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Abstract—The present article proposes a predictive control
law for orbital rendezvous hovering phases. The control consists
of impulsive thrust corrections that maintain the relative motion
between spacecraft bounded. The proposed predictive algorithm
accounts for thrusters saturation and a propellant budget on top
of the state constraints. It is shown that computing an admissible
control is equivalent to determine a point in the intersection
between two closed convex sets. To resolve this problem, an
alternating projections algorithm is used. The efficiency of the
proposed predictive control algorithm is bench tested on a
nonlinear simulator.
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I. INTRODUCTION

In the future missions of on-orbit inspection and on-orbit
servicing, the ability to maintain a relative periodic motion is a
crucial issue for any rendezvous spacecraft. The purpose of this
research is to develop a predictive control law that enables the
control of periodic relative orbits that are included in a given
linear region for sake of safety.

Constrained relative trajectories have been studied under
the term of ”hovering”. Hovering has been defined in [1] as
follow

To develop a control strategy to place a deputy
satellite inside a specific lobe defined in the chief
body-fixed frame and keep it there in a fuel-optimal
manner.

In most of works on the subject, as [1]–[7], the hover-
ing strategy is based on two different strategies. First, the
”teardrop” strategy consists in computing an impulsive thrust
such that the initial and final relative positions on the bounds
of the tolerance subset are equal for a given time of flight [1],
[8]. Second, the ”pogo” strategy, where the impulsive control
is computed each time the vehicle hit the bounds of the lobe
to maintain it as longtime as possible while minimizing the
fuel consumption [1], [4], [7].

However, some contributions have recently taken advantage
of the naturally periodic relative orbits to design hovering
control laws [9]–[11]. In [9], a methodology to compute the
coordinates of periodic relative orbits included in a polytopic
region is exposed. This method has been extended to the non
periodic relative trajectories in [11].

A control law proposed in [10] consists of two impulsive
maneuvers that stabilize the spacecraft with respect to a given

constrained periodic relative orbit previously computed. Even
though this control law has been proven stable for any eccentric
target orbit and requires very few computational effort, its
optimality in terms of fuel consumption is not guaranteed.

The present article proposes a different strategy to hover
inside a given polytopic subset of the relative state space. The
purpose is to steer the vehicle to the set of the periodic relative
orbits enclosed in a hovering zone.

To achieve such a goal, a predictive methodology is applied
to provide the impulsive control. At each call, the controller
computes, if it exists, the coordinates of a relative periodic
orbit included in the hovering zone that go through the
current position. The impulsive control is then deduced from
these coordinates. Moreover, during the control computation,
spacecraft abilities and propellant resource are also taken into
account.

Although the present work extends the results from the
conference article [12], it differs in several points. In the
present paper, the chaser is steered to a periodic and admissible
orbit not defined a priori, contrary to what is done in [12].
Consequently, the control consists of one impulse instead
of two for the techniques from [12]. Finally, the proposed
methodology permits to consider in the problem saturation and
propellant budget constraints.

As it is exposed thereafter, the set of the orbits coordinates
admissible with respect to the above-mentioned constraints
is described as the intersection between a semi-algebraic set
and a hyperplane. Obtaining the control mainly consists in
computing one point of this intersection set. This is achieved
using an alternating projections algorithm. Note that this algo-
rithm by means of its properties make the use of a complete
optimization procedure unnecessary as explained in this paper.

The paper is structured as follows. Section II gives a brief
description of the relative motion and recall the trajectories
parametrization used in the sequel. Section III describes, in
terms of the relative trajectories coordinates, the constraints
on the relative orbits and the controls. Section IV presents the
alternating projection algorithm that permits to compute the
coordinates of an admissible relative trajectory and the control.
Finally, section VI proposes numerical examples.

II. RELATIVE MOTION MODELING

The Fig. 1 presents the frames used to model the relative
motion between the leader Sl and the follower Sf spacecraft.



The ECI1 and the LVLH2 frames are respectively given by
{

O, ~I, ~J, ~K
}

and {Sl, ~x, ~y, ~z}. The true anomaly ν (the angle

between the direction of perigee and the leader’s position) is

also shown. Considering that R = ||−−→OSl|| ≫ ||−−→SlSf || and as-
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Fig. 1: Inertial and relative frames

suming Keplerian orbits, the relative dynamics can be given by
the linearized and simplified Tschauner-Hempel equations [13]
(time is replaced by true anomaly as independent variable):

x̃′′ = 2z̃′ + ũx

ỹ′′ = −ỹ′ + ũy

z̃′′ = 3
1+e cos ν z̃ − 2x̃′ + ũz

(1)

where e is the leader orbit eccentricity. Defining the vector

X̃(ν) = [x̃(ν) ỹ(ν) z̃(ν) x̃′(ν) ỹ′(ν) z̃′(ν)]T , a state-space
representation for the non-autonomous system (1) is:

X̃ ′(ν) = Ã(ν)X̃(ν) + B̃ũ (2)

Note that the state expressed in time and expressed in true
anomaly are linked by means of the following similar trans-
formation:

X̃(ν) =

[

(1 + e cos ν)I3 03

−e sin νI3

√
a3(1−e2)3

√
µ(1+e cos ν)2 I3

]

X(t) (3)

Using the transition matrix, Φ(ν, ν0), proposed by Yamanka
and Ankersen in [14] to propagate a initial state X(ν0) and
considering an unforced motion:

X̃(v) = Φ(ν, ν0)X̃(ν0), ν ≥ ν0 (4)

Expanding eq. (4), the following relative trajectories descrip-
tion can be deduced:

x̃(ν) = (2 + e cν)(d1 sν − d2 cν) + d3 + 3 d0 J
ν
ν0
(1 + e cν)

2

ỹ(ν) = d4 cν + d5 sν
z̃(ν) = (1 + e cν)(d2 sν + d1 cν − 3 e d0 J

ν
ν0
sν) + 2 d0

(5)

where cν = cos ν, sν = sin ν, Jν
ν0

is given by:

Jν
ν0

=

∫ ν

ν0

dτ

(1 + e cos τ)2
(6)

and D(ν) = [d0(ν) d1(ν) d2(ν) d3(ν) d4(ν) d5(ν)]
T , the

parameter vector, is expressed as a linear function of X̃(ν),

D(ν) = C(ν)X̃(ν) (7)

Please refer to [11] for a more detailed equation (7).

1Earth-Centered Inertial
2Local Vertical / Local Horizontal

III. CONSTRAINED PERIODIC ORBITS DESCRIPTION

In this section, the admissible trajectories are described.
The admissible orbits must have two main properties: the
periodicity and the inclusion in a polytopic set. These two
properties are described thereafter as constraints on the pa-
rameter vector D.

A. Periodicity

The relative trajectories between spacecraft are not gener-
ally periodic. The periodicity constraint guarantees a relative
motion that does not require any correction in absence of

disturbances. Imposing X̃(ν + 2π) = X̃(ν), ∀ν ≥ ν0 one
can deduce that this constraint can be expressed as:

d0(ν0) = 0 (8)

Analyzing the equations in (5), condition (8) becomes
evident, since the only non-periodic and divergent term Jν

ν0

is always multiplied by d0.

B. Polytope constraints using non-negative polynomials

During the rendezvous hovering phases, the follower is
required to remain in the interior of a certain limited region of
the space. This region is going to be modeled as a polytope
(without any generality loss, a rectangular parallelepiped will
be used):

xmin ≤ x(t) ≤ xmax

ymin ≤ y(t) ≤ ymax

zmin ≤ z(t) ≤ zmax

, ∀t ≥ t0 (9)

Defining Xpos(t) = [x(t) y(t) z(t)]T , this constraint can
be rewritten using the matrix H = [I3×3 − I3×3]

T and the
vector K = [xmax ymax zmax xmin ymin zmin]

T :

HXpos(t) ≤ K, ∀t ≥ t0 (10)

Replacing the time t by the true anomaly of the leader ν
as independent variable, we obtain:

H X̃pos(ν) ≤ K̃(ν), ∀ν ≥ ν0 (11)

Assuming that the periodicity constraint is satisfied and
introducing the following variable change:

w = tan
(ν

2

)

, cos ν =
1− w2

1 + w2
, sin ν =

2w

1 + w2
(12)

the trigonometric terms in (5) are eliminated and we obtain
the following rational expressions:

x̃(w) = 1
(1+w2)2

∑4
i=0 pxi

wi = 1
(1+w2)2Px(w)

ỹ(w) = 1
(1+w2)

∑2
i=0 pyi

wi = 1
(1+w2)Py(w)

z̃(w) = 1
(1+w2)2

∑4
i=0 pziw

i = 1
(1+w2)2Pz(w)

(13)

the coefficients pxi
, pyi

and pzi depending linearly on D:

px0
= (−2− e)d2 + d3

px1
= (4 + 2e)d1

px2
= (2 + e)d2 + 2d3

px3
= (4− 2e)d1

px4
= (2− e)d2 + d3

py0
= d4

py1
= 2d5

py2
= −d4

pz0 = (e+ 1)d1
pz1 = (2e+ 2)d2
pz2 = −2ed1
pz3 = (2− 2e)d2
pz4 = (e− 1)d1

(14)



Using the variable change (12) and the rational expressions
(13) in (11), we can obtain the following polynomial inequal-
ities:

Px(w) ≤ ((1− e)w4 + 2w2 + 1 + e)xmax

Py(w) ≤ ymax

Pz(w) ≤ ((1− e)w4 + 2w2 + 1 + e)zmax

Px(w) ≥ ((1− e)w4 + 2w2 + 1 + e)xmin

Py(w) ≥ ymin

Pz(w) ≥ ((1− e)w4 + 2w2 + 1 + e)zmin

, ∀w ≥ w0 (15)

that can be reformulated as:

Γi(w,D) ≥ 0, ∀w ≥ w0, i = 1..6 (16)

The non-negativity conditions in (16) result in an infinite
number of constraints to be respected. Deaconu presents in
[9] a way to transform this infinite number of constraints
in a finite number of convex constraints using the following
theorem presented by Nesterov in [15]:

Theorem 1: Let P (w) be a polynomial of degree 2n on R

and p ∈ R
2n+1 the vector containing its coefficients. Then:

P (w) ≥ 0, ∀w ∈ R ⇔ ∃Y ∈ Sn+1
+ |p = Λ∗(Y )

pl = Λ∗
l (Y ) = trace(Y Hn,l), l = 1..2n+ 1

(17)

where Sn+1
+ is the cone of the symmetric semi-definite positive

matrices of size n+ 1 and Hn,l are the Henkel matrices:

Hn,l(j, k) =

{

1, if j + k = l + 1
0, otherwise

(18)

This is equivalent to affirm that the cone of non-negative
univariate polynomials is the image of the cone of positive
semi-definite matrices by the linear operator Λ∗(·).

Let γi be the vectors containing the coefficients of the
polynomials Γi(w). Using (17), we can transform conditions
in (16) into:

HiX̃pos(ν,D) ≤ K̃i(ν)
m

Γi(w,D) ≥ 0, ∀w ≥ w0

m
∃Yi ∈ S+ such that γi = Λ∗(Yi)

, i = 1..6 (19)

In the end of this section, constraints on the control are
given: the thrusters saturation and the propellant budget. Con-
sidering saturation constraints is one of the main advantages
of the predictive control law. Moreover, the propellant is a rare
resource for spacecraft systems since they can not be refueled.
Thus, propellant budget constraints is also proposed to take
into account the scarceness of the propellant.

C. Thrusters saturation

Let ∆V = [∆Vx ∆Vy ∆Vz]
T be the vector representing

the impulsive velocity correction executed by the follower.
Considering that the spacecraft have a pair of equivalent
propellers symmetrically and oppositely disposed on each axis
and assuming that the saturation limit for each propeller is
∆Vmax > 0, the saturation constraint can be written as:

|∆Vs| ≤ ∆Vmax, s = x, y, z (20)

These inequalities can be transformed in a matrix positive
semi-definite constraint:

|∆Vs| ≤ ∆Vmax ⇔
[
∆Vmax ∆Vs

∆Vs ∆Vmax

]

︸ ︷︷ ︸

Mi

� 0, s = x, y, z (21)

D. Propellant budget

An maximum budget of propellant σ is available for each
impulsion executed. This constraint is expressed as:

||∆V ||1 = |∆Vx|+ |∆Vy|+ |∆Vz| ≤ σ (22)

To check condition (22), we must verify if:

∃
Zx, Zy, Zz ≥ 0
W+

x ,W+
y ,W+

z ≥ 0
W−

x ,W−
y ,W−

z ≥ 0
W0 ≥ 0

s.t.

For s = x, y, z
W−

s = Zs −∆Vs

W+
s = Zs +∆Vs

σ −∑

s Zs = W0

(23)

IV. COMPUTING THE CONTROL LAW

Accordingly to the model predictive control scheme, the
control is computed periodically in order to bring the system
on a periodic trajectory inside a given polytope respect to
actuator saturation and budget constraints. Using the previous
equations, links between the variables of the problem and its
restrictions can be stated. The Fig. 2 presents these links, each
ellipse representing a constraint.

X0

¢V

X+ D+

d0=0

°i=¤*(Yi)
Px(w)

Py(w)

Pz(w)

¡i(w)

Data Constrained variables Transformations

H,K

Fig. 2: Variables and its constraints

Given a set of constraints {H,K,∆Vmax, σ} and an initial
relative state X0, we want to determine an impulse ∆V
respecting both saturation and budget constraints such that the

state after the impulse, X+ = X0 + B̃∆Ṽ ,equivalent to the
state D+ (by means of (7)) whose first component d0 is zero to
copt the periodicity and that generates (by means of (14), (15)
and (16)) six non-negative polynomials to ensure the polytopic
inclusion of the orbits

A. Closed convex sets intersection problem

The constraints can be summarized as follows:

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Periodicity: d0 = 0

Polytope constraints:

∃Yi � 0 s.t. γi = Λ∗(Yi), i = 1..6

Thrusters saturation:

∃ Ms � 0 s.t.

[

∆Vmax ∆Vs

∆Vs ∆Vmax

]

= Ms, s = x, y, z

Propellant budget:

∃

Zs ≥ 0

W+
s ≥ 0

W−
s ≥ 0

W0 ≥ 0

s.t.

W−
s = Zs −∆Vs

W+
s = Zs +∆Vs

σ −
∑

s Zs = W0

, s = x, y, z

(24)



We remark that these constraints are convex, since they
are mathematically represented by matrices positive semi-
definiteness (on the left) and equalities (on the right).

Let Q be the symmetric block diagonal matrix given by:

Q = diag(Mx,My,Mz, Zx, Zy, Zz,W
+
x ,W+

y ,W+
z ,

W−
x ,W−

y ,W−
z ,W0, Y1, . . . , Y6)

(25)

This matrix is sparse by construction. Table I shows that
taking symmetry into account we only need 49 variables to
completely describe it.

TABLE I: Q matrix

# Size
Total
Size

#Vars
Total
#Vars

Ms 3 2× 2 6× 6 3 9

Zs, W+
s , W−

s , W0 10 1× 1 10× 10 1 10
Y{1,3,4,6} 4 3× 3 12× 12 6 24

Y{2,5} 2 2× 2 4× 4 3 6

Total 32× 32 49

We can use Q to reformulate the positive semi-definiteness
conditions and the equations linking the variables in (24) as
follows:
{

tr(AiQ) = bi, Ai ∈ S32, bi ∈ R, i = 1..m

Q � 0
(26)

where S32 is the set of 32× 32 symmetric matrices and m is
the number of equations.

Equations tr(AiQ) = bi describe an affine subset of S32

and Q � 0 represents the symmetric semi-definite matrices
cone S32

+ . Therefore, solving the problem is equivalent to find
an element Q belonging to the intersection of these sets.

B. Alternating projections algorithm

For two closed and convex sets, we can apply the alternat-
ing projections algorithm proposed by Boyd and Dattorro in
[16] to determine the existence of an intersection:

Let C and D be two closed convex subsets of E , let || · ||E
be a norm on E and let PC and PD denote the projections on
C and D, respectively. The algorithm consists in:

Algorithm 1 Alternating Projections

Choose an arbitrary Q0 and compute QC
1 = PC(Q0)

for k = 0, 1, 2, . . . do

QD
k = PD(Q

C
k)

QC
k+1 = PC(Q

D
k )

end for

It has been proven that [17]:

• if C ∩ D 6= ∅, ∃ Q∗ ∈ C ∩ D s.t. QC
k

k→∞−→ Q∗ and

QD
k

k→∞−→ Q∗ ;

• if C ∩ D = ∅, ∃ QC
∗ ∈ C, QD

∗ ∈ D s.t. QC
k

k→∞−→ QC
∗

and QD
k

k→∞−→ QD
∗ and ||QC

∗ − QD
∗ ||E = dist(C,D),

i.e. a pair of points in C and D that have minimum
distance.

Thereafter, let C be the affine set described by the equations
from system (26), let D be the symmetric semi-definite matri-
ces cone S32

+ and let || · ||F be the Frobenius norm. Since these
sets are closed and convex, the alternating projections algo-
rithm can be implemented to determine an element belonging
to their intersection. In this case, projection PC is given by:

PC(Q) = Q−
m
∑

i=1

aiAi (27)

where ai are solution of the following equation:

Ga = g (28)

where

G(j, k) = trace(AjAk)

g = [trace(A1Q)− b1 . . . trace(AmQ)− bm]T
(29)

The projection PD is given by:

PD(Q) = U diag(max {0, λ1} , . . . ,max {0, λ32})UT (30)

by considering the spectral decomposition is written as

Q = U diag(λ1, . . . , λ32)U
T (31)

C. Initialization and stopping criteria

As any iterative algorithm, the projection algorithm’s be-
havior depends on two items: the initial guess and the stop-
ping criteria. The initial guess to provide to the alternating
projection algorithm is the matrix Q0. In fact, the alternating
projection algorithm provides to the initial guess the nearest
element in the intersection of the subsets (if exists) [18]. Thus,
the choice of Q0 can have a great impact the solution Q∗ as
can be seen of 3. In this paper, two strategies are tested: the
initial guess Q0 is either the null matrix or the solution Q∗ of
the previous call of the projection algorithm. As it is exposed
in section VI, different strategies for choosing the initial iterate
will lead to different controlled trajectories.

Q0

C D

Q′
0

Fig. 3: Alternating projection algorithm

The stopping criteria is based on the distance in the
Frobenius norm between QD

k and QC
k :

δk = log ‖QD
k −QC

k‖F (32)

The algorithm stops when
{

δk ≤ ǫQ or

δk+1 − δk ≤ ǫδ with δk+1 > ǫQ
(33)

where ǫQ > 0 and ǫδ > 0. The first condition means the iterate
Qk is close enough to the intersection and the second condition
reveals that the algorithm reaches a minimal and non zero



distance between the convex subsets so that the intersection is
an empty set.

V. STABILITY BY MEANS OF INVARIANCE

The stability around a periodic trajectory is understood in
the sense given in [19], which requires the characterization of
the evolution of the trajectories that start arbitrarily close to
the periodic one. According to [20, theorem 3.5], the stability
of periodic system is characterized by the eigenvalues of its
monodromy matrix M = Φ(ν + 2π, ν). In the case of the
linearized relative motion, M has at least two eigenvalues
µi such that |µi| > 1. This leads to the conclusion that the

autonomous system X̃ ′(ν) = Ã(ν)X̃(ν) is naturally unstable.
Thus, without control, the trajectories, described by (4), that
started arbitrary close to any periodic trajectory will diverge
from it.

The proposed predictive control law has for goal to steer
the system in the vicinity of the set of admissible periodic
orbits. Thus, the stability will be defined in the sequel as
the invariance of given subsets described thereafter. Now, two
sets are given in order to define the stability of the system
controlled by means of the proposed predictive algorithm:

• S0 {H,K}, the set of vectors D(ν) ∈ R
6 that de-

scribes periodic trajectories satisfying the polytope
constraints;

• S1 {H,K,∆Vmax, σ}, the set of vectors D(ν) ∈ R
6

for which it is possible to find one impulse ∆V ,
respecting the saturation constraints and the propellant
budget, such that D+(ν), the state right after the
impulse, belongs to S0 {H,K}.

The set S0 {H,K} naturally invariant because of the
periodicity respected by each of its elements.

The set S1 {H,K,∆Vmax, σ} is also a class of equiva-
lence under the developed control law, since it is possible to
compute an impulsive correction via the alternating projections
algorithm that generates a new state belonging to S0 {H,K}.
Consequently, the set S0 is invariant and attractive under the
developed control law with S1 as convergence set. If the
current state does not belong to S1, an ad hoc control law must
be used to bring the system in S1. For instance, an optimal
impulsive plan computed using techniques from [11] can bring
the chaser satellite to the vicinity of the hovering box from any
relative state.

The Figure 4 represents the sets S0 and S1 and the stability
and instability zones in R

6.

Unstable zone

Attractive zone to S 1

S 1

S 0

Fig. 4: Stability zone

VI. NUMERICAL EXAMPLES

To illustrate our methodology, the example of a given
mission is proposed in table II.

TABLE II: Test case mission

Semi major axis [km] Eccentricities
20000 {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

Budget [m/s] Saturations ∆Vmax [m/s]
0.3 2

Initial state Tol. box [xmin, xmax, ymin, ymax, zmin, zmax]

[100 0 5 0 0 0]T [80 120 − 20 20 − 20 20]T

Hovering duration Time between impulsions [s]
5 orbital periods {20, 50, 100, 200, 500, 1000, 2000}

This mission has been implemented on a simulator based
on Gauss nonlinear equations for the relative motion, taking
into account the atmospheric drag and Earth’s oblateness
effects (see [21] for details).

In order to assess the impact of the initialization techniques
described in IV-C on the resultant trajectory and the con-
sumption, a warm start initialization, taking the last iteration
solution as initial guess, and a cold start initialization, using
a constant Q0 matrix for all the iterations, were performed.

Simulations with different eccentricities and time-intervals
between control calls are conducted to test the algorithm with
both initialization procedures. The aim of these simulations is
first to verify the designed control law efficiency in respecting
the different constraints while rejecting the unmodeled dynam-
ics, and second to highlight the importance of the algorithm
initialization procedure. The results obtained for these simu-
lations are presented in Figure 5. We can remark that, on one
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Fig. 5: Mission simulation results

hand, the smaller eccentricity, the lower consumption is. On the
other hand, the consumption increases with the period between
controls. Another conclusion can be drawn from Figure 5:
the control algorithm using a cold start technique generates
greater consumptions compared to the one using a warm start
technique. This can be explained by the fact that cold start
leads to computation of parameters of admissible orbit that



evolve much more than the one computed from warm start
procedure.

On Figure 6, controlled trajectories obtained by means of
the nonlinear simulator previously described are exposed. The
control algorithm is called every 20 second for this specific
simulation. First, the simulated trajectories remains admissible
during the 5-orbit period of hovering. However, it can be
observed that both initialization procedures lead to different
geometries respecting the tolerance box constraints despite the
orbital perturbation. The total ∆V consumption over the 5
orbital periods is of 4.4 mm/s and 18 mm/s for the warm
start and cold start control respectively. Note that, the ∆V
budget and saturation constraints are also satisfied. These facts
highlight that the admissible orbit computed using a warm
start initialization is closer to current position than the one
computed from a cold start. In fact, after every call of the
control algorithm, the chaser will evolve close to the computed
orbit. With the warm start initialization, the next computed
orbit will remains in the vicinity of the previously computed
orbit. In the contrary, the cold start procedure leads to the
computation of a completely different admissible orbit.

80 85 90 95 100 105 110 115 120

−20

−15

−10

−5

0

5

10

15

20

Xlvlh [m]

Z
lv
lh

[m
]

Warm start
Cold start

Tolerance box

Fig. 6: Nonlinear simulation for e = 0.1 over 5 orbital periods

VII. CONCLUSION

The present paper develops a predictive control law for the
orbital rendezvous. This control law aims to make the chaser
satellite hover in a given tolerance set in order to maintain
a way point situation. As the relative motion has a periodic
dynamics, the predictive control algorithm take advantage of
the existence of periodic orbits for this system to develop a
law that maintain the hovering while comsuming propellant
essentially to reject perturbation, contrary to pogo or tear drop
strategies available in the literature. This control law consists
in steering periodically the chaser spacecraft into the subset
of the admissible orbits. Moreover, budget and saturation
condition are also accounted in the control computation. One
of the main features of the proposed control law is that it is
based on the alternating projection algorithm. This iterative
algorithm provides to any initial guess the nearest point in
the intersection subset of convex sets when it is not empty.
We studied the influence of the initial guess choice on the

controlled trajectories and the consumption through nonlinear
simulations. Further studies should also focus on the numerical
issues like convergence time as function of the stopping criteria
tolerance. Another problem of interest is the characterization
of the invariant set S1, that could speed up the decision of
whether or not to apply the projection algorithm, once it
should be possible to determine the algorithm convergence by
verifying the belonging of the current state to S1.
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