line of the

non robust spread does not appear on figure 11 since the level of the spread is much larger than

the worst computed tolerance. This fact is symbolized by the triangle. With a budget of 200%
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of the optimal consumption, the guaranteed tolerance dimension are improved of 35%. Beyond

a ∆V budget of 200% of the optimal consumption, the guaranteed tolerance is not improved

significantly even if more ∆V consumption permits to tighten more the spread of errors. For both

missions, one can note that the gap between the guaranteed tolerance and the actual spread of the

errors is about 10 points of percentage for budget greater than 100% of the optimal-fuel consumption.

For the previous numerical experiments, the number of possible impulses is fixed to 50. In order

to evaluate the influence of N , we reproduce the experiments for different numbers of impulses,

ranging from 10 to 200 with an unrestricted budget (see figures 12). In the case of the ATV

2 mission, increasing the number of impulses only brings small improvements of the guaranteed

tolerance and errors spread while the consumption keeps unchanged. On the contrary, in the case

of Proba 3 mission, the number of impulses has a stronger influence. The guaranteed tolerance

and the spread improve as N increases but, at the price of more consumption.
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B. Rendezvous maneuver plan robust to the impulses execution errors: numerical examples

To illustrate the properties of the robust guidance algorithm (45), amplitude errors ε = 0.001

i.e. 0.1% and orientation errors β = 1◦ are considered on each executed impulsive maneuver. To

simulate execution errors on each impulses, the angles ψi, θi, φi and amplitude coefficient λi are

chosen randomly within their bound, then the computed ∆Vi is perturbed accordingly to (32). The

results only present the in-plane propagation. However, one must keep in mind that mis-execution

errors are spread over the three directions.

In the case of ATV 1 mission, figures 13 show that the minimal certified tolerances ensure much

better precision in position than the one can be expected with the ∆V optimal plan. Moreover, the
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spread of the errors is much more contained with the robust plan.

In Fig. 13, the optimal 4-impulses plan takes advantage of a long coasting period between the

second and third impulse to reduce consumption of the ATV 1 mission. The unrestricted-budget

robust maneuver plan is composed of 4 impulses. The most consuming impulsion of this robust

plan is the second one that is placed halfway to the end of the mission. When limiting the budget,

the robust strategy is slightly different: the halfway impulse is replaced by two impulses on Xlvlh

axis. However, it can be noticed that, when the robustness is sought, it is preferable to to thrust at

midway to the end of the mission than having a coasting period.

Some information can be deduced from figure 14. First, the level of guaranteed tolerance is larger

than the non robust plan spread of the errors, some improvement can be certified on given directions

(for instance for the position). However, the spread is significantly smaller for robust plan than for

optimal-fuel plan, even if it can not be certified for this particular mission. This fact is explained

by the conservatism observed on figures 13, can also be highlighted in bar graph 14 since for

every budget, there is a large gap between the guaranteed tolerance and the errors spread. This

gap is between 65 and 35 points of percentage for budget greater than 100% of the fuel-optimal

consumption.

Figures 15 and 16 present more spectacular results for the Proba 3 mission since the

fuel-optimal plan spread the impulses execution errors over nearly 30km along Xlvlh axis while

the the robust plan certify tolerance width of 750m and limit the actual spread of the errors to

about 320m on the same axis. The same phenomenon can be observed on the velocity where the

fuel-optimal plan spread over 17m/s along the Z axis while the certified tolerance is about 0.5m/s

and the errors are spread on 20 mm/s. Observing figures 15, one can note that specific thrust

instants are to be preferred when robustness is sought for this particular mission. In addition, these

robust thrust locations are independent from the allocated budget.

Reminding that the triangle in figure 16 means that the non robust spread of much larger

than the certified tolerances, the robust plans permits a significant reduction of the maneuver

plan sensitivity with respect to impulse execution errors. However, the dimension of the minimal
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tolerance dimension shows large conservatism. The gap between the level guaranteed tolerance and

the actual spread is of between 90 and 40 % for the presented budgets.

Finally, the influence of the impulse number is analyzed. the previous experiments are repro-

duced assuming different numbers of impulses and with an unrestricted budget. For each Monte-

Carlo simulations run, the guaranteed tolerance, the spread of the errors and the consumption are

represented on Figures 17. On the other hand, in the case of errors on impulse firing time, increas-

ing the number of impulses, for the ATV 1 mission case, permits the improvement of the tolerance

and the errors spread. Moreover, it also slightly improves the robust consumption through a better

selection of impulses locations.

C. Results analysis

The both tested algorithms show the advantage to significantly reduce the spread of the errors

compared to the fuel-optimal plan. If this improvement can be certified a priori in the case of errors

on firing time, this is not always the case for impulses mis-execution errors. In fact, for firing time

error case, the computed tolerance sets are a pretty good inclusion set of the spread of the firing

time errors by the robust plans. This fact is due to the fact that the computation of the transition

inclusion matrix [Φya(νf , [νi])] is pretty accurate using the centered inclusion function [39] for errors

corresponding to 1 second (δν is about few milliradians). On the contrary, the propagation of the

mis-execution errors, represented by matrix M through the transition matrices Φya(νf , νi) imply

wrapping effects. The wrapping effect corresponds here to the artificial enlargement of the inclusion

that includes the image of an interval vector through matrix multiplication [39]. This effect is

represented in the equation (46), where the slack variables Y represent the the inclusion set of the

spread of errors. These effect imply that the robust algorithm will seek to certify the rendezvous

precision for larger errors than needed.
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Fig. 17: Rendezvous under impulses execution errors with varying number of impulses N

D. Nonlinear simulations

The previously presented results have been obtained for the linearized spacecraft relative dy-

namics propagated using the Yamanaka and Ankersen transition matrix. This section illustrates

the performances of the robust algorithms when nonlinear dynamics are simulated instead.

The nonlinear simulator relies on the nonlinear propagation through Gauss equation integration

of each spacecraft and on the evaluation of the relative motion. This is illustrated for a Prisma mis-

sion that is detailed in table 2.

A short mission duration has been chosen in order to be able to simulate the nonlinear dynamics

and orbital disturbances (J2 term and atmospheric drag mainly) while maintaining the difference
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Table 2: Mission Prisma type

Semi-axis a, [km] 7011

Eccentricity e 0.004

Inclinaison [degree] 98

Right Ascension of the Ascending node [degree] 190

Argument of Perigee [degree] 0

Initial target anomaly [degree] 0

Saturation [N] 0.26

Mission duration [s] 1500

Initial relative state [m,m/s] [300, 0, 0, 0, 0, 0]

Final relative state [m,m/s] [20, 0, 0, 0, 0, 0]

between linear and nonlinear propagation within acceptable bounds. If the computed plans are

implemented in an open-loop structure for this study, it has to be noted that for longer missions,

a closed-loop control law has to be implemented to alleviate the modelling errors and external

disturbances. For each type of uncertainties, the robust and the deterministic maneuver plans are

tested by means of Monte-Carlo nonlinear simulations runs. The impulse time errors is equivalent

to 1 second and the control execution errors is given by ε = 0.1%, β = 1◦.

The results obtained for the guidance algorithm robust to impulse trigger time uncertainties

when using the nonlinear dynamics are presented in Fig. 18. The robust certificates provided by

the rendezvous algorithm are validated also in a nonlinear environment while the non robust plan

transgress the certified tolerance bound. The robust plan has also the advantages of only consuming

0.25% more than the optimal plan.

It can be observed in Fig. 19 that the maneuver plan robust to execution errors respects the

arrival tolerance set even in the presence of environmental perturbations, while the nonrobust plan

violates the tolerance box in position. The price of the certified robustness here is a increase of 8%

of the ∆V consumption.

36



0 500 1,000 1,500

−0.2

−0.1

0

0.1

0.2

time [s]

∆
V

X
-a

x
is

[m
/
s]

Maneuvers plans

Rob. ∞ budget

Non robust

18 19 20 21

−1.5

−1

−0.5

0

0.5

X [m ]

Z
[m

]

Errors spread

Robust

Non robust

0 500 1,000 1,500

−0.2

−0.1

0

0.1

0.2

time [s]

∆
V

Z
-a

x
is

[m
/
s]

−4 −3 −2 −1 0 1

·10−3

−0.2

0

0.2

0.4

0.6

0.8

1
·10−3

X [m/s]

Z
[m

/
s]

Robust

Non robust

Fig. 18: Mission Prisma : Rendezvous under uncertain impulsion times
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Fig. 19: Mission Prisma : Rendezvous under impulsion execution errors

VI. Conclusion

In this paper, the design of robust algorithms for rendezvous guidance problem under uncer-

tainties due to propulsion system errors is addressed. Tractable algorithms are developed on the

theoretical foundation of the convex robust optimization. In fact, polytopic tolerance arrival set

and interval descriptions of these errors leads to a linear description of the robust counterpart for

the optimal guidance problem. Numerical examples demonstrate the ability of the robust algorithm

to preclude the spread of the errors from propulsion systems even under fuel budget constraint.

Numerical simulations of several missions have been conducted in linear and non linear propagator.

38



The computed tolerance, the actual spread have been analysed with respect to ∆V consumption

budget. It has been observed that minimizing the arrival tolerance set clearly changes the structure

of the maneuver plans. Optimizing the guaranteed precision generally implies an increase of the ∆V

cost. Most results show that, for a same level of consumption, a robust structure permits to mitigate

the spread of the errors in comparison with the non robust optimal plan. Moreover, in some cases,

the robust rendezvous algorithms are able to certify a better precision with a ∆V budget equivalent

to the one obtained with the nominal plan.

A limitation of the proposed method comes from the fact that the affine description of the

uncertainty sets, which the algorithms rely on, are obtained using a rather crude interval analysis,

generating a possible high level of conservatism of the description. Thus, applying the proposed

methodology to the case where the thrust errors are combined, leads to poor results that are too

conservative. The computed tolerance boxes are unsound with respect to the rendezvous objec-

tives. Future works will focus on developing tighter affine descriptions of the uncertainty set, thus

minimizing the possible conservatism of the planning algorithm.

APPENDIX A: ROBUST CONVEX OPTIMIZATION

In optimization framework, an uncertain program (A1) can be defined as follows [40]:

min
x

f0(x)

under fi(x,Θi(ui)) ≤ 0, ∀Θi ∈ Vi, i = 1, . . . ,m

(A1)

where x ∈ R
n denotes the vector of decision variables. The structure of the program is supposed

to be fixed and described by the cost function f0 and the constraints applications fi. The data of

the problem, Θ ∈ R
m is uncertain and depends on a disturbance variable u such that each entry

Θi evolve in uncertainty set Vi:

Vi = {Θi|Θi = Π(ui), ui ∈ Ui ⊂ R
mi} (A2)

The set V is the image of the disturbance set U through application Π(·). The paradigm of the

robust convex optimization is based on the following statements [33]. First, x must be obtained

by solving (A1) without the exact knowledge of the data Θi. Second, the results are valid for any

Θi ∈ Vi. Third, for a given robust feasible solution x, the constraints fi(x,Θi(ui)) ≤ 0 are not
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violated for all Θi ∈ Vi. This leads to the definition of a robust feasible solution to the uncertain

program (A1).

Definition 2. The decision variable x is said to be robustly feasible if and only if fi(x,Θi) ≤ 0 for

all Θ’s instances inside V.

Definition 3. Let x be a given robustly feasible solution. The guaranteed cost for the robust feasible

solution x in a worst-case cost sense is obtained by solving the maximization problem

max
Θi

{f0(x) : Θi ∈ Ui, ∀i} (A3)

Thus, the optimal solution of the uncertain problem (A1) is obtained by solving a min-max

problem, the so-called robust counterpart:

min
x

max
Θi∈Vi

f0(x)

under fi(x,Θi(ui)) ≤ 0, ∀Θi ∈ Ui, i = 1, . . . ,m

(A4)

Robust convex programming aims at achieving a tractable description of the robust counterpart

(A4) [33]. In the specific case of linear programming,

min
x

max
(A,b)∈U

γTx

under Ax ≤ b, ∀(A,b) ∈ U

the convexity along with the tractability of the robust counterparts (A4) is ensured by considering

only uncertainty sets affine in the disturbance variable

V =






[A;b] = [A0,b0] +

k∑

j=1

uj[A
j,bj], u ∈ V ⊂ R

k






(A5)

Thus, the nature of V is completely described by the geometry of the U set. Convex robust coun-

terparts have been developed for specific disturbance sets U . One case of particular interest for this

work is the interval case, ‖u‖∞ ≤ 1 for which the robust counterpart is also a linear program [34].

APPENDIX B: INCLUSION FUNCTIONS

Consider a function f from R
n to R

m. The interval function, [f ],from IR
n to IR

m is an inclusion

function for f if

∀[x] ∈ IR
n, f([x]) ⊂ [f ]([x])
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To illustrate the notion of inclusion function, consider a function f from R
2 to R

2, with variables

x1 and x2 that vary within intervals [x1] and [x2]. As illustrated on figure 20, the interval vector

[f ]([x]) is an inclusion function [f] of f since it guarantees to contain f([x]). A inclusion function is

not unique and and its minimality depends on the computation technique.

x2

x
2

x1x
1

[x]

f([x])

[f ]([x])

[f ]∗([x])

y1

y2x2

x1

f(x)

Fig. 20: Image of a box by a vector function f and two of its inclusion functions [f ] and [f ]∗; [f ]∗ is

minimal

1. Natural inclusion functions

To build an inclusion function, consider a function

f : Rn 7→ R, (x1, . . . , xn) 7→ f(x1, . . . , xn),

expressed as a finite composition of the operators +,−, ∗, / and elementary functions

(sin, cos, exp, sqrt, . . .), An inclusion monotonic and thin inclusion function [f ] : IR
n → IR for

f is obtained by replacing each real variable xi by an interval variable [xi] and each operator or

function by its interval counterpart. This function is called the natural inclusion function of f . If f

involves only continuous operators and continuous elementary functions, then [f ] is convergent. If,

moreover, each of the variables (x1, . . . , xi) occurs at most once in the formal expression of f then

[f ] is minimal.

Natural inclusion functions are not minimal in general,because of the dependency and wrapping

effects. The accuracy of the resulting interval strongly depends on the expression of f .

2. Centred inclusion functions

Let f : Rn → R be a scalar function of a vector x = (x1, . . . , xn)
T . Assume that f is differen-

tiable over the domain given by the interval vector [x], and denote mid ([x]) by m. The mean-value
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theorem then implies that

∀x ∈ [x], ∃z ∈ [x]such thatf(x) = f(m) + gT (z)(x−m),

where g is the gradient of f , Thus

∀x ∈ [x], f(x) = f(m) + [gT ]([x])(x−m),

where [gT ] is an inclusion function for gT , so

f([x]) ⊆ f(m) + [gT ](x)([x]−m).

Therefore, the interval function

[fc](x)
△
= f(m) + [gT]([x])([x]−m)

is an inclusion function for f , which shall call the centred inclusion function. To illustrate the

interest of this function in the one-dimensional case, consider the function [fc](x) from R to IR

defined by

[fc](x)
△
= f(m) + [f ′]([x])(x−m)

for any given [x]. This function can be viewed as affine in x with an uncertain slope belonging to

[f ′]([x]). The graph of [fc](x) can be represented by a cone with centre (m, f(m)) as illustrated on

figure 21. It can be noticed that the smaller the width w([x]) is, the better the cone approximates

the function.

[x]

[fc]([x])

[x]

[fc]([x])

x

f(x) f(x)

x

[fc]
∗([x]) l[fc]

∗([x])

Fig. 21: Interpretation of the centred inclusion function
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When the width of [x] is small, the effect of the pessimism possibly resulting from the interval

evaluation of [g]([x]) is reduced by the scalar product with [x]−m, which is a small interval centred

on zero.
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