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Abstract

Purpose — The paper deals with the development of an improved fast Fourier transform (FFT)-based
numerical method for computing the effective properties of compesite conductors. The convergence of
the basic FFT-based methods is recognized to depend drastically on the contrast between the phases.
For instance, the primal formulation is not suited for solving the problems with high conductivity
whereas the dual formulation is computationally cestly for problems with high resitivity.
Consequently, it raises the problem of computing the properties of compegites containing both highly
conductive and resistive inchigions.

Design/methodologv/approach — In the present work, the authors” propose a new iterative scheme
for solving that kind of problems which is formulated in term of the polarization.

Findings — The capability and relevance of this iterative scheme is illustrated through numerical
implementation in the case of composites containing squared inclusions. It & shown that the rate of
convergence & increased and thus, particularly when the case of high contrasts is considered. The
predominance of the polarization based iterative scheme (PBIS) over existing ones is alsoillustrated in
the case of a compesite containing both highly condudive and highly resitive inclusions
Originality/value — The method is easy to implement and uses the same ingredients as the basic
schemes the FFT and the exact expression of the Green tensor in the Fourier space. Mareover, its
convergence conditions do not depend on the conductivity properties of the constituents, which then
constitutes the main difference with other existing iterative schemes. The method can then be applied
for computing the effective properties of compesites conductors with arbitrary contrasts.
Keywords Composition conductors, Homogenization, Fast Fourier transform, Polarization,

Fourer transforms, Heat conduction

Paper type Research paper

1. Introduction
A key problem, of considerable technological importance, is to determine effective
properties of composites that are governing the behavior at the macroscopic scale.
Inaddition tomethods using specfic inclusions shapes (Kimand Torquato, 1962; Luand
Lin, 1996; Mercier ef al, 2000), standard numerical toolsare used for solving the problem
posed over the unit cell of periodicty, as for example: the finite elements methods
(Gusev, 1997; Myroshnychenko and Brosseau, 2005), the boundary element
methods (Eischen and Torquato, 1993), combined integral equations and multipole
methods (Greengard and Moura, 1994; Helsing, 1995; McPhedran and Movchan, 1994),
An alternative method has been proposed in the mid-1990s by Moulinec and Suquet
(1994) for the computation of effective properties of linear elastic periodic composite.
The local cell problem is solved by means of an iterative scheme which uses the



periodic Green's tensor for the strain and exact images of the microstructures. Note that
en extension of the method has been recently proposed for piezoelectric composites by
Brenner (2009). This method has several advantages over other existing ones.
The approach uses a regular grid which can be used when using modern tools for
characterizing the microstructure (tomograph). The discrete Fourier transform and its
mverse are computed with the fast Fourier transform (FFT) which significantly
increases the performance of the method. Moreover, the memory needed for solving the
problem is significantly reduced compared to other methods.

However, the convergence of the FFT based algorithm introduced in Moulinec and
Suquet (1994) (called primal iterative scheme (PIS) in the present paper) is known to be
very sensitive with the contrast between the phases. More precisely, the rate of
convergence decreases when the conductivity of the inclusions increases. Moreover,
the case of infinitely conductive inclusions cannot be handled by the method since the
algorithm diverges. A dual formulation of the original iterative scheme (Bhattacharya
and Suquet, 2005; Bonnet, 2007) is better suited in the domain of high conductivity.
However, it is computationally costly in the domain of low conductivity. Tocircumvent
the incapacity of the original approach (Moulinec and Suquet, 1994), other iterative
schemes have been developed during the ten past vears. For instance, the “accelerated”
scheme has been proposed by Eyre and Milton (1999), however, the method still
diverges for infinite conductivities. To address the problems of composites with
infinite contrast, alternative methods, based on the minimization of augmented
Lagrangians, have been proposed by Michel ef al (2000) and Michel ef al (2001).
More recently, Brisard and Dormieux (2010) have proposed a new method based on the
Hashin-Shtrikman variational principle (Hashin and Shtrikman, 1962; Willis, 1977), it
uses a modified expression of the Green operator and the conjugate gradient method
for the minimization.

In the present paper, we propose a simple iterative scheme, based on the
polarization, which uses the same ingredients as the basic schemes and does not need
sophisticated numerical tools. This method, presented here for composite conductors,
presents the advantage to converge independently of the choice of the conductivities of
the constituents. The paper contains three parts. In Section 2, we briefly recall the
equations of the unit cell problem and of the inclusion problems in the context of the
thermal conduction of periodic composites. In Section 3, we present the basic schemes
(the primal and the dual). The rate of convergence and the limitations of these methods
are discussed and illustrated through a few numerical calculations. In the last part of
the paper (Section 4), we present the new polarization-based method. It is demonstrated
that the convergence of this new iterative scheme is independent of the local
properties. The relevance of this polarization-based algorithm over the basic schemes
is shown through several applications with extremal conductivities,

Notations. a,A: vectors; a, A: two order tensors. a-b = ab;, (A-a) = Aja;,
A:B = A;B; where the summation convention on repeated indices is applied.

2. Statement of the problem

2.1 The unit cell problem

A periodic composite material is defined by a paralepipedic unit cell and three vectors
defining the translations which leave the medium invariant. The volume of this cell
is denoted by V, while V,, for = 1,..., N denotes the volume of each constituent.



In the present paper, we look for the determination of the periodic fields ¢(x) and j(0)
solutions of the linear problem:

(40 =Ve(n, VEV
j®=K@ew, VieV
ldiv(j) =0, VeV
@0 — E-x periodic
J@-n antiperiodic

ey

for a prescribed mean value £ =< g(x) >y or ] =< j(2) >v.Here, as elsewhere, the
angular brackets, <- = ; will be used to denote the volume averages over the unit cell
of periodicity. Once this solution will be known, the relation giving J as a function of £
is used to define the homogenized properties, K™™. The above problem can describe
various phenomena such as the thermal conduction, the magnetism or electricity of
composite materials. For the thermal conduction problem, the pair (g, 7) represents the
gradient of temperature and the flux. In equation (1), K(x) is the conc{hctivity and the
resistivity is denoted by R(x). They can be put into the form:

K®©=Yl.0K., R®=YI.0R.

| 1 ifxeV., @
with : ’“‘9={o ifze V-V,

I (x) for @ =1,..., Mare the characteristic functions describing volumes V. Due to
the periodicity, it is convenient to expand the fields g(x) and j(») along Fourier series:

o) = Zetf.)ecp(if. 9 j©= Z:;;(g.)exp(ig. ) 3

where the &, are the discrete wave vectors arranged along a discrete network having a
period 27/b; in the direction x; (b; denotes the half width of the parallepipedic unit cell).
In equation (3), &(¢) and j(&) denote the Fourier transforms of ¢(x) and j(x):

g =< gpexp(—i§ ) >y with:g=0=E

N =<jexp(—ié 1) >y with:j(=0)=]
The difference between quantities in Fourier space and in real space is denoted by
adding the variable, for example e(£) for the Fourier transform of e(x) with the same
symbol “¢“ in both cases. B

In the real space, the local variables e(x) and j(x) are, respectively, rotational and
divergence free vectors, which leads, in Fourier space, to:

QHed=0
VE#D: P@H=0 (5)
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where €(&) and P(£) are given by:
Qo=T-PY, PY=pmk®% ©®

where P(£) and €(£) are the two idempotent and orthogonal projectors:
Fi&)-Pig)=P&)

Q&) Q(E) = Q)
VEZ U3 Pie)- Qo) = Q) -Big) =0 @
I=P(é)+ Q)

The action of Q(£) on a non-uniform vector af £) gives the projection of al £) along the
plane of normal £ denoted Q. The action of P(£) ona non-uniform vector g(€) provides
the “out of plane” components, namely along ¢ the supplementary of The two
orthogonal subspaces Py and @, have, respectively, dimensions 1 and 5 for three

dimensional problems.

22 A relafed problem

Consider in this section a fictitious infinite homogeneous medium  having a
conductivity K°. This medium is submitted to a periodic polarization plx) and to an
applied uniform gradient of temperature £, Since the fields g(x) and jix) are related by:

j@0 =K"gn+po ®)

the computation of the solution for 2(x) and (§2)) is possible because the problem
becomes algebraic in the Fourier space, For instance, the gradient of temperature reads:

ef)=-TUE) pE) VE#AD

In this equation, the Green's tensor, [‘ﬂ{ﬁ}, reads:

1
VE=0:T :mﬂg (10)

and [‘”{f,_’} = () when £= 0. Note that [‘”{_@ has the properties, ‘#E# 0, P{f,_’} T8 =
[":'{5} and Q{_g}-[":'{ = 0 which means that the vector, given by eguation (4) is
rotational free. The fhux, j(x), s given by:

W6 =A"E) R pE) VEFO
ey =7 for : £ =10 (1)

where ] = K" E + P and P =< pix) >y.



ﬂ.”{ﬁ) 15 the second Green tensor, defined m the Fourier space, by
Ve#0: A% = K- K" I K" a2

and A"(£) = 0 for £= 0. Note that A"(&) has the properties, V& = 0, P(£)-A"(& =0
and Q{_@-ﬁn{ﬁ} =,§.n{£} which means that the wvector, given by equation (11), is
divergence free. When an sotropic reference medium s considered, K "= kol the
Green tensors reduce to [‘“{5} = l,fieﬂP{f} and ﬂ.':'{i) = kﬂQ{Q.

3. The basic iterative scheme
3.1 The primal iferative scheme
By considering in equation (9, the following definition for the polariztion:
P =Ky -K - e(x), the solution, e(x) complies with the integral equation:
e(x) = E - @K — K"-e)] 13)

A possible way to compute the solution of the above equation has been first proposed
by Moulinec and Suquet (1994) for linear elastic composite, along the lines of a method
which was first introduced for composite conductors by Brown (1955) and later by
Eroener (1972). It conststs m expanding the solution into Neumann series, each term
being obtained by the following recurrence relation:

£ = E - T@HK@ — K¢ a4

which is initiated by: g'(x) = E. A simplification of the above iterative scheme is
possible. For this, it can be observed that [‘ﬂ{y*[ﬁ' U ¢'(0)] = £(x) — E which is true
for any rotational free vector ¢(x). To summarize, the iterative scheme becomes:

(f0) = K@) ¢
fo=Fii@

J convergence test

O =2 -T"O7®
e = FLgH @)

(1)

in which F and F ! denote the Fourier transform and its inverse. Their computations
are effected by means of the FFT algonthm which presents the advantage to greatly
reduce the aaleulations times. Note that the flux, jix), is only divergence free at
convergence of the iterative scheme. For this reason, the following convergence test is
applied n equation (15);

P -Figll N
EE o

where ||| denotes the Frobenius norm. The value € = 1072 has been used i this
paper.



The conditions giving the values of the conductivity of the reference medium
producing the convergence of the iterative scheme are discussed in Appendix 1. It is
shown that the convergence will be attained if:

2ke = k()= 0 17

Note that the condition of convergence of the PIS has been already studied in
Michel ef al (2001). However, in the present paper, we have obtained a minor
modification of their initial result which concern the particular case of cavities. In
Michel ef al. (2001), the authors investigate the conditions giving the convergence of the
Neumann series. This series converges only if the eigenvalues of the operator are
strictly comprised between —1 and 1. By studying the eigenvalues of this operator
which appears in the Neumann series, they found that the convergence cannot be
ensured when the composite material comprises voids, because this case produces
eigenvalues of the operator equal to 1. In the present paper, we focus our attention on
the convergence of the iterative scheme instead of the Neumann series. In that case, the
eigenvalue 1 is allowed and we found that the converge occurs also for a composite
with cavities. This result has been numerically recovered.

We now aim at mvestigating the rate of convergence of the primal scheme as a
function of the contrast. To this end, we consider the case of the matrix/inclusions type
composite conductor described on Figure 1. It is made up of long cylinders with a
squared cross-section. By a, we denote the half width of the squares whereas the
distance between the axis of two neighboring cylinders is denoted by 2b. In our
applications we have chosen @ = b/2. Both phases are assumed to be isotropic and by
kyswe denote the conductivity of the matrix whereas the conductivity of the inclusions
is denoted by & The problem is two dimensional, a squared unit cell, as defined on
Figure 1 (the dotted square), is then considered in our calculations.

The numerical integration of the algorithm is realized by replacing the exact Fourier
transform by the discrete Fourier transform. The calculations are performed by
considering 128 wave vectors. This number must be considered for obtaining a good

2a
-

b

Figure 1.
The unit cell of the
periodic composite




accuracy on the effective properties. Following Bonnet (2007), we use an exact
representation of the conductivity, K(x), in the Fourier space. In the original approach
(Moulinec and Suquet, 1994), the local properties K(x) are assigned at each point of a
regular grid. Indeed, in many inclusion/matrix type problems, an exact expression for
the Fourier transforms of the characteristic functions I.(x), which appears in
equation (2), can be obtained. For example, in the present case:

Ie = singa{i )sin(a&)
0= g

VE#D:
£ In(®= -1 a8
a? a?

In Bonnet (2007), it has been shown that the use of such “shape functions” improves the
convergence of the iterative scheme. Following Milton (2002), we have chosen
ko = (kr + kar)/2, which appears to be very close to the optimal reference (namely the
one leading to the lower number of iterations at convergence). In Figure 2, we display
the logarithm of the number of iterations (log(N)) needed for having the convergence of
the iterative scheme, as a function of the logarithm of the ratio & /kay. It can be observed
that in the range log(kr/kayr) = 0, the convergence of the iterative scheme is obtained
quickly. When the conductivity of the inclusions is higher than the one of the matrix,
namely in the range log(kr /kar) = 0, the dependence between the number of iterations
and the contrast &y /kas is linear in a log-log frame. It suggests that this scheme is not
suited for high conductivities since it becomes computationally costly. Moreover, the
case of composites with infinite conductivity cannot be handled by the method.

5

3
z
g
2
1
Figure 2.
Diagram giving the
number of iterations at
convergence of the PIS as 0
a function of the -6

ratio &y /by




Muote that the case of a cavity, mmspmldiug to kr = 0, is not represented in Figure 2
since the contrast is comprised between 107% and 10f. However, the case of cavity has
been tested and the convergence 1s attained after the same number of iterations as for
Er ke =10 g

32 The dual seralive scheme

A dual formulation of the iterative scheme 15 better suited when the mchisions of
composites has a higher conductivity than the matrix. This dual formulation reads:

[ £(x) = R(x) (x)

£(§) = Fldia)

J convergence test (19)
FO=7® - 8@

.:F_H]{y =F ]{f+]{£n

which starts from the first term given by: 'ix) = J. In equation (19), the flux 7(x) is
divergence free at each step of the iterative scheme while the gradient of temperature,
ix), 15 rotational free only at convergence. Consequently, the following convergence
test is used n equation (19)

NQig)- el

— == < 2%
lecoll 0

In which the value € = 107% will be used in the following. The convergence of this
second algorithm is ensured if (Appendix 2

2 1 =0
hRD @b

As for the PIS, we now aim at investigating the mte of convergence of the dual method.
For this, we still consider the case of the composite defined on Figure 1. Dually to the
first method, the resistivity of the reference medium defined by 1/k =
01/ kae + 180 /2 has been considered On Figure 3, we represent the variations of
the logarithm of the number of iterations with log(&r /&) It can be observed that the
convergence is quickly obtained for mclusions with high and infinite conductivity,
However, this is now the domain of low conductivity for which the iterative scheme is
computationally costly. Moreover, the case of inclusions with a null conductivity
cannot be solved by using this second formulation.

In summary, from these two methods, the first one (the PIS) s better suited for
computing the effective properties of composites with low conductive inclusions, In the
other hand, the cse of composites with low resistive inclusions must be solved by the
dual formulation. However, when the composite contains both high and low conductive
mclusions, the basic schemes appears to be imappropriate and the case of composites
containing both melusions leading to zero and infinite contrast cannot be handled with
these numerical tools.
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4. A polarization-based iterative scheme
4.1 The algorithm
In this section, we propose a new approach for computing the effective properties of
composites with arbitrary conductivities. It is based on the resolution of a fictitious
problem in which a uniform polarization, P, is prescribed to the unit cell instead of £
or J. Due to the linearity of equations (1), there exist two linear relations giving the
quantities £ and ] as a function of P;

E=AP J=BP 22)

Since ] = K" E + P the fourth order tensors A and Bare linkedby B=1 + K"- A.
The effective conductivity K™ can be either expressed in term of tensor 4 or B:

Khm = A"+ K'=(I-B")!-K° 23)

The solution of equation (1), with prescribed uniform polarization, can be computed by
using the following iterative scheme:
(¢ =(Kwo-K)" ¢

£()=FE@)

F&=K"2@+p@

convergence test

EHE =~ K" TH (@ ~ PG L)
\Z'H@ = FIp+@)

249




where e‘(p = Pistaken as the first term of the series. In equation (24), e and B are two
coefficents which will be chosen therefore in order to obtamn the convergence. When it
is achieved, namely p”" x)= p'(g, £(&) and 7( ) are, respectively, a rotational and a
divergence free vector. The iterative Scheme (24) is then stopped when:

(IIQ(;)-e:@II P& z@ll)
ol lxol

Again the value € = 1073 is still considered in our applications.

Note that, as the basic schemes, the polarisation-based algorithm require one Fourier
transformand one inverse Fourier Transform at each iteration. At convergence, one can
compute E, /, the components of A and Band finally the homogenized properties of the
composite with one of the two equations of equation (23).

(25

4.2 The conditions of convergence

The convergence of an iterative scheme, having the general form p**! = (I — L)- p/, is
ensured if all the eigenvalues of the operator I — L are comprised in the interval
1 — 1,1]. Equivalently, the convergence is obtained if the eigenvalues of L are comprised
n [0, 2[. Based on this observation, we look for the eigenvalues of the operator:

aK" T (%K (98K () + BA"(0*K '(») (26)

where the following notation have been used: K(x) = K(x) — K°. Introducing an
eigenvalue ¢ of that operator and its associated eigenvector pg, they comply with:

dps = aK - T/ (0*K(0) 8K 0 ps) + BA @ BK '@ ps) (27
The average of pg over the volume of the unit cell being zero, p 4 complies with:
pe=(A"@ R+ K" T (0)*ps (28)
It follows that equation (27) can be put into the form:
K T%9%s+ A"©)% =0 (29)
with:
jo=aK® 3K (0 ps — dps 4= PK (1) ps — R ps  (30)

Owing to property equation (29), ¢4 and j, are rotational and divergence free,
respectively. Indeed, applying the operator P to equation (29) leads, in Fourier space, to
P& KA(HI(Hjs(§ =0. But, from the definition of T, one obtains
P& Ko(f) I‘"(f) P(§), which, from the properties of P, shows that js is
divergence free. In the same way, applving the operator Q-R° to equation (29)
produces Q*e, = 0, showing that g is rotational free. Finally, ¢4 and j4 constitute the
solutions of a problem related to a composite having the conductivity K'(x) defined by:

K'@) = [aK® 8K () — 6I1'[B3K ~(x) - $R""! a1



and subjected toa zero polarization. That problem has the trivial solution pg, = 01f K'(x)
is strictly positive or negative definite. A necessary condition for having the
convergence of the iterative scheme 1= that the previously defined boundary problem has
no solution when ¢ is outside [0, 2[. This can be achieved if tensor K'(x) is strictly
positive or negative definite when & €] — oo, 0 and & € [2, +eo[. Considering the
isotropic case, one has K'(x) = Fix)f where ¥(x) is given by:

ak(x) — d(k(x) — ko)

0 =h g = 1 @2

It can be verified that, if o, 8, kg comply with:
l=a<2 -2<B=0 —-w<k=0 @33

¥ix) is strictly positive and negative when ¢ < 0 and é = 2 and the convergence is
ensured. Note that &, which was at first considered as the conductivity of the reference
medium, 15 now negative, It is worth noticing that the above conditions are independent
of the conductivity of the phases of the composite. It is then expected that the
convergence of the PBIS equation (24) is obtained independently of the local properties of
the composite, This will be corfinmed through numerical caleulations.

4.3 Numerical evalualion of the vale of convergence

We aim now at demonstrating the capacity of the new iterative scheme, We first
consider the example shown in Figure 1. We represent the number of iterations at
convergence as a function of logiky/fy) in Figure 4. It is recalled that kr and Ky
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represent, respectively, the conductivity of the inclusion and of the matrix. It can be
observed that for all values of the ratio &y /ky the convergence of the algorithm is
obtained quickly. The conditions given by equation (33) ensure the convergence of the
iterative scheme but do not deliver the optimal values for e, B and kg, i.e. leading to the
lowest number of iterations at the convergence. In the absence of theoretical
arguments yielding to the optimal choice of e, B and kg, they must be determined
numerically. From our numerical tests, the following values have been chosen:
a=3/2 B= —3/2and ky = —kys since they appear to be optimal for this numerical
scheme. These values has been also considered for the other applications proposed in
this paragraph.

To check the ability of this new approach, we consider a second example
corresponding to a three phase composite. In this example a matrix with the
conductivity by contains two kinds of inclusions. The first one has the conductivity
ki = ckyy (gray inclusions on Figure 5), the second one has conductivity kp = kys /¢
(black inclusions on Figure 5).

The Figure 6 represents the mumber of iterations at convergence for the three
iterative schemes: the PIS, the dual iterative scheme (DIS) and the PBIS. The
logarithm of the number of iterations increases linearly with log(c) for both basic
schemes. As expected, the case of a composite with zero and infinite conductivity
inclusion (corresponding to ¢ = +c0) cannot be handled by these two methods. When
the PBIS is used, the number of iterations increases with ¢ but reaches moderate values.
Indeed, for higher values of the contrast ¢, the number of iterations increases up to
N = 26 iterations. When the PIS is used, the conductivity by = (kpin + Kaex ) /2 =
ka(c +1/¢)/2 has been used. For the DIS the resistivity of the reference medium is
chosen as follows: 1/kg = (1/kgin + 1/ kaax ) /2 = (c +1/¢) [(2kps).

For completeness, we consider the case of the diamond inclusion considered
by Brisard and Dormieux (2010). The diamond reinforced composite is shown
on Figure 7. It consists in aligned cylindrical inclusion having a square cross-section
and rotated by an angle w/4. The width of the squares is a/v2 and the
distance between two neighboring inclusions is 2b. In our applications we have chosen
a=bh/2
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The unit cell of the
periodic compesite

For this geometry of inclusions, the shape functions are defined by:

I;i6) = Loslag) — cos(ag)
VE?‘—'U: 1 I}E{ﬂ _é}
Il = —11(H

2 I.I!E

[
Vi=0: L{E}:m, IM{Q:I_W




On Figure 8 we provide the number of iterations as a function of the contrast kr/ka
obtained with the PIS (the full line with points), the DIS (the full line with stars)
and the polarization-based approach (the full line with circles). It can be noted that
the results obtained with the diamond inclusions are similar with the ones already
provided for square reinforced composites. The polarization approach converges quickly
whatever the value of the contrast. For lowly conductive inclusions, the convergence rate
of the PBIS coincides with the one of the PIS but coincides with the one of the dual
approach when the case of lowly resistive inclusions is considered.

5. Conclusion

A new Fourier based method has been proposed for computing the effective properties of
composite conductors. The approach uses an iterative scheme for solving a problem in
which a uniform polarization is prescribed over the unit cell instead of a uniform
gradient of temperature or flux in the classical approaches. The method uses the same
ingredients as the basic schemes: the periodic Green tensors, the FFT algorithm for
computing the Fourier transform and its inverse. It has been shown that the conditions
ensuring the convergence of this new iterativescheme areindependent of the value of the
conductivities of the phases constituting the heterogeneous material. This result has
been proven theoretically and tested numerically through several examples. More
specifially, it has been shown that the problem of composites containing
simultaneously phases having zero and infinite conductivity can be solved by this

log (kyku)

Notes: The case of the diamond mclusions: comparsons
between the three 1terative schemes: the PIS (the full line
with points), the DIS (the full line with stars) and the
polanzation based approach (the full line with circles)

Figure 8.

Diagram of the

number of iterations at
convergence of the PBIS
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ratio ky /ky




method with a very good rate of convergence while the resolutions with basic schemes
lead to the divergence. The method can be extended to other various physical
phenomena such as elasticity, piezoelectricity, etc,
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Appendix 1. The convergence of the primal iterative scheme

We first investigate the convergence of the primal iterative scheme. For simplicity, our analyss is
restricted to the case of isotropy, then we put K (x) = k(x)J and K° = k1. The convergence of the
iterativescheme (15) is ensured if all the eigenvalues of theoperator I — T°(x)* K (), are comprised in
the interval ] — 1,1] or, equivalently, the eigenvalues of I"o(;)'K(;) are comprised in the interval
[0.2[. By¢wedefmmemmvalmmdg,anmataiemmve¢aofﬂusopa‘ata‘

des = M@K (D) g (A1)

Due to the property of the Green's tensar I(2) (Section 2), g4 is rotational free and has anull volume
avuage&:dlﬁeldmplieswiﬂtlg= I K° : £4]. Equation (A1) can then be rewritten as:
(*K(» ~ ¢K°]'e5 =0 (A2)

Which indicates that K'(x) - g4, where K'(2) = K(2) — ¢K°, is a divergence free vector. Then, g4
can beinterpreted as gradient of temperature, solution of a problem of composite withthe conductivity
K'(x) and subjected toa zerouniform gradient of temperature. Such a problem has the trivial solution
es = 0if K'(x) is positive or negative definite. A sufficient condition for having the convergence is
that¥ (x) = k(x) — ¢k & strictly positive or negative defimitewhend < Oand ¢ = 2 Inthisway,all
the eigenvalues will be comprised in the mterval [0, 2[. At this stage it is easy to recover equation (17).

Appendix 2. The convergence of the dual iterative scheme
The same procedure is employed far obtaining the conditions of convergence ofthedual iterative
scheme (19). We introduce ¢ and j¢ an eigenvalue and an associated eigenvectar of A° (x)*R(x)

dis = (A’ @*R@) g4 (Bl)

We search the conditions for whld\alltheegenvahs¢areammnsdm[02[ In (B), jg is a
divergence free vectar which has a zero volume average, it complies with j4 = A’ R°- *jgl and:

A"@*(R(x) ~ $R%)je=0 (B2)

Which indicates that R*(2) j 4, with R*(2) = R(») ~ ¢R", isarotational free vector. Consequently,
J¢ can be interpreted as a flux, solution of a problem of a composite with the resistivity R*(x) and
snbpctedmammnfmnﬁmAgamwesmrdﬁheomdxhonbrwhu:htlntproblunlmthehml
solution ;,-0 when ¢ <0 and ¢ =2. For an isotropic compcesite, the resistivity is

1/k"(x) = 1/k(x) ~ &/ky. It can be shown that 1/&"(x) is strictly positive ar negative definite for
¢ < 0and ¢ = 2if the condition (21) is ensured.
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