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Success and Failure of Adaptation-Diffusion Algorithms

for Consensus in Multi-Agent Networks

Gemma Morral∗, Pascal Bianchi and Gersende Fort

Abstract—This paper investigates the problem of distributed
stochastic approximation in multi-agent systems. The algorithm
under study consists of two steps: a local stochastic approxi-
mation step and a diffusion step which drives the network to
a consensus. The diffusion step uses row-stochastic matrices to
weight the network exchanges. As opposed to previous works,
exchange matrices are not supposed to be doubly stochastic, and
may also depend on the past estimate.

We prove that non-doubly stochastic matrices generally in-
fluence the limit points of the algorithm. Nevertheless, the limit
points are not affected by the choice of the matrices provided that
the latter are doubly-stochastic in expectation. This conclusion
legitimates the use of broadcast-like diffusion protocols, which are
easier to implement. Next, by means of a central limit theorem,
we prove that doubly stochastic protocols perform asymptotically
as well as centralized algorithms and we quantify the degradation
caused by the use of non doubly stochastic matrices. Throughout
the paper, a special emphasis is put on the special case of
distributed non-convex optimization as an illustration of our
results.

I. INTRODUCTION

Distributed stochastic approximation has been recently pro-

posed using different cooperative approaches. In the so-called

incremental approach (see for instance [1]–[4]) a message

containing an estimate of the quantity of interest iteratively

travels all over the network. This paper focuses on another

cooperative approach based on average consensus techniques

where the estimates computed locally by each agent are

combined through the network.

Consider a network composed by N agents, or nodes.

Agents seek to find a consensus on some global parameter by

means of local observations and peer-to-peer communications.

The aim of this paper is to analyze the behavior of the follow-

ing distributed algorithm. Node i (i = 1, . . . , N ) generates a

R
d-valued stochastic process (θn,i)n≥0. At time n, the update

is in two steps:

[Local step] Node i generates a temporary iterate θ̃n,i
given by

θ̃n,i = θn−1,i + γn Yn,i , (1)

where γn is a deterministic positive step size and where the

R
d-valued random process (Yn,i)n≥1 represents the observa-

tions made by agent i.
[Gossip step] Node i is able to observe the values θ̃n,j
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of some other j’s and computes the weighted average:

θn,i =

N
∑

j=1

wn(i, j) θ̃n,j , (2)

where the wn(i, j)’s are scalar non-negative random coeffi-

cients such that
∑N

j=1 wn(i, j) = 1 for any i. The sequence

of random matrices Wn := [wn(i, j)]
N
i,j=1 represents the

time-varying communication network between the nodes. One

simply set wn(i, j) = 0 whenever nodes i and j are unable to

communicate at time n. The aim of this paper is to investigate

the almost sure (a.s.) convergence of this algorithm as n tends

to infinity as well as the convergence rate. Our goal is in

particular to quantify the effect of the sequence of matrices

(Wn)n≥1 on the convergence. The algorithm is initialized at

some arbitrary R
d-valued vectors θ0,1, · · · , θ0,N .

Application to distributed optimization. The algo-

rithm (1)-(2) under study is not new. The idea beyond the

algorithm traces back to [5], [6] where a network of processors

seeks to optimize some objective function known by all agents

(possibly up to some additive noise). More recently, numerous

works extended this kind of algorithm to more involved multi-

agent scenarios, see [7]–[19] as a non-exhaustive list. In this

context, one seeks to minimize a sum of local private cost

functions fi of the agents:

min
θ∈Rd

N
∑

i=1

fi(θ) , (3)

where for all i, the function fi is supposed to be unknown

by any other agent j, j 6= i. To address this question, it is

assumed that

Yn,i = −∇fi(θn−1,i) + ξn,i (4)

where ∇ is the gradient operator and ξn,i represents some

random perturbation which possibly occurs when observing

the gradient. In this paper, we handle the case where functions

fi are not necessarily convex. Of course, in that case, there is

generally no hope to ensure the convergence to a minimizer

to (3). Instead, a more realistic objective is to achieve crit-

ical points of the objective function i.e., points θ such that
∑

i∇fi(θ) = 0.

Convergence to a global minimizer is shown in [20] as-

suming convex utility functions and bounded (sub)gradients.

The results of [20] are extended in [21] to the stochastic

descent case i.e., when the observation of utility functions

is perturbed by a random noise. More recently, [14] investi-

gated distributed stochastic approximation at large, providing

stability conditions of the algorithm (1)-(2) while relaxing the

bounded gradient assumption and including the case of random

communication links. In [14], it is also proved under some



hypotheses that the estimation error is asymptotically normal:

the convergence rate and the asymptotic covariance matrix are

characterized. An enhanced averaging algorithm à la Polyak

is also proposed to recover the optimal convergence rate.

Doubly and non-doubly stochastic matrices. In most

works (see for instance [20]–[22]), the matrices (Wn)n≥1 are

assumed doubly stochastic, meaning that WT
n 1 = Wn1 = 1

where 1 is the N × 1 vector whose components are all

equal to one and where T denotes transposition. Although

row-stochasticity (Wn1 = 1) is rather easy to ensure in

practice, column-stochasticity (WT
n 1 = 1) implies more strin-

gent restrictions on the communication protocol. For instance,

in [23], each one-way transmission from an agent i to another

agent j requires at the same time a feedback link from j
to i. As a matter of fact, double stochasticity prevents from

using natural broadcast schemes, in which a given node may

transmit its local estimate to all neighbors without expecting

any immediate feedback.

Remarkably, although generally assumed, double stochastic-

ity of the matrices Wn is in fact not mandatory. A couple of

works (see e.g. [14], [24]) get rid of the column-stochasticity

condition, but at the price of assumptions that may not always

be satisfied in practice. Other works ([17], [25], [26]) manage

to circumvent the use of feedback links by coupling the

gradient descent with the so-called push-sum protocol [27].

The latter however introduces an additional communication

of weights in the network in order to keep track of some

summary of the past transmissions. In this paper, we address

the following questions: What conditions on the sequence

(Wn)n≥1 are needed to ensure that Algorithm (1)-(2) drives

all agents to a common critical point of
∑

i fi? What happens

if these conditions are not satisfied? How is the convergence

rate influenced by the communication protocol?

Contributions.

1) Assuming that (Wn)n≥1 forms an independent and

identically distributed (i.i.d.) sequence of stochastic ma-

trices, we prove under some technical hypotheses that

Algorithm (1)-(2) leads the agents to a consensus, which

is characterized. It is shown that the latter consensus

does not necessarily coincide with a critical point of
∑

i fi.
2) We provide sufficient conditions either on the commu-

nication protocol (Wn)n≥1 or on the functions fi which

ensure that limit points are the critical points of
∑

i fi.
3) When such conditions are not satisfied, we also propose

a simple modification of the algorithm which allows to

recover the sought behavior.

4) We extend our results to a broader setting, assuming

that the matrices (Wn)n≥1 are no longer i.i.d., but

are likely to depend on both the current observations

and the past estimates. We also investigate a general

stochastic approximation framework which goes beyond

the model (4) and beyond the only problem of distributed

optimization.

5) We characterize the convergence rate of the algorithm

under the form of a central limit theorem. Unlike [14],

we address the case where the sequence (Wn)n≥1 is not

necessarily doubly stochastic. We show that non-doubly

stochastic matrix have an influence on the asymptotic

error covariance (even if they are doubly stochastic in

average). On the other hand, we prove that when the

matrix Wn is doubly stochastic for all n, the asymptotic

covariance is identical to the one obtained in a central-

ized setting.

The paper is organized as follows. Section II is a gentle

presentation of our results in the special case of distributed

optimization (see (3)) assuming in addition that sequence

(Wn) is i.i.d. In Section III we provide the general setting

to study almost sure convergence. Almost sure convergence

is studied in Section IV. Section V investigates convergence

rates. Conclusions and numerical results complete the paper.

Notations: Throughout the paper, the vectors are column

vectors. The random variables Wn ∈ R
N×N and Yn :=

(Y T
n,1, . . . , Y

T
n,N )T ∈ R

dN , n ≥ 1, are defined on the same

measurable space equipped with a probability P; E denotes

the associated expectation. For any n ≥ 1, define the σ-

field Fn := σ(θ0,W1, . . . ,Wn, Y1, . . . , Yn) where θ0 is the

(possibly random) initial point of the algorithm.

It is assumed that for any i ∈ 1, . . . , N , (θn,i)n≥0 satisfies the

update equations (1)-(2); and we set

θn := (θTn,1, . . . , θ
T
n,N )T .

For any vector x ∈ R
ℓ, |x| represents the Euclidean norm of

x. IN is the N ×N identity matrix. J := 11
T /N denotes the

orthogonal projector onto the linear span of the all-one N × 1
vector 1, and J⊥ := IN − J . We denote by ⊗ the Kronecker

product between matrices. For a matrix A, the spectral norm

is denoted by ‖A‖ and the spectral radius is denoted by r(A)
whenever A is a square matrix.

II. DISTRIBUTED OPTIMIZATION

A. Framework

We first sketch our result in the special case of distributed

optimization i.e., when the “innovation” Yn,i of the algorithm

in (1) has the form (4).

Assumption 1. 1) fi : R
d → R is differentiable and ∇fi

is locally Lipschitz-continuous.

2) For any Borel set A of RdN , P [ξn+1 ∈ A |Fn] = νθn(A)
almost surely (a.s.) where (νθ)θ∈RdN is a family of

probability measures such that
∫

z dνθ(z) = 0 and

sup
θ∈K

∫

|z|2dνθ(z) <∞ for any compact set K ⊂ R
dN .

For simplicity, the matrix-valued process Wn will be as-

sumed i.i.d. and independent of both processes Yn and θn.

This assumption will be relaxed in section III.

Assumption 2. 1) For any n ≥ 0, conditionally to Fn,

(Yn+1,Wn+1) are independent.

2) (Wn)n≥1 is an i.i.d. sequence of row-stochastic matrices

(i.e., Wn1 = 1 for any n) with non-negative entries.

3) The spectral radius of the matrix E[WT
1 J⊥W1] is strictly

lower than 1.



The row-stochasticity assumption is a rather mild condition.

In many works, it is also assumed that Wn is column-

stochastic i.e.,
∑

i wn(i, j) = 1 for any j, though this

assumption is not required in this work. Assumption 2-3) is a

contraction condition which is required to drive the network

to a consensus.

Assumption 3. The deterministic step-size sequence (γn)n≥1

satisfies γn > 0 and:

1) limn γn+1/γn = 1,

2)
∑

n γn = +∞,
∑

n γ
1+λ
n <∞ for some λ ∈ (0, 1),

3)
∑

n |γn − γn−1| <∞ .

Polynomially decreasing sequences γn ∼ γ⋆/n
a when n→

∞, for some a ∈ (1/2, 1] and γ⋆ > 0 satisfy Assumption 3.

Finally, we introduce a stability-like condition.

Assumption 4. Almost surely, there exists a compact set K of

R
dN such that θn ∈ K for any n ≥ 0.

Assumption 4 claims that the sequence (θn)n≥0 remains in

a compact set and this compact set may depend on the path. It

is implied by the stronger assumption “there exists a compact

set K of RdN such that with probability one, θn ∈ K for any

n ≥ 0”. Checking Assumption 4 is not always an easy task.

As the main scope of this paper is the analysis of convergence

rather than stability, it is taken for granted: we refer to [14]

for sufficient conditions implying stability.

B. Results

The following lemma follows from standard algebra.

Lemma 1. Under Assumptions 2-2) and 2-3), the N×1 vector

v defined by vT := 1
N 1

TW (IN −J⊥W )−1 is the unique non-

negative vector satisfying vT = vTW and vT1 = 1.

If A is a set, we say that (xn)n converges to A if inf{|xn−
y| : y ∈ A} tends to zero as n→∞.

Theorem 1. Let Assumptions 1, 2, 3 and 4 hold true. Define

the function V : Rd → R

V (θ) :=

N
∑

i=1

vi fi(θ) (5)

where v = (v1, . . . , vN ) is the vector defined in Lemma 1.

Assume that the set L = {θ ∈ R
d | ∇V = 0} of critical points

of V is non-empty and included in some level set {θ : V (θ) ≤
C}, and that V (L) has an empty interior. Assume also that

the level sets {θ : V (θ) ≤ C} are either empty or compact.

The following holds with probability one:

1) The algorithm converges to a consensus i.e.,

limn→∞ maxi,j |θn,i − θn,j | = 0.

2) The sequence (θn,1)n≥0 converges to L as n→∞.

Theorem 1 is proved in Appendix A. Its proof consists

in showing that it is a special case of the more general

convergence result given by Theorem 2.

C. Success and Failure of Convergence

The algorithm converges to L which in general is not the

set of the critical points of θ 7→ ∑

i fi(θ). We discuss some

special where both sets actually coincide.

Scenario 1. All functions fi are strictly convex and admit

a (unique) common minimizer θ⋆.

This case is for instance investigated by [13] in the frame-

work of statistical estimation in wireless sensor network. The

set L is formed by the minimizers of
∑

i fi. Relaxing strict

convexity, note that when the functions fi are just convex with

a common minimizer and vi > 0 for any i, then L is formed

by the minimizers of
∑

i fi, then the same conclusion holds.

Scenario 2. W is column-stochastic i.e., 1TW = 1
T .

In this case, v given by Lemma 1 is the vector 1
N 1.

Consequently, V = 1
N

∑

i fi. Here again, L is the set of

minimizers of
∑

i fi. An example of random communication

protocol (see [28]) satisfying 1
TW = 1

T is the following:

at time n, a single node i wakes up at random with prob-

ability pi and broadcasts its temporary update θ̃n,i to all its

neighbors Ni. Any neighbor j computes the weighted average

θn,j = βθ̃n,i + (1 − β)θ̃n,j . On the other hand, any node k
which does not belong to the neighborhood of i (including i
itself) sets θn,k = θ̃n,k. Then, given i wakes up, the (k, ℓ)th
entry of Wn is given by:

wn(k, ℓ) =















1 if k /∈ Ni and k = ℓ ,
β if k ∈ Ni and ℓ = i ,
1− β if k ∈ Ni and k = ℓ ,
0 otherwise.

Here, Wn is not doubly stochastic. However, when nodes wake

up according to the uniform distribution (pi =
1
N for all i) it

is easily seen that 1T
E[Wn] = 1

T .

D. Enhanced Algorithm with Weighted Step Sizes

We end up this section with a simple modification of the

initial algorithm in the case where vi > 0 for all i. Let us

replace the local step (1) of the algorithm by

θ̃n,i := θn−1,i + γn v
−1
i Yn,i (6)

where Yn,i is still given by (4). As an immediate Corollary

of Theorem 1, the algorithm (6)-(2) drives the agent to a

consensus which coincides with the critical points of
∑

i fi.
Of course, this modification requires for each node i to

have some prior knowledge of the communication protocol

through the coefficients vi (in that case, questions related to

a distributed computation of the vi’s would be of interest, but

are beyond the scope of this paper).

III. DISTRIBUTED ROBBINS-MONRO ALGORITHM:

GENERAL SETTING

In this section, we consider the general setting described by

Algorithm (1)-(2) with weaker conditions on the distribution

of the observations Yn. We also weaken the assumptions on

(Yn+1,Wn+1): our general framework includes the case when

the communication protocol is adapted at each time n.

We denote by M1 the set of N × N non-negative row-

stochastic matrices and we endow M1 with its Borel σ-field.



Assumption 5. 1) There exists a collection of distributions

(µθ)θ∈RdN on R
dN × M1 such that a.s. for any Borel

set A:

P [(Yn+1,Wn+1) ∈ A |Fn] = µθn(A) .

In addition, the application θ 7→ µθ(A) defined on R
dN

is measurable for any A in the Borel σ-field of RdN ×
M1.

2) For any compact set K ⊂ R
dN , sup

θ∈K

∫

|y|2dµθ(y, w) <

∞.

Assumption 5-1) means that the joint distribution of the r.v.’s

Yn+1 and Wn+1 depends on the past Fn only through the last

value θn of the vector of estimates. It also implies that Wn

is almost-surely (a.s.) non-negative and row-stochastic. Since

the variables (Yn+1,Wn+1) are not necessarily independent

conditionally to the past Fn and (Wn)n≥1 are no longer

i.i.d., the contraction condition on J⊥W1 is replaced with the

following condition:

Assumption 6. For any compact set K ⊂ R
dN , there exists

ρK ∈ (0, 1) such that for all θ ∈ K, φ in R
dN and A ∈

R
dN × R

dN ,
∫

|((J⊥w)⊗Id)(φ+Ay)|2dµθ(y, w) ≤ ρK

∫

|φ+Ay|2 dµθ(y, w) .

Assumption 6 is satisfied as soon as the spectral radius

r
(

E
[

WT
1 J⊥W1|θ0, Y1

])

is upper bounded by a constant

independent of (θ0, Y1) when θ0 ∈ K and strictly lower than

one. When (Wn)n≥1 is an i.i.d. sequence, independent of the

sequence (Yn)n≥1 and of θ0, the above condition reduces to

r(E[WT
1 J⊥W1]) < 1.

IV. CONVERGENCE ANALYSIS

For any vector x ∈ R
dN of the form x = (xT

1 , . . . , x
T
N )T

where xi ∈ R
d, we define the vector of Rd 〈x〉 := (x1+ · · ·+

xN )/N = (1T ⊗ Id)x/N . We extend the notation to matrices

X ∈ R
dN×k as 〈X〉 = 1

N (1T ⊗ Id)X . We note J := J ⊗ Id
and J⊥ := J⊥⊗ Id. Note that Jx = 1⊗ 〈x〉 . Algorithm (1-2)

can be written in matrix form as:

θn = Wn (θn−1 + γnYn) where Wn = Wn ⊗ Id . (7)

We decompose the estimate vector θn into two components

θn = 1⊗〈θn〉+J⊥θn. In Section IV-A, we analyze the asymp-

totic behavior of the disagreement vector J⊥θn. The study of

the average vector 〈θn〉 will be addressed in Section IV-B.

These two sections are prefaced by a result which established

the dynamics of these sequences. Set αn := γn/γn+1 and

φn := γ−1
n+1 J⊥θn . (8)

The following lemma is left to the reader.

Lemma 2. For each n, let θn be given by (7) and let Wn be

row stochastic. Then,

〈θn〉 = 〈θn−1〉+ γn〈Wn(Yn + φn−1)〉 , (9)

φn = αn J⊥Wn(φn−1 + Yn) . (10)

A. Disagreement Vector

Lemma 3. Let Assumptions 3-1), 5 and 6 hold. Let (φn)n≥0

be the sequence given by (8). For any compact set K ⊂ R
dN ,

supn E
(

|φn|2I⋂
j≤n−1

{θj∈K}
)

<∞.

The result is proved in Appendix B. This lemma implies that

for any compact set, there exists C such that for any n ≥ 0,

E[|J⊥θn|2I⋂
k{θk∈Km}] ≤ Cγ2

n+1.

Proposition 1 (Agreement). Under Assumptions 3-1), 3-2),

4, 5 and 6, limn→∞ J⊥θn = 0 a.s.

Proof: Let (Km)m≥0 be an increasing sequence of com-

pact subsets of R
dN such that

⋃

m Km = R
dN . Under

Assumption 4, we have to prove equivalently that for any

m ≥ 0, limn J⊥θn1⋂
k{θk∈Km} = 0 a.s. Let m ≥ 0.

Lemma 3 implies that there exists a constant C such that

for any n, E[|J⊥θn|2I⋂
k{θk∈Km}] ≤ Cγ2

n+1. By Assump-

tion 3-2), this implies that
∑

n E[|J⊥θn|2I⋂k{θk∈Km}] is fi-

nite; hence
∑

n |J⊥θn|2I⋂k{θk∈Km} is finite a.s. which yields

limn J⊥θ2nI
⋂

k{θk∈Km} = 0 a.s.

B. Average vector

We now study the long-time behavior of the average esti-

mate 〈θn〉. Define for any θ ∈ R
dN :

Wθ :=

∫

(w ⊗ Id) dµθ(y, w) (11)

zθ :=

∫

(w ⊗ Id)y dµθ(y, w) . (12)

and let us assume regularity-in-θ properties of these quantities

Assumption 7. There exists λµ ∈ (1/2, 1] and for any

compact set K ⊂ R
dN , there exists a constant C > 0 such

that for any θ, θ′ ∈ K,
∥

∥Wθ −Wθ′

∥

∥ ≤ C|θ − θ′|λµ , (13)

|Jzθ − JzJθ| ≤ C|J⊥θ|λµ , (14)

|J⊥zθ − J⊥zθ′ | ≤ C|θ − θ′|λµ , (15)

We define the mean field function h : Rd → R
d (10) by

h(ϑ) = 〈z1⊗ϑ +W1⊗ϑ m
(1)
1⊗ϑ〉 (16)

where m
(1)
1⊗ϑ is the expectation of the invariant distribution

π1,1⊗ϑ, given by (see Proposition 4 in Appendix C)

m
(1)
θ := (IdN − J⊥Wθ)

−1J⊥zθ .

Note that under Assumption 6, this quantity is well defined

since for any compact K ⊂ R
dN , supθ∈K ‖J⊥Wθ‖ ≤

√
ρK.

Assumption 8. 1) h : Rd → R
d is continuous.

2) There exists a continuously differentiable function V :
R

d → R
+ such that

a) there exists M > 0 such that L = {ϑ ∈ R
d :

∇V T (ϑ)h(ϑ) = 0} ⊂ {V ≤ M}. In addition,

V (L) has an empty interior;

b) there exists M ′ > M such that {V ≤ M ′} is a

compact subset of Rd;

c) for any ϑ ∈ R
d \ L, ∇V T (ϑ)h(ϑ) < 0.



Assumptions 5, 6 and 7 imply that ϑ 7→ m
(1)
1⊗ϑ is continuous

on R
d (see Proposition 5 in Appendix C). Therefore, a suf-

ficient condition for the Assumption 8-1) is to strengthen the

conditions (14-15) of Assumption 7 as follows: |zθ − zθ′ | ≤
C|θ − θ′|λµ .

Proposition 2. Let Assumptions 3, 4, 5, 6,7 and 8 hold true.

Assume in addition that λ ≤ λµ where λ, λµ are resp. given by

Assumption 3 and 7. The average sequence (〈θn〉)n converges

almost-surely to a connected component of L.

The proof of Proposition 2 is given in Appendix D. It

consists in verifying the assumptions of [29, Theorem 2].

C. Main Convergence Result

As a trivial consequence of Propositions 1 and 2, we have

Theorem 2. Let Assumptions 3, 4, 5, 6, 7 and 8 hold true.

Assume in addition that λ ≤ λµ where λ, λµ are resp. given

by Assumption 3 and 7. The following holds with probability

one:

1) The algorithm converges to a consensus i.e.,

limn→∞ J⊥θn = 0;

2) θn,1 converges to a connected component of L.

V. CONVERGENCE RATE

A. Main Result

We derive the rate of convergence of the sequence {θn, n ≥
0} to 1⊗ θ⋆ for some θ⋆ satisfying

Assumption 9. θ⋆ is a root of h i.e., h(θ⋆) = 0. Moreover, h
is twice continuously differentiable in a neighborhood of θ⋆.

The Jacobian ∇h(θ⋆) is a Hurwitz matrix. Denote by −L,

L > 0, the largest real part of its eigenvalues.

The moment conditions on the conditional distributions of

the observations Yn and the contraction assumption on the

network have to be strengthened as follows:

Assumption 10. There exists τ ∈ (0, 2) such that for any

compact set K ⊂ R
dN , one has supθ∈K

∫

|y|2+τ dµθ(y, w) <
∞.

Assumption 11. Let τ be given by Assumption 10. For any

compact set K ⊂ R
dN , there exists ρ̃K ∈ (0, 1) such that for

any φ ∈ R
dN

sup
θ∈K

∫

|((J⊥w)⊗ Id)|2+τdµθ(y, w) ≤ ρ̃K |φ|2+τ .

We also go further in the regularity-in-θ of the integrals

w.r.t. µθ. More precisely

Assumption 12. There exists λµ ∈ (1/2, 1] and for any

compact set K ⊂ R
dN there exists a constant C such that

1) for any θ, θ′ ∈ K, |〈zθ〉 − 〈zθ′〉| ≤ C |θ − θ′|λµ .

2) Set QA(x, y, w) := (x+y)T(w⊗Id)TJ⊥AJ⊥(w⊗Id)(x+
y) for some dN × dN matrix A. For any θ, θ′ ∈ K,

x ∈ R
dN and any matrix A such that ‖A‖ ≤ 1,

∣

∣

∣

∣

∫

QA(x, y, w)dµθ(y, w)− QA(x, y, w)dµθ′(y, w)

∣

∣

∣

∣

≤ C |θ − θ′|λµ (1 + |x|2) .

We finally have to strengthen the conditions on the step-size

sequence.

Assumption 13. Let τ (resp. λµ) be given by Assumption 10

(resp. Assumption 12). As n → ∞, γn ∼ γ⋆/n
a for some

a ∈ ((1+ λµ)
−1 ∨ (1+ τ/2)−1; 1] and γ⋆ > 0. In addition, if

a = 1 then γ⋆ > 1/(2L) where L is given by Assumption 9.

Define m
(1)
⋆ := (IdN − J⊥W1⊗θ⋆)

−1J⊥z1⊗θ⋆ and m
(2)
⋆ :=

(Id2N2 − Φ⋆)
−1

ζ⋆ where zθ is defined in (12), where

Φ⋆ :=

∫

T (w) dµ1⊗θ⋆(y, w)

ζ⋆ :=

∫

T (w)vec
(

yyT + 2m
(1)
⋆ yT

)

dµ1⊗θ⋆(y, w)

and where we used the notation T (w) := ((J⊥w) ⊗ Id) ⊗
((J⊥w) ⊗ Id). As will be seen in the proofs, m

(1)
⋆ and m

(2)
⋆

represent the asymptotic first order moment and (vectorized)

second order moment of the r.v. φn defined by (8). Define also

R⋆(w) := (w ⊗ Id) −W1⊗θ⋆ and υ⋆(y, w) := (w ⊗ Id)y −
z1⊗θ⋆ . Finally, define

A⋆ :=

(

1
T

N
⊗ Id

)

(IdN +W1⊗θ⋆(IdN − J⊥W1⊗θ⋆)
−1J⊥)

R⋆ :=

∫

(R⋆(w)⊗R⋆(w)) dµ1⊗θ⋆(y, w)

T⋆ :=

∫

(υ⋆(y, w)⊗R⋆(w))dµ1⊗θ⋆(y, w)

S⋆ :=

∫

vec (υ⋆(y, w)υ⋆(y, w)
T )dµ1⊗θ⋆(y, w) .

We establish in Section E the following result.

Theorem 3. Let Assumption 5-1), Assumption 7, Assumption 6

and Assumption 9 to Assumption 13 hold true. Let U⋆ be the

positive-definite matrix given by

vecU⋆ = (A⋆ ⊗ A⋆)(R⋆ m
(2)
⋆ + 2T⋆m

(1)
⋆ + S⋆)

Then conditionally to the event {limn θn = 1 ⊗ θ⋆}, the

sequence {γ−1/2
n (〈θn〉− θ⋆), n ≥ 0} converges in distribution

to a zero mean Gaussian distribution with covariance matrix
V where V is the unique positive-definite matrix satisfying

V∇h(θ⋆)
T +∇h(θ⋆)V = −U⋆ if a < 1,

V (Id + 2γ⋆∇h(θ⋆))
T + (Id + 2γ⋆∇h(θ⋆))V = −2γ⋆U⋆ if a = 1.

B. A Special Case: Doubly-Stochastic Matrices

In this paragraph, let us investigate the special case when

(Wn)n are N×N doubly-stochastic matrices. Note that in this

case, (9) gets into 〈θn〉 = 〈θn−1〉+γn〈Yn〉 and the mean field

function h is equal to h(ϑ) =
∫

〈y〉dµ1⊗ϑ(y, w). Since Wn

is column-stochastic,
∫

w dµ1⊗θ⋆(y, w) is column-stochastic,

and we have A⋆ = 1
T

N ⊗ Id. Then, it is not difficult to check

that A⋆R⋆(w) = 0, which implies that R⋆ = T⋆ = 0. This

yields the following corollary

Corollary 1. In addition to the assumptions of Theorem 3,

assume that (Wn)n are N × N doubly-stochastic matrices

and set ȳ⋆ =
∫

y dµ1⊗θ⋆(y, w). Then

U⋆ =

∫

〈y − ȳ⋆〉〈y − ȳ⋆〉T dµ1⊗θ⋆(y, w) .



VI. CONCLUDING REMARKS

In this paragraph, we informally draw some general conclu-

sions of our study. We assimilate the communication protocol

to the selection of the sequence Wn, which we assume i.i.d. in

this paragraph for simplicity. We say that a protocol is doubly

stochastic if Wn is doubly stochastic for each n. We say that

a protocol is doubly stochastic in average if E [Wn] is doubly

stochastic for each n.

1) Consensus is fast. Theorem 3 states that the average

estimation error converges to zero at rate
√
γn. This

result was actually expected, as
√
γn is the well-known

convergence rate of standard stochastic approximation

algorithms.

On the other hand, Lemma 3 suggests that the disagree-

ment vector J⊥θn goes to zero at rate γn that is, one or-

der of magnitude faster. Asymptotically, the fluctuations

of the normalized estimation error (θn − 1 ⊗ θ⋆)/
√
γn

are fully supported by the consensus space.

This remark also suggests to analyze non-stationary

communication protocols, for which the number of

transmissions per unit of time decreases with n. This

problem is addressed in [14].

2) Non-doubly stochastic protocols generally influence

the limit points. This issue is discussed in Section II-C.

The choice of the matrices Wn is likely to have an

impact on the set of limit points of the algorithms. This

may be inconvenient especially in distributed optimiza-

tion tasks.

3) Protocols that are doubly stochastic ”in average” all

lead to the same limit points. In the framework of

distributed optimization, the latter set of limit points

precisely coincides with the sought critical points of

the minimization problem. It means that non-doubly

stochastic protocols can be used provided that they are

doubly stochastic in average.

4) Asymptotically, doubly stochastic protocols perform

as well as a centralized algorithm. By Corollary 1,

if Wn is chosen to be doubly stochastic for all n,

the asympotic error covariance characterized in Theo-

rem 3 does not depend on the specific choice of Wn.

In distributed optimization, the asymptotic performance

is identical to the performance that would have been

obtained by replacing Wn by the orthogonal projector

J , which would lead to the centralized update 〈θn〉 =
〈θn−1〉 + γn

N

∑N
i=1 Yn,i . On the opposite, protocols

that are not doubly stochastic generally influence the

asymptotic error covariance, even if they are doubly

stochastic in average.

VII. NUMERICAL RESULTS

We illustrate the convergence results obtained in Sec-

tion II-B and discussed in sections II-C and VI. We depict

a particular case of the distributed optimization problem de-

scribed in Section II. Consider a network of N = 5 agents

and for any i = 1, . . . , 5, we define a private cost function

fi : R→ R. We address the following minimization problem:

min
θ⊂R

5
∑

i=1

1

2
(θ − αi)

2 (17)

where αT = (−3, 5, 5, 1,−3). The minimizer of (17) is θf =
〈α〉 = 1. The network is represented by an undirected graph

G = (V,E) with vertices {1, . . . , N} and 6 fixed edges E.

The corresponding adjacency matrix is given by

A =













0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1
0 0 1 1 0













.

We choose θ0,i = 0 for each agent i and the step-size sequence

of the form γn = 0.1/n0.7. Observations Yn,i are defined as

in (4): (ξn,i)n,i is an i.i.d. sequence with Gaussian distribution

N(0, σ2) where σ2 = 1.

Figure 1 illustrates the two results of Theorem 1 accord-

ing to different gossip matrices (Wn)n. First, Figure 1 (a)

addresses the convergence of sequence (θn,1)n≥0 as a function

of n to show the influence of matrices Wn to the limit

points. In particular, the dashed line curve corresponds to

the algorithm (1)-(2) when Wn is assumed to be fixed and

deterministic (Wn = W1 for all n); we select W1 in such

a way that each agent computes the average of the tem-

porary estimates in its neighborhood. This is equivalent to

set W1 = (IN + D)−1(IN + A), where D is the diagonal

matrix containing the degrees, i.e. D(i, i) =
∑N

j=1 A(i, j)
for each agent i. Note that W1 is not doubly stochastic since

1
TW1 6= 1

T . Computing the left Perron eigenvector defined

by Lemma 1 yields the minimizer of V =
∑

i vifi being θV =
vTα = 1.24. In that case, the sequence (θn,1)n converges to

θ⋆ = θV instead of the desired θ⋆ = θf . Figure 1 (a) includes

the trajectory of θn,1 generated by Algorithm (6)-(2) with

W1 = (IN+D)−1(IN+A). As proposed in Section II-D when

introducing the weighted step size such γnv
−1
i the sequence

now converge to the sought value θf .

Figure 1 (a) also illustrates the convergence behavior of

Scenario 2 where the limit point θ⋆ of Algorithm (1)-(2)

corresponds with θf . In that case, we consider two standard

models for Wn, namely the pairwise gossip of [23] and the

broadcast gossip of [28] (we set β = 1
2 ). Finally, the plain

line in Figure 1 (a) shows the performance of the algorithm

proposed by [17] for distributed optimization which is based

on a synchronous version of the push-sum model of [27].

We conclude the illustration of Theorem 1 by the results

on the consensus convergence for the same examples of Wn

considered in Figure 1 (a). Thus, Figure 1 (b) represents the

norm of the scaled disagreement vector as a function of n.

As expected from Theorem 1-2), consensus is asymptotically

achieved independently of the limit point, i.e. θf or θV .

Note that the synchronous models of W1 and [17] require N
transmissions at each iteration n whereas the gossip protocols

of [23] and [28] only require two and one transmissions re-

spectively due to their asynchronous nature. This may explain

the gap between the curves in Figure 1 (b) when regarding the

convergence rate towards the consensus.
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Figure 1: Convergence result of Theorem 1 according to

different communication schemes for (Wn)n.

The result of Theorem 3 is illustrated in Figure 2 which

leads to the concluding remark 4) of Section VI. Figures 2 (a)

and 2 (b) display the asymptotic analysis of the normalized

average error γ
−1/2
n (〈θn〉−θ⋆). Indeed, once the convergence

is achieved, the asymptotic distribution can be characterized

by the closed form of the variance U⋆ ∈ R. In this example,

Theorem 3 states that γ
−1/2
n (〈θn〉 − θ⋆) converges in distri-

bution to a r.v. ∼ N(0,V) where ∇h(θ⋆) = −1 and thus the

variance is V = U⋆

2 . The first boxplot and the first histogram

in Figure 2 are related to the algorithm implemented in a

centralized manner. We consider the distributed algorithm (1)-

(2) with different choices of Wn: the pairwise gossip of [23],

the broadcast gossip of [28] and the fixed W1 defined by

(IN + D)−1(IN + A). The normal distribution obtained in

Theorem 3 is coherent with the empirical results.

APPENDIX A

PROOF OF THEOREM 1

We prove that the Assumptions 5 to 8 hold. Then Theorem 1
will follow from Theorem 2. For any θ = (θ1, . . . , θN ) ∈
R

dN where θi ∈ R
d, define the R

dN -valued function g by
g(θ) := (−∇f1(θ1)T , . . . ,−∇fN (θN )T )T . Under Assump-
tion 2-1) and Assumption 2-2), for any Borel set A × B
of R

dN × M1 P[(Yn+1,Wn+1) ∈ A × B|Fn] = P[Yn+1 ∈
A|Fn]P[Wn+1 ∈ B]. In addition, by Assumption 1 and Eq.
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(a) Boxplots of the normalized average error.
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(b) Empirical distribution (dark bars) versus theoretical distribution
given by Theorem 3 (solid line).

Figure 2: Asymptotic analysis of the normalized average error
1√
γn

(〈θn〉 − θ⋆) of Algorithm (1)-(2) according to different

communication schemes for (Wn)n after n = 30000 iterations

and over 100 independent Monte-Carlo runs.

(4) P[Yn+1 ∈ A|Fn] =
∫

IA (g(θn) + z) dνθn(z) . The above
discussion provides the expression of µθ in Assumption 5-1).
In addition, under Assumption 1-2), for any compact set K of
R

dN ,

sup
θ∈K

∫

|y|2dµθ(y, w) = sup
θ∈K

(

|g(θ)|2 +
∫

|z|2dνθ(z)
)

< ∞

which proves Assumption 5-2). Assumption 6 easily follows

from Assumption 2-3). The regularity conditions of Assump-

tion 7 are satisfied with λµ = δ, where δ is given by

Assumption 1. Observe indeed that the left hand side of (13)

is zero and (14) and (15) are true as long as (∇fi)i are

locally Hölder-continuous. Again, the expression of µθ implies

that Wθ = E [W1]. Therefore, h(ϑ) = 〈E[W1] g (1⊗ ϑ)〉 =
−∑N

i=1 vi∇fi(ϑ) which completes the proof.

APPENDIX B

PROOF OF LEMMA 3

From (10), we compute |φn|2 = α2
n(φn−1 +

Yn)
TWT

nJ⊥Wn(φn−1 + Yn). Using Assumption 5-1),
E
[

|φn|2|Fn−1

]

is equal to

α
2
n

∫

(φn−1 + y)T (w⊗ Id)J⊥(w⊗ Id)(φn−1 + y) dµθn−1
(y, w) .

By Fubini Theorem and Assumption 6, there exists ρK ∈
(0, 1) such that for any n ≥ 1, E

[

|φn|2|Fn−1

]

≤



α2
nρK

∫

|φn−1 + y|2dµθn−1
(y, w). By Assumption 5-2), there

exists a constant C such that for any n ≥ 1 almost-surely

E
[

|φn|2|Fn−1

]

Iθn−1∈K ≤ α2
nρK

(

|φn−1|2 + 2|φn−1|
√
C + C

)

.

Set Un := |φn|2I⋂
j≤n−1

{θj∈K}. Upon noting that

I⋂
j≤n−1

{θj∈K} ≤ I⋂
j≤n−2

{θj∈K}, the previous inequality

implies E[Un] ≤ α2
nρK

(

E [Un−1] + 2
√

E[Un−1]
√
C + C

)

.

Let δ ∈ (ρK, 1). For any n large enough (say n ≥ n0),

α2
nρK ≤ 1 − δ since limn αn = 1 under Assumption 3-1).

There exist positive constants M, b such that for any n ≥ n0,

E[Un] ≤ (1− δ)
(

E [Un−1] + 2
√

E[Un−1]
√
C + C

)

≤
(

1− δ

2

)

E[Un−1] + b1E[Un−1]≤M .

A trivial induction implies that E[Un] ≤ (1 −
δ/2)n−n0E[Un0

] + 2b/δ, which concludes the proof.

APPENDIX C

PRELIMINARY RESULTS ON THE SEQUENCE (φn)n

Due to the coupling of the sequences (〈θn〉)n and (φn)n
(see Eq. (9)), the asymptotic analysis of (〈θn〉)n requires a

more detailed understanding of the behavior of φn. Note from

Assumption 5-1) and (10) that {φn, n ≥ 0} is a Markov

chain w.r.t. the filtration {Fn, n ≥ 0} with a transition kernel

controlled by {αn, θn, n ≥ 0} (see also (19) below).

Let us introduce some notations and definitions. If (x,A) 7→
P (x,A) is a probability transition kernel on R

dN , then for

any bounded continuous function f : RdN → R, Pf is the

measurable function x 7→
∫

f(y)P (x, dy) . If ν is a probability

on R
dN , νP is the probability on R

dN given by νP (A) =
∫

ν(dx)P (x,A). For n ≥ 0, notation Pn stands for the n-

order iterated kernel i.e., Pnf(x) =
∫

Pn−1f(y)P (x, dy);
by convention P 0(x,A) = 1A(x) = δx(A). A measure π
is said to be an invariant distribution w.r.t. P if πP = π.

For p ≥ 0, denote by Lp(R
dN ) the set of lipschitz functions

f : RdN → R
dN satisfying

[f ]p := sup
x,y∈RdN

|f(x)− f(y)|
|x− y|(1 + |x|p + |y|p) <∞ .

We define Np(f) := (supx∈RdN
|f(x)|

1+|x|p+1 ) ∨ [f ]p for f ∈
Lp(R

dN ). For any θ ∈ R
dN and any α ≥ 0, define the

probability transition kernel Pα,θ on R
dN as

Pα,θf(x) =

∫

f (αJ⊥(w ⊗ Id)(x+ y)) dµθ(y, w) . (18)

This collection of kernels is related to the sequence (φn)n
since by Assumption 5-1) and (10), for any measurable posi-

tive function f it holds almost-surely

E [f(φn+1)|Fn] = Pαn+1,θnf(φn) . (19)

We start with a result that claims that any transition kernel

Pα,θ possesses an unique invariant distribution πα,θ and is

ergodic at a geometric rate. This also implies that for a large

family of functions f , a solution fα,θ to the Poisson equation

f − πα,θ(f) = fα,θ − Pα,θfα,θ (20)

exists, and is unique up to an additive constant.

Proposition 3. Let Assumptions 5 and 6 hold. Let K ⊂ R
dN

be a compact set and let ρK ∈ (0, 1) be given by Assumption 6.

The following holds for any a ∈ (0, 1/
√
ρK).

1) For any θ ∈ K and α ∈ [0, a], Pα,θ ad-

mits an unique invariant distribution πα,θ such that

supα∈[0,a],θ∈K

∫

|x|2dπα,θ(x) <∞ .
2) For any p ∈ [0, 1], there exists a constant K

such that for any x ∈ R
dN and any f ∈

Lp(R
dN ), supα∈[0,a],θ∈K |Pn

α,θf(x) − πα,θ(f)| ≤
KNp(f)

(

a
√
ρK

)n
(1 + |x|p+1) .

3) For any α ∈ (0, a], θ ∈ K, p ∈ [0, 1] and f ∈ Lp(R
dN ),

the function fα,θ : x 7→∑

n≥0

(

Pn
α,θf(x)− πα,θf

)

ex-

ists, solves the Poisson equation (20) and is in Lp(R
dN ).

In addition,

sup
α∈[0,a],θ∈K

|fα,θ(x)| ≤
KNp(f)

1− a
√
ρK

(1 + |x|p+1) .

Proof: Let K be a compact subset of R
dN . Throughout

this proof, for ease of notations, we will write ρ instead of

ρK. Let a ∈ (0, 1/
√
ρ) be fixed. We check the assumptions

of [30, Proposition 2 p. 253] from which all the items follow.

We first prove [30, (2.1.10) p.253]. By Assumption 6, for any

α ∈ [0, a] and θ ∈ K

∫

Pα,θ(x, dy)|y|2

≤ a2ρ

(

|x|2 +
∫

|y|2dµθ(y, w) + 2|x|
∫

|y|dµθ(y, w)

)

;

by Assumption 5-2), for any ρ̄ ∈ (a2ρ, 1), there exists a

positive constant c such that for any x ∈ R
dN

sup
α∈[0,a],θ∈K

∫

Pa,θ(x, dy)|y|2 ≤ ρ̄|x|2 + c .

This concludes the proof of [30, (2.1.10) p.253]. Note that

iterating this inequality and applying the Jensen’s inequality

yield for any n ≥ 1, p ∈ [0, 1], x ∈ R
dN ,

sup
α∈[0,a],θ∈K

∫

Pn
a,θ(x, dy)|y|p+1 ≤

(

ρ̄n|x|2 + c

1− ρ̄

)
p+1

2

.

(21)

We now prove [30, (2.1.9) p.253] Let x, z ∈ R
dN , α ∈ [0, a]

and θ ∈ K. We consider a coupling of the distributions

Pn
α,θ(x, ·) and Pn

α,θ(z, ·) defined as follows: (Wn, Y n)n∈N are

i.i.d. random variables with distribution µθ and set Wn =
Wn⊗ Id. The stochastic process (ϕx

n)n∈N defined recursively

by ϕx
n = αJ⊥Wn(ϕ

x
n−1 + Y n) and ϕx

0 = x is a Markov

chain with transition kernel Pα,θ starting from x. We denote

by Eα,θ the expectation on the associated canonical space. Let

p ∈ [0, 1]. For any g ∈ Lp(R
dN ), it holds

∣

∣Pn
α,θg(x)− Pn

α,θg(z)
∣

∣ = |Eα,θ (g(φ
x
n)− g(φz

n))|
≤ Eα,θ (|g(φx

n)− g(φz
n)|)

≤ [g]p Eα,θ [|φx
n − φz

n| (1 + |φx
n|p + |φz

n|p)]

≤ [g]p

{

Eα,θ |φx
n − φz

n|2 Eα,θ

[

(1 + |φx
n|p + |φz

n|p)2
]}1/2

.

(22)



By Assumption 6 combined with a trivial induction,

Eα,θ(|ϕx
n − ϕz

n|2)1/2 = αEα,θ(|J⊥Wn(ϕ
x
n−1 − ϕz

n−1)|2)1/2

= αEα,θ((ϕ
x
n−1 − ϕz

n−1)
T
Aθ(ϕ

x
n−1 − ϕz

n−1))
1/2

≤ a
√
ρEα,θ(|ϕx

n−1 − ϕz
n−1|2)1/2

≤ (a
√
ρ)

n |x− z| , (23)

where Aθ :=
∫

(w ⊗ Id)
T J⊥(w ⊗ Id)dµθ(y, w). Combining

(21) and (23) shows that there exists C > 0 such that for any

x, z ∈ R
dN , g ∈ Lp(R

dN ) and n ≥ 1,

sup
α∈[0,a],θ∈K

∣

∣Pn
α,θg(x)− Pn

α,θg(z)
∣

∣

≤ C [g]p|x− z| (a√ρ)n (1 + |x|p + |z|p) . (24)

This concludes the proof of [30, (2.1.9) p.253]. Finally, we

show that the transition kernels are weak Feller. From (18)

and the dominated convergence theorem, it is easily checked

that for any bounded continuous function f on R
dN , x 7→

Pα,θf(x) is continuous. Therefore, all the assumptions of [30,

Proposition 2 p.253] are verified.

Proposition 4. Let Assumptions 5 and 6 hold. Let θ ∈ R
dN

and α such that πα,θ exists.

1) The first order moment m
(1)
θ (α) :=

∫

x dπα,θ(x) of πα,θ

is given by m
(1)
θ (α) = (α−1IdN−J⊥Wθ)

−1J⊥zθ where

Wθ and zθ are given by (11) and (12).

2) Set T (w) := ((J⊥w) ⊗ Id) ⊗ ((J⊥w) ⊗ Id).

The vector m
(2)
θ (α) := vec (

∫

xxT dπa,θ(x)) is

given by m
(2)
θ (α) =

(

α−2Id2N2 − Φθ

)−1
ζθ(α)

where Φθ :=
∫

T (w)dµθ(y, w) and ζθ(α) :=
∫

T (w)vec
(

yyT + 2ym
(1)
θ (α)T

)

dµθ(y, w).

Proof: Since πα,θ = πα,θPα,θ, we obtain: m
(1)
θ (α) =

∫∫

αJ⊥(w ⊗ Id)(y + x)dµθ(y, w)dπα,θ(x) = α
∫

((J⊥w) ⊗
Id)(y + m

(1)
θ (α))dµθ(y, w). This yields the expression of

m
(1)
θ (α). The proof of item 2) follows the same lines as above

and is omitted.

The proof of the following Proposition is left to the reader.

Proposition 5. Let Assumptions 5, 6 and 7 to hold. Let K ⊂
R

dN be a compact set and let ρK ∈ (0, 1) and λµ ∈ (0, 1] be

given resp. by Assumption 6 and Assumption 7. The following

holds for any a ∈ (0, 1/
√
ρK).

1) For any f ∈ L1(R
dN ), there exists a con-

stant Cf such that for any α, α′ ∈ [0, a] and

θ, θ′ ∈ K,
∣

∣

∫

f(x) (dπα,θ(x)− dπα′,θ′(x))
∣

∣ ≤
Cf

(

|α− α′|+ |θ − θ′|λµ

)

.

2) When f is the identity function f(x) = x then for any

α ∈ (0, a], θ ∈ K, x ∈ R
dN , one has

fα,θ(x) = (IdN − αJ⊥Wθ)
−1(x−m

(1)
θ (α)) . (25)

In addition, there exists a constant K such

that for any α, α′ ∈ [0, a], θ, θ′ ∈ K,

one has |Pα,θfα,θ(x)− Pα′,θ′fα′,θ′(x)| +
|fα,θ(x)− fα′,θ′(x)| ≤
K

(

|α− α′|+ |θ − θ′|λµ

)

(1 + |x|) .

3) For any function f of the form xTAx, the Pois-

son solution fα,θ exists and there exists a con-

stant K such that for any α, α′ ∈ [0, a],
θ, θ′ ∈ K, one has |Pα,θfα,θ(x)− Pα′,θ′fα′,θ′(x)| ≤
K

(

|α− α′|+ |θ − θ′|λµ

)

(

1 + |x|2
)

.

APPENDIX D

PROOF OF PROPOSITION 2

Lemma 4. Under Assumptions 3-1) and 5, ∃C > 0 s.t.

|θn+1 − θn| ≤ C γn (|Yn+1|+ |φn|) a.s.

Proof: Since limn γn/γn+1 = 1, there exists a constant C
such that |θn+1− θn| ≤ |1⊗〈θn+1〉−1⊗〈θn〉|+ |J⊥θn+1|+
|J⊥θn| ≤ C |〈θn+1〉 − 〈θn〉| + γnφn+1 + γnφn. The result

follows from Eqs (9), (10) and supn αn <∞.

A. Decomposition of 〈θn+1〉 − 〈θn〉
By (9), it holds 〈θn+1〉 = 〈θn〉 + γn+1h(〈θn〉) +

γn+1(ηn+1,1+ηn+1,2) where ηn+1,1 = 〈Wn+1(Yn+1+φn)〉 −
〈zθn +Wθnφn〉, ηn+1,2 = 〈zθn +Wθnφn〉−h(〈θn〉). We write

ηn+1,2 = un + vn + wn+1 + zn where un = 〈zθn − zJθn〉,
vn = 〈Wθn−WJθn〉 φn, wn+1 = 〈WJθn〉(φn−m(1)

θn
(αn+1)),

zn = 〈WJθn〉(m
(1)
θn

(αn+1))−m
(1)
Jθn

(1)). We finally introduce

a decomposition of wn. For any compact K, let ρK ∈ (0, 1)
be given by Assumption 6. Let a ∈ (1, 1/

√
ρK). Under

Assumption 3, the sequence (αn)n given by (8) converges to

one; hence, there exists a (deterministic) integer n0 (depending

on K) such that αn ∈ (0, a) for all n ≥ n0. The identity

function is in L0(R
dN ) and by Proposition 5, there exists a

solution gfα, θ to the Poisson equation (20) with the f equal

to the identity function, for any α ∈ (0, a) and θ ∈ K; by

(25) fα,θ(x) = (IdN − αJ⊥Wθ)
−1(x − m

(1)
θ (α)). To make

the notation easier, we will set below fn := fαn+1,θn and

Pn := Pαn+1,θn . By Proposition 3-3), there exists a constant

C > 0 such that a.s.

sup
n≥n0

|fn(x)|IEK
≤ C(1 + |x|) . (26)

Letting x = φn in the Poisson equation (20), we

obtain φn − m
(1)
θn

(αn+1) = fn(φn) − Pnfn(φn).
We set wn+1 = en+1 + cn+1 + sn+1 + tn
where en+1 = 〈WJθn〉 (fn(φn+1)− Pnfn(φn)),
cn+1 = 〈WJθn〉 fn−1(φn) − 〈WJθn+1

〉 fn(φn+1),
sn+1 = 〈WJθn+1

− WJθn〉 fn(φn+1) and finally

tn = 〈WJθn〉 (fn(φn)− fn−1(φn)). As a conclusion,

we have ηn+1,2 = un + vn + zn + en+1 + cn+1 + sn+1 + tn.

B. Proof of Proposition 2

Define EK = {∀j ∈ N, θj ∈ K} and En,K = ∩j≤n{θj ∈
K} for some compact set K.

We show that
∑

n γnηn,i < ∞ a.s. for both i = 1, 2. The

proposition will then follow from [29]. By Assumption 4,

it is enough to show that for any fixed compact set K,
∑

k≥1 γkηk,iIEK
is finite a.s. Hereafter, K is fixed and n0

is defined as in Section D-A.

We first study ηn,1. Note that for any ω, the sequence

IEn,K
(ω) is identically equal to IEK

(ω) for all large n.



As a consequence,
∑

n γnηn,1(IEK
− IEn−1,K

) is finite a.s.

and it is therefore sufficient to prove that
∑

n γnηn,1IEn−1,K

is finite a.s. Since ηn,1IEn−1,K
is a martingale differ-

ence noise, the sought result will be obtained provided
∑

n γ
1+λ
n E[|ηn,1|1+λ

IEn−1,K
] < ∞ where λ > 0 (see e.g.

[31, Theorem 2.18]); we choose λ ∈ (0, 1) given by As-

sumption 3. After some algebra, supn E[|ηn,1|2IEn−1,K
] ≤

2 supn E[|〈Wn(Yn + φn−1)〉|2IEn−1,K
] ≤ C supn E[(|Yn|2 +

|φn−1|2)IEn−1,K
] for some constant C - where we used the

fact that Wn is row-stocahstic and thus has bounded entries.

Assumption 5-2) directly leads to supn E[|Yn|2IEn−1,K
] <∞

whereas by Lemma 3, supn E[|φn−1|2IEn−1,K
] < ∞. Hence,

∑

n γ
1+λ
n E[|ηn,1|1+λ

IEn−1,K
] ≤ C ′ ∑

n γ
1+λ
n for some C ′ >

0. And the upper bound is finite by Assumption 3. This

concludes the first step.

We now study ηn,2 for any n ≥ n0. By (14), there

exists C such that |un|IEK
≤ C|J⊥θn−1|λµIEK

≤
Cγ

λµ
n |φn−1|λµIEn−2,K

. Therefore, E(IEK

∑

n γn|un|) ≤
C
∑

n γ
1+λµ
n supn E(|φn−1|IEn−2,K

) which is finite by As-

sumption 3 and Lemma 3. Thus
∑

n γn|un|IEK
is a.s. finite.

The term vn can be analyzed similarly: by (13) ap-

plied with K ← K ∪ {Jθ, θ ∈ K}, there exists a con-

stant C such that |vn|IEK
≤ C|J⊥θn|λµ |φn|IEn−1,K

≤
Cγ

λµ

n+1|φn|1+λµIEn−1,K
and the fact that

∑

n γn|vn|IEK
is

finite a.s. follows from the same arguments as above.

We now study |zn| ≤ Cv |m(1)
θn

(αn+1) − m
(1)
Jθn

(1)|. By

Proposition 5-1), since αn+1 < a < 1/
√
ρK, there ex-

ists a constant C ′ such that
∑

n γnE(|zn|IEK
) is no larger

than C ′ ∑
n |γn− γn+1|+ γ

1+λµ
n supk E(|φk|λµIEk−1,K

). The

latter is finite by Lemma 3 and Assumption 3. Hence,
∑

n γn|zn|IEK
is finite a.s.

(en)n is a martingale-increment sequence: as above

for the term ηn,1,
∑

n γnenIEK
is finite a.s. if

supn E(|en+1|1+λ
IEn,K

) < ∞. This holds true by (26)

and Lemma 3.

Let us now investigate cn+1. We write
∑n

k=1 γk+1ck+1 =
∑n

k=2(γk+1 − γk)〈WJθk〉fk−1(φk) −
γn+1〈WJθn+1

〉fn(φn+1) + γ2〈WJθ1〉f0(φ1) .
Using again (26) and Lemma 3, there exists

C > 0 such that
∑n

k=1 γk+1E (|ck+1|IEK
) ≤

C
(

∑

k≥1 |γk+1 − γk|+ γn + 1
)

. The right hand side

is finite by Assumption 3, thus implying that
∑

n γncnIEK
is

finite a.s.

Consider the term sn+1. Following similar arguments and

using (26) again, we obtain
∑

k≤n

γk|sk|IEK
≤ C

∑

k≤n

γk‖〈WJθk −WJθk−1
〉‖(1 + |φk|)IEK

for some constant C which depends only on K. By condi-

tion (13) and Lemma 4, one has ‖〈WJθk −WJθk−1
‖IEK

≤
CKγ

λµ

k

(

|Yk|λµ + |φk−1|λµ
)

IEK
. By Cauchy-Schwarz in-

equality, Assumption 5 and Lemma 3, it can be proved that

sup
k

E [(|Yk|+ |φk−1|)(1 + |φk|)IEK
] <∞ . (27)

By Assumption 3, E(
∑

k γk|sk|IEK
) is finite thus implying

that
∑

k≥1 γkskIEK
exists a.s.

Finally consider the term tn. By Proposition 5-2),

there exists a constant C such that for any n ≥
n0,|tn|IEK

≤ C
(

|αn − αn−1|+ |θn − θn−1|λµ
)

(1 + |φn|).
By Lemma 4, (27) and Assumption 3, it can be shown

that
∑

n γnE(|tn|IEK
) < ∞ which proves that

∑

n γntnIEK

converges a.s.

APPENDIX E

PROOF OF THEOREM 3

The core of the proof consists in checking the conditions

of [32, Theorem 2.1]. To make the notations easier, we write

the proofs in the case d = 1 and under the assumption that

limn θn = θ⋆1 almost-surely. Throughout the proof, we will

write that a sequence of r.v. (Zn)n is Ow.p.1(1) iff supn |Zn| <
∞ almost-surely; and (Zn)n is OL1(1) iff supn E [|Zn|] <∞.

Fix δ > 0. Set for any positive integers m ≤ k
Am :=

⋂

j≥m{|θj − θ⋆1| ≤ δ. From Section D-A, it holds

〈θn+1〉 = 〈θn〉 + γn+1h(〈θn〉) + γn+1En+1 + γn+1Rn+1

where En+1 := 〈Wn+1 (Yn+1 + φn)〉−
(

〈zθn〉+ 〈Wθn〉φn

)

+

〈WJθn〉 (fn(φn+1)− Pnfn(φn)) and where Rn+1 := un +
vn + zn + cn+1 + sn+1 + tn. Note that E [En+1|Fn] = 0
i.e., (En)n is a Fn-adapted martingale increment. From the

expression of fn = fαn+1,θn (see Proposition (25)), we have

fα,θ(y)−Pα,θfα,θ(x) = Bα,θ

(

y − αJ⊥Wθx− αJ⊥zθ
)

(28)

with Bα,θ :=
(

IdN − αJ⊥Wθ

)−1
. Hence,

En+1 = 〈Wn+1 (Yn+1 + φn)〉 − 〈zθn〉 − 〈Wθn〉φn

+ 〈WJθn〉Bαn+1,θn

(

φn+1 − αn+1J⊥
(

Wθnφn + zθn
))

.

A. Checking condition C2 of [32, Theorem 2.1]

We start with a preliminary Lemma which extends

Lemma 3. The proof follows the same line and is thus omitted.

Lemma 5. Let Assumptions 3-1), 5, 10 and 11 hold. Let

(φn)n≥0 be the sequence given by (8) and τ be given by

Assumption 10. For any compact set K ⊂ R
dN ,

sup
n

E

(

|φn|2+τ
I⋂

j≤n−1
{θj∈K}

)

<∞ .

Let ρ̃K be given by Assumption 11. For any a ∈ (0, 1/
√
ρ̃K),

supα∈[0,a],θ∈K

∫

|x|2+τdπα,θ(x) <∞.

Let m ≥ 1. From Assumption 10 and Lemma 5, it

is easily seen from the above expression of En+1 that

supn E
[

|En+1|2+τ
1
⋂

m≤j≤n{|θj−θ⋆1|≤δ}
]

< ∞ where τ is

given by Assumption 10.

In order to derive the asymptotic covariance, we go

further in the expression of the conditional covariance

E
[

E2
n+1|Fn

]

. We write E
[

E2
n+1|Fn

]

= Ξ(αn+1, θn, φn)

where Ξ(α, θ, x) :=
∫

(ξα,θ,x(y, w))
2
dµθ(y, w)

ξα,θ,x(y, w) := Aα,θ

((

w −Wθ

)

x+ (wy − zθ)
)

(29)

and Aα,θ := 1
T

N

(

IdN + αWJθ

(

IdN − αJ⊥Wθ

)−1
J⊥

)

. Set

π⋆ := π1,θ⋆1 and πn := παn+1,θn where πα,θ is defined by



Proposition 3. We write

Ξ(αn+1, θn, φn) = Ξ(αn+1, θn, φn)− Ξ(1, θn, φn)

+

∫

Ξ(1, θn, x)dπn(x)−
∫

Ξ(1, θ⋆1, x)dπ⋆(x)

+ Ξ(1, θn, φn)−
∫

Ξ(1, θn, x)dπn(x)

+

∫

Ξ(1, θ⋆1, x)dπ⋆(x) .

For any m ≥ 1, we have on the set Am

(Ξ(αn+1, θn, φn)− Ξ(1, θn, φn))→ 0 a.s.
(∫

Ξ(1, θn, x)dπn(x)−
∫

Ξ(1, θ⋆1, x)dπ⋆(x)

)

→ 0 a.s.

γnE

∣

∣

∣

∣

∣

n
∑

k=1

{

Ξ(1, θk, φk)−
∫

Ξ(1, θk, x)dπl(x)

}

∣

∣

∣

∣

∣

1Am
→ 0 .

The detailed computations are given in Section E-D. This

implies that the key quantity involved in the asymptotic

covariance matrix is
∫

Ξ(1, θ⋆1, x)dπ⋆(x).

B. Expression of U⋆

Set U⋆ :=
∫

Ξ(1,1 ⊗ θ⋆, x) dπ1,1⊗θ⋆(x) . Lemma 6 gives

an explicit expression for U⋆.

Lemma 6. Under the assumptions of Theorem 3, vecU⋆ =

(A⋆ ⊗ A⋆)(R⋆ m
(2)
⋆ + 2T⋆m

(1)
⋆ + S⋆).

Proof: For simplicity, we use the notations

Rθ(w) := w − Wθ and υθ(y, w) := wy − zθ and

T̃θ,x(y, w) := (Rθ(w)x + υθ(y, w))(Rθ(w)x + υθ(y, w))
T .

Note that T̃θ,x(y, w) coincides with Rθ(w)xx
TRθ(w)

T +
2Rθ(w)xυθ(y, w)

T + υθ(y, w)υθ(y, w)
T . From (29),

ξα,θ,x(y, w) = Aα,θ(Rθ(w)x + υθ(y, w)) so that

vecΞ(α, θ, x) = (Aα,θ ⊗ Aα,θ)
∫

vec T̃θ,x(y, w) dµθ(y, w) .
Applying the vec operator on T̃θ,x(y, w) yields

(Rθ(w) ⊗ Rθ(w))vec (xxT ) + 2(υθ(y, w) ⊗ Rθ(w))x +
vec (υθ(y, w)υθ(y, w)

T ) . When applied with α = 1 and

θ = θ⋆1, it holds vecΞ(1, θ⋆1, x) = (A⋆⊗A⋆)(R⋆ vec (xxT )+
2T⋆x+ S⋆) . This yields the result by integrating x w.r.t. π⋆.

C. Checking condition C3 of [32, Theorem 2.1]

We first prove that for any m ≥ 1,

|un + vn + zn + sn+1 + tn|1Am
≤ √γno(1)OL1(1) . (30)

Let m ≥ 1. By (8) and Proposition 5-1), there

exists a constant C1 such that almost-surely on

the set Am, |zn| ≤ C1

(

|αn+1 − 1|+ |J⊥θn|λµ
)

≤
C1

(

|αn+1 − 1|+ γ
λµ

n+1

)

(

1 + |φn|λµ
)

. Assumption 13,

Lemma 3 and λµ > 1/2 imply that |zn|1Am
=√

γno(1)OL1(1). By Assumption 7, Proposition 3-3)

and Lemma 4, there exist a constant C2 > 0 and n ≥ n0

such that almost-surely, for all n ≥ n0, |sn+1|1Am
≤

C2γ
λµ
n

(

|Yn+1|λµ + |φn|λµ
)

(1 + |φn+1|)1Am
.

Assumption 5, Lemma 3 and the condition λµ > 1/2
imply that |sn+1|1Am

=
√
γnOL1(1). By Proposition 5-2)

and Lemma 4, there exist a constant C3 > 0 and n0

such that almost-surely, for any n ≥ n0, |tn|1Am
≤

C3

(

|αn+1 − αn|+ γ
λµ
n

(

|Yn|λµ + |φn|λµ
)

)

1Am
.

Lemma 3, Assumption 13 and λµ > 1/2 imply that

|tn+1|1Am
=

√
γno(1)OL1(1). By Assumption 7,

there exists a constant C4 > 0 such that almost-surely,

|un|1Am
≤ C4γ

λµ
n |φn|λµ1Am

. Lemma 3 and the property

λµ > 1/2 imply un = o(
√
γn)OL1(1). Finally, by

Assumption 7, there exists a constant C such that almost-

surely, |vn|1Am
≤ Cγ

λµ

n+1|φn|1+λµ1Am
so that by Lemma 3

again and the condition λµ > 1/2, vn = o(
√
γn)OL1(1). The

above discussion concludes the proof of (30).

The second step is to prove that for any m ≥ 1,√
γn

∑n
k=1 ck1Am

= o(1)Ow.p.1.(1)OL1(1). By (26), there

exists a constant C > 0 such that almost-surely,
∣

∣

∣

∣

∣

n
∑

k=1

ck

∣

∣

∣

∣

∣

1Am
≤ C (1 + |φ0|+ |φn|)1Am

.

Lemma 3 implies that
∑n

k=1 ck = OL1(1). This concludes the

proof of the condition C3 in [32].

D. Detailed computations for verifying the condition C2

The proof of the following lemma follows from standard

computations and is thus omitted.

Lemma 7. Let Assumptions 5, 11 and 12-1) to hold. Let δ > 0
and set K := {θ : |θ − θ⋆1| ≤ δ}. Fix a ∈ (0, 1/

√
ρ̃K) where

ρ̃K be given by Assumption 11. There exists a constant C
such that for any θ, θ′ ∈ K, α, α′ ∈ [0, a], x, z, y ∈ R

dN and

w ∈ M1

|ξα,θ,x(y, w)| ≤ C (1 + |y|+ |x|) ,
‖Aα,θ − Aα′,θ′‖ ≤ C

(

|α− α′|+ |θ − θ′|λµ

)

,

|ξα,θ,x(y, w)− ξα′,θ′,x(y, w)|
≤ C

(

|α− α′|+ |θ − θ′|λµ

)

(1 + |x|+ |y|) ,

|ξα,θ,x(y, w)− ξα,θ,z(y, w)| ≤ C |x− z|

where λµ is given by Assumptions 5 and 12-1).

1) First term: Ξ(αn+1, θn, φn) − Ξ(1, θn, φn): It is suffi-

cient to prove that this term converges almost-surely to zero

along the event Am, for any m ≥ 1; which is implied by the

almost-sure convergence to zero along the event θ ∈ K :=
{θ : |θ − θ⋆| ≤ δ}. Below, Cm is a constant whose value

may change upon each appearance. By using the inequality

|a2−b2| ≤ |a−b|(|a|+|b|), Assumption 10 and Lemma 7, there

exists a constant Cm such that for any α close enough to 1

and θ ∈ K, |Ξ(α, θ, x)− Ξ(1, θ, x)| ≤ Cm

(

1 + |x|2
)

|α− 1|.
By Lemma 5, for any ε > 0, there exists Cm such

that P
{

supn≥ℓ(1 + |φn|)2|αn+1 − 1|1θn∈K ≥ ε
}

is no larger

than Cm

∑

n≥ℓ |αn+1 − 1|(1+τ/2)
. The latter term converges

to zero as ℓ→∞ by Assumption 13. This implies that almost-

surely, limn |Ξ(αn+1, θn, φn)− Ξ(1, θn, φn)|1θn∈K = 0.

2) Second term:
∫

Ξ(1, θn, x)dπn(x) −
∫

Ξ(1, θ⋆1, x)dπ⋆(x): We apply the following lemma

(see [33, Proposition 4.3.]).



Lemma 8. Let µ, {µn, n ≥ 0} be probability distributions on

R
dN endowed with its Borel σ-field. Let {hn, n ≥ 1} be an

equicontinuous family of functions from R
dN to R. Assume

1) the sequence {µn, n ≥ 0} weakly converges to µ.

2) for any x ∈ R
dN , limn hn(x) exists, and there exists

a > 1 such that supn
∫

|hn|adµn+
∫

| limn hn|dµ <∞.

Then limn

∫

hndµn =
∫

limn hn dµ.

a) Almost-sure weak convergence: In our case µn ← πn

and µ← π⋆ and µn is a random probability. Since the set of

bounded Lipschitz functions is convergence determining (see

e.g. [34, Theorem 11.3.3.]), we prove that for any bounded and

Lipschitz function h, limn

∫

hdπn =
∫

hdπ⋆ almost-surely,

with an almost-sure set which has to be uniform for the set

of bounded Lipschitz functions. Following the same lines as

in the proof of [33, Proposition 5.2.], this convergence occurs

almost-surely if and only if for any bounded Lipschitz function

h, there exists a full set such that on this set, limn

∫

hdπn =
∫

hdπ⋆.

Let h be a bounded Lipschitz function. Then h ∈
L0(R

dN ). By Proposition 5-1), there exists a constant Cf

such that for any n large enough, on the set {θn ∈ K}
∣

∣

∫

hdπn −
∫

hdπ⋆

∣

∣ ≤ Cf

(

|αn+1 − 1|+ |θn+1 − θ⋆1|λµ

)

.

Since limn θn = θ⋆1 almost-surely and limn αn = 1, we

have limn

∫

hdπn =
∫

hdπ⋆ almost-surely. This concludes

the proof of the a.s. weak convergence.

b) Equicontinuity of the family of functions: We prove

that the family of functions {x 7→ Ξ(1, θ, x); θ ∈ K} is

equicontinuous. Using again the inequality |a2 − b2| ≤ |a −
b|(|a| + |b|), Lemma 7 and Assumption 10, we know there

exists a constant Cm such that for any θ ∈ K, x, z ∈ R
dN ,

|Ξ(1, θ, x)− Ξ(1, θ, z)| ≤ Cm (1 + |x|+ |z|)|x− z|.
c) Almost-sure limit of Ξ(1, θn, x) when n→∞: Let x

be fixed. We write

∣

∣Ξ(1, θ, x)− Ξ(1, θ′, x)
∣

∣

≤
∫

∣

∣ξ
2
1,θ,x(y, w)− ξ

2
1,θ′,x(y, w)

∣

∣ dµθ′(y, w)

+

∣

∣

∣

∣

∫

ξ
2
1,θ,x(y, w)dµθ(y, w)−

∫

ξ
2
1,θ,x(y, w)dµθ′(y, w)

∣

∣

∣

∣

.

Let us consider the first term. Using again |a2 − b2| ≤
|a−b|(|a|+|b|) and Lemma 7, there exists a constant Cm such

that the first term is upper bounded by Cm (1+|x|2)|θ−θ⋆1|λµ

for any θ ∈ K. For the second term, we use Assumption 12-2)

and obtain the same upper bound. Then, there exists a constant

Cm such that for any θ, θ′ ∈ K

|Ξ(1, θ, x)− Ξ(1, θ′, x)| ≤ Cm (1 + |x|2) |θ − θ′|λµ . (31)

Since limn θn = θ⋆1 almost-surely, the above discussion

implies that for any fixed x, limn Ξ(1, θn, x) = Ξ(1, θ⋆1, x)
almost-surely on Am.

d) Moment conditions: It is easily seen (using again

Lemma 7) that there exists a constant Cm such that for any

θ ∈ K, |Ξ(1, θ, x)| ≤ Cm(1 + |x|2). Therefore, Lemma 5

implies that
∫

|Ξ(1, θ⋆1, x)|dπ⋆(x) <∞. In addition, for any

θ ∈ K, α in a neighborhood of 1 and a > 1,
∫

|Ξ(1, θ, x)|aπα,θ(dx) ≤ Cm

(

1 +

∫

|x|2aπα,θ(dx)

)

.

Lemma 5 implies that there exists a > 1 such that

sup
n

1θn∈K

∫

|Ξ(1, θn, x)|aπαn+1,θn(dx) <∞ .

e) Conclusion: We can apply Lemma 8; we have a.s.,

limn

∣

∣

∫

Ξ(1, θn, x)dπn(x)−
∫

Ξ(1, θ⋆1, x)dπ⋆(x)
∣

∣1Am
= 0.

3) Third term: Ξ(1, θn, φn) −
∫

Ξ(1, θn, x)dπn(x): We
prove that for any m ≥ 1

lim
n

γn E

[∣

∣

∣

∣

∣

n
∑

k=1

{

Ξ(1, θk, φk)−
∫

Ξ(1, θk, x)dπk(x)

}

∣

∣

∣

∣

∣

1Am

]

= 0 .

Set
∑n

k=1

{

Ξ(1, θk, φk)−
∫

Ξ(1, θk, x)dπk(x)
}

=
∑3

i=1 T
(i)
n

with T
(1)
n =

n
∑

k=1

{Ξ(1, θk, φk)− Ξ(1, θk−1, φk)}

T
(2)
n =

n
∑

k=1

{

Ξ(1, θk−1, φk)−
∫

Ξ(1, θk−1, x)dπk−1(x)

}

T
(3)
n =

∫

Ξ(1, θ0, x)dπ0(x)−
∫

Ξ(1, θn, x)dπn(x) .

a) Term T
(1)
n : By (31), there exists a constant Cm

such that for any k ≥ m + 1, on the set Am,

|Ξ(1, θk, φk) − Ξ(1, θk−1, φk)| ≤ Cm|θk − θk−1|λµ(1 +
|φk|2). Hence, by Lemma 4, on the set Am, |Ξ(1, θk, φk) −
Ξ(1, θk−1, φk)| ≤ Cmγ

λµ

k (1 + |φk|2)(|Yk|λµ + |φk−1|λµ).
By Assumption 10, Lemma 5 and Assumption 13, the sum
∑

k≥1 γ
1+λµ

k E
[

(1 + |φk|2)(|Yk|λµ + |φk−1|λµ)1Am

]

is finite

which implies limn γnE
[

|T(1)
n |1Am

]

= 0 by the Kronecker

Lemma.

b) Term T
(2)
n : From the expression of ξ (see (29)), we

have Ξ(1, θ, φ)− Ξ(1, θ, x) = φT
Cθφ− xT

Cθx+ (φ− x)T
Dθ

with Cθ :=
∫

(w−Wθ)A
T

1,θA1,θ(w−Wθ) dµθ(y, w) and Dθ :=

2
∫

(w−Wθ)A
T

1,θA1,θ(wy−zθ) dµθ(y, w). We detail the proof

of the statement

lim
n

γnE

[∣

∣

∣

∣

∣

n
∑

k=1

(

φk −
∫

x dπαk,θk−1
(x)

)T

Dθk−1

∣

∣

∣

∣

∣

1Am

]

= 0

The second statement, with the quadratic dependence on φk

is similar and omitted (its proof will use Proposition 5-3) and

the condition limn γnn
1/(1+τ/2) = 0). Using again the Poisson

solution fn := fαn+1,θn associated to the identity function and

the kernel Pn := Pαn+1,θn , it holds by (28)

(

φk −
∫

x dπk−1(x)

)T

Dθk−1

= (fk−1(φk)− Pk−1fk−1(φk−1))
T
Dθk−1

(32)

+ Pk−1f
T

k−1(φk−1)Dθk−1
− Pkf

T

k(φk)Dθk (33)

+
(

Pkf
T

k(φk)− Pk−1f
T

k−1(φk)
)

Dθk (34)

+ Pk−1f
T

k−1(φk)
(

Dθk − Dθk−1

)

. (35)

From Assumption 12-2) and Lemma 7, there exists a

constant Cm such that for any k,

|Dθk |1Am ≤ Cm (36)

|Dθk − Dθk−1
|1Am ≤ Cm |θk − θk−1|λµ . (37)



Let us control the first term (32). Upon noting that it is a

martingale-increment, the Burkholder inequality (see e.g. [31,

Theorem 2.10]) applied with p← 2 + τ and Lemma 5 imply

E

∣

∣

∣

∣

∣

n
∑

k=1

(fk−1(φk)− Pk−1fk−1(φk−1))
T
Dθk−1

∣

∣

∣

∣

∣

1Am = O
(√

n
)

.

This term is o(1/γn) by Assumption 13. Let us consider

(33).

E

∣

∣

∣

∣

∣

n
∑

k=1

(

Pk−1f
T

k−1(φk−1)Dθk−1
− Pkf

T

k(φk)Dθk

)

∣

∣

∣

∣

∣

1Am

= E
∣

∣P0f
T

0(φ0)Dθ0 − Pnf
T

n(φn)Dθn

∣

∣1Am

and this term is O(1) by Proposition 3-3), (36) and

Lemma 5. Let us see the third term (34). By Proposition 5-2)

and (36), we have

E

∣

∣

∣

∣

∣

n
∑

k=1

(

Pkf
T

k(φk)− Pk−1f
T

k−1(φk)
)

Dθk

∣

∣

∣

∣

∣

1Am

≤ Cm

n
∑

k=1

E

(

|θk − θk−1|λµ + |αk+1 − αk|
)

1Am

By Lemmas 4 and 5 and Assumptions 10 and 13, this

term is o(1/γn). Finally, the same conclusion holds for (35)

by using Proposition 3-3), Lemma 5 and (37). This concludes

the proof of limn γnE
[

|T(2)
n |1Am

]

= 0.

c) Term T
(3)
n : By Lemma 7, there exists Cm such

that for any θ ∈ K, |Ξ(1, θ, x)| ≤ Cm(1 + |x|2). By

Lemma 5, for any a in a neighborhood of 1 we have

supα∈[0,a],θ∈K

∫

|x|2πα,θ(dx) < ∞. Since limn αn = 1,

we have supn≥m

∣

∣

∫

Ξ(1, θn, x)dπn(x)
∣

∣1θn∈K < C for some

constant C, which implies that limn γnE
[∣

∣

∣
T
(3)
n

∣

∣

∣
1Am

]

= 0.
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