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We consider the scattering of lightlike matter in the presence of a heavy scalar object (such as the Sun or
a Schwarzschild black hole). By treating general relativity as an effective field theory we directly compute
the nonanalytic components of the one-loop gravitational amplitude for the scattering of massless scalars or
photons from an external massive scalar field. These results allow a semiclassical computation of the
bending angle for light rays grazing the Sun, including long-range ℏ contributions. We discuss implications
of this computation, in particular, the violation of some classical formulations of the equivalence principle.
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Since the discovery of quantum mechanics and general
relativity in the previous century it has been clear that these
two theories have completely different notions of reality
at a fundamental level. While deterministic physics is a
crucial ingredient in general relativity, i.e., particles follow
field equations formulated as geodesic equations, in quan-
tum mechanics such a concept has no meaning since one
has to accept that space and momentum are mutually
complementary concepts. The notion of a quantum field
theory offers a middle ground to some extent by combining
these concepts through field variables, but the traditional
formulation of such a theory suffers from (nonrenormaliz-
able) divergences in the ultraviolet regime. Whatever the
high-energy theory of gravity turns out to be, it is intriguing
that we can already answer a number of important ques-
tions simply by employing an effective field theory
framework for general relativity, wherein the basic building
block is the Einstein-Hilbert Lagrangian. In order to absorb
ultraviolet divergences we include in the action all possible
invariants allowed by the basic symmetries of the theory.
This infinite set of corrections is usually seen as a signal of
the loss of predictability and as a dependence on the high-
energy completion of the theory. However, at one-loop
order something surprising happens that was first noticed
by Ref. [1] and was exploited in Refs. [2,3]—the basic
Einstein-Hilbert term is sufficient to extract the long-range
behavior of the theory. This feature was used to extract the
quantum corrections to the Newtonian potential of a small
mass attracted by a larger mass:

VðrÞ ¼ −
GMm
r

�
1þ 3GðM þmÞ

c2r
þ 41Gℏ
10c3r2

�
:

Here M is a large (scalar) object, say, the Sun, m is a
small test mass, r is the distance between the two objects,

and G, c, and ℏ, are Newton’s constant, the speed of light,
and the Planck constant, respectively. Since these initial
computations there have appeared a number of papers
computing various potentials [4], involving, e.g., fermionic
and spin-1 matter. It has been explicitly demonstrated that
the spin-independent components of one-loop general
relativity theory display universality both for the classical
contribution as well as for the one-loop quantum correc-
tion [3,4].
In this Letter, we will focus on a different problem,

which has not yet been discussed in the literature, namely,
computing the leading quantum correction to the gravita-
tional bending of light around the Sun [5]. Our goal is to
show that this quantity is readily calculable using modern
field theory techniques. In doing so we find that the
quantum corrections do not respect classical formulations
of the equivalence principle. While the net effect is far too
small to be seen experimentally, this quantum violation of
the equivalence principle is an interesting phenomenon in
its own right.
This Letter is organized as follows. First we briefly

review how to treat general relativity as an effective field
theory coupled to photons and to lightlike (massless) scalar
matter. We work out amplitudes for the gravitational
scattering of the photons as well as of massless scalar
matter as a reference. As we will demonstrate, even at the
quantum level of general relativity the universality of the
couplings to energy-momentum holds largely unchanged.
We show how our computation of the cross section can be
used to deduce a semiclassical deflection angle in which the
post-Newtonian general relativistic corrections are repro-
duced and new quantum mechanical corrections are gen-
erated. Finally, we conclude and summarize our results.
We begin by considering the Einstein-Hilbert Lagrangian

coupled to QED and two neutral scalar fields
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½ð∂μϕÞ2 −M2ϕ2�

�
þ SEF

�
; ð1Þ

where the covariant derivative is given by ∇μAν ≔ ∂μAνþ
Γν
μλA

λ (we will be using the Feynman gauge), where Γλ
μν ¼

1=2gλσð∂μgσν þ ∂νgσμ − ∂σgμνÞ are the Christoffel symbols

and κ2 ¼ 32πGN=c4. The fields are denoted in the following
way: gravitons h, photons γ, massless scalars φ, and massive
scalars ϕ. SEF denotes the higher derivative contributions
present in an effective field theory.
In order to utilize this theory consistently, it is important

to consider it as an effective field theory [1], by inclusion of
a string of higher-order operators in the action.
Divergences, being local, are absorbed into the coefficients
of these local higher-order operators. However, the long-
range contributions correspond to nonanalytic terms in
momentum space or equivalently nonlocal behavior in
coordinate space. These contributions are ultraviolet finite
and follow uniquely from the vertices of SEF. For the
purposes of evaluating only the longest-range contribu-
tions, we need not display these higher-order terms in the
action.
The calculation is greatly simplified by two remarkable

facts. One is that the on-shell gravitational tree-level
amplitudes can be obtained as the square of gauge theory
amplitudes [6,7]. In our case the gravitational Compton
amplitudes will be reduced to the product of QED Compton
amplitudes [3,8,9]. The difficult calculations involving the
triple graviton vertex can be avoided and are replaced by
the much simpler QED vertices.
The other great simplification is to use on-shell unitarity

techniques [10], instead of Feynman diagrams. Calculating
gravitational Feynman loops is a long and tedious process
using the vertex rules of the gravitational Lagrangian.
Unitarity-based calculations construct the relevant ampli-
tude from the discontinuity of the scattering process. The
long-range nonanalytic terms in the one-loop amplitude can
be readily calculated from these on-shell cuts using the
property of unitarity, as was directly demonstrated in
Ref. [3]. Cutting the graviton internal lines (see Fig. 1),
the integrand of the one-loop amplitude factorizes in terms

of a product of relatively simple tree amplitudes, given in
our case by the gravitational Compton amplitudes.
The corresponding cut graviton exchange discontinuity

amplitude (denoted disc) takes the form

iM
1 ½ηðp1Þηðp2Þ�

½ϕðp3Þϕðp4Þ�

����
disc

¼
Z

dDl
ð2πÞ4

P
h1;h2M

0 ½hh1 ðl1Þhh2 ðl2Þ�
½ηðp1Þηðp2Þ� M

0 ½hh1 ð−l1Þhh2 ðl2Þ�⋆
½ϕðp3Þϕðp4Þ�

4l2
1l

2
2

;

ð2Þ

with the on-shell conditions l2
1 ¼ l2

2 ¼ 0 for the cut
momenta of the internal graviton lines. For the photon
case, η ¼ γ, and for the massless scalar case, η ¼ φ. Here
D ¼ 4 − 2ϵ and the ⋆ denotes conjugation. Our notation

here is M
0

for tree-level gravitational Compton amplitudes

andM
1

for the one-loop amplitude of Fig. 1. We follow the
notation and momentum conventions of Ref. [3] with all
momenta defined as incoming and set q ≔ p1 þ p2 ¼
−p3 − p4 ¼ l2 − l1 with t ≔ q2 ¼ ðp1 þ p2Þ2 and p2

3 ¼
p2
4 ¼ M2. In the “all-incoming” convention, t corresponds

to the momentum transfer of a scattering process.
The relation between the gravitational and electrody-

namic Compton processes is given by

iM
0 ½hðk1Þhðk2Þ�

½ηðp1Þηðp2Þ� ¼
κ2

4e2
ðp1 · k1Þðp1 · k2Þ

p1 · p2

M
0 QED

S¼0M
0 QED

η ; ð3Þ

and is derived in detail in Ref. [9]. Here MQED
γ ¼ MQED

S¼1

utilizes the Compton amplitude for the scattering of a
photon from a massless charged spin-1 target while
MQED

φ ¼ MQED
S¼0 employs the Compton amplitude of a

photon from a massless charged spin-0 target. These tree-
level relations connect one-loop gravitational physics with
one-loop electrodynamics in a nontrivial and interesting
way [3].
A final simplification is the use of the spinor-helicity

formalism (see Ref. [11] for a review). While this notation
is perhaps less familiar to some, it drastically reduces the
form of the amplitudes which we now display. The only
nonvanishing gravitational Compton helicity amplitudes
involving photons γ and gravitons h are

iM
0 ½hþðk1Þh−ðk2Þ�

½γþðp1Þγ−ðp2Þ� ¼
κ2

4

½p1k1�2hp2k2i2hk2jp1jk1�2
ðp1 · p2Þðp1 · k1Þðp1 · k2Þ

; ð4Þ

withM
0 ½hþðk1Þh−ðk2Þ�

½γ−ðp1Þγþðp2Þ� given by the above formula with p1 and
p2 interchanged, and amplitudes with opposite helicity
configurations are obtained by complex conjugation. For
the tree-level massive scalar-graviton interaction amplitude
we have

FIG. 1. The two gravitons cut for the amplitude between a
massless particle (dashed line) and the massive scalar (solid line).
The gray blobs are tree-level gravitational Compton amplitudes.
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iM
0 ½hþðk1Þhþðk2Þ�

½ϕðp1Þϕðp2Þ� ¼ κ2

4

M4½k1k2�4
ðk1 · k2Þðk1 · p1Þðk1 · p2Þ

;

iM
0 ½h−ðk1Þhþðk2Þ�

½ϕðp1Þϕðp2Þ� ¼ κ2

4

hk1jp1jk2�2hk1jp2jk2�2
ðk1 · k2Þðk1 · p1Þðk1 · p2Þ

: ð5Þ

The tree-level amplitudes between the massless scalar φ
and the graviton are obtained by setting M ¼ 0.
Amplitudes with opposite helicity configurations are
obtained by complex conjugation.
The discontinuity integral of (2) is given by the sum of

four box integrals with the same numerator factor

iM
1 ½ηðp1Þηðp2Þ�

½ϕðp3Þϕðp4Þ�

����
disc

¼ −
κ4

4t4
X
h1;h2

X2
i¼1

X4
j¼3

Z
dDl
ð2πÞ4

N h1h2

l2
1l

2
2ðpi · l1Þðpj · l1Þ

; ð6Þ

where h1 and h2 denote the helicities (þ=−) of the
exchanged gravitons in the cut. With this construction
one captures all the t-channel massless thresholds, which
are the only terms of interest to us. The cut is evaluated as in
Ref. [3], resulting in a very simple answer due to the
dramatic simplification of the gravitational Compton tree-
level amplitudes in (3): the singlet cut with h1 ¼ h2 ¼ þ or
h1 ¼ h2 ¼ − vanishes and the nonsinglet cut is given by

N þ− þN −þ ¼ Ref½tr−ðl1p1l2p3Þ�4g ð7Þ

for the massless scalar-massive scalar amplitude and

N þ− þN −þ ¼ Re

�½tr−ðl2p2l1p3Þtrþðl2p3l1p1p3p2Þ�2
hp1jp3jp2�2

�

ð8Þ

for the photon-massive scalar amplitude where tr�ð� � �Þ ≔
trf½ð1� γ5Þ=2� � � �g. Performing standard tensor integral
reductions [12] into scalar boxes, scalar bubbles, and scalar
triangle integrals, the amplitude is decomposed in terms of
integral functions with a massless t-channel cut

i
4κ4

M
1 ½ηðp1Þηðp2Þ�

½ϕðp3Þϕðp4Þ�

����
disc

¼boηðt;uÞI4ðt;uÞþboηðt;sÞI4ðt;sÞ

þ tη12ðtÞI3ðp1;p2;0Þþ tη34ðtÞ
×I3ðp3;p4;M2ÞþbuηðtÞI2ðt;0Þ:

ð9Þ

Here I4ðt; uÞ and I4ðt; sÞ are the scalar box integrals given
in Sec. 4.4.6 of Ref. [13], I3ðtÞ is the massless triangle
integral with vanishing internal masses, and I3ðt; mÞ is the
finite massive triangle integral and I2ðtÞ is the massless
scalar bubble integral both given in Eq. (III.17) of Ref. [3].
[In the massless (M → 0) limit, this computation

reproduces the graviton cut given by Dunbar and
Norridge; see Eq. (4.10) of Ref. [14].]
The integral reduction yields massive bubbles as well as

tadpoles and analytic pieces that do not possess a massless
t-channel cut. Such pieces are not completely determined
from the cut and are not of interest to our analysis since
they do not contribute to the long-range interactions at low
energy.
Computation of the cut discontinuity can be accom-

plished using traditional methods and is greatly simplified
by the use of on-shell identities. We will elsewhere present
the details of these computations and here quote only the
leading (nonanalytic) results required to perform the analy-
sis of the cross section and the semiclassical bending angle.
In the leading low-energy (ω ≪ M) limit, where ω is the

frequency of the photon, the total amplitude sum of the

tree-level and one-loop contributions iM ¼ ði=ℏÞM
0

þ
iM

1

takes the very striking form

iM½ηðp1Þηðp2Þ�
½ϕðp3Þϕðp4Þ� ¼

N η

ℏ

�
κ2

ð2MωÞ2
4t

þ ℏ
κ4

4
f4ðMωÞ4½I4ðt; uÞ

þ I4ðt; sÞ� þ 3ðMωÞ2tI3ðtÞ

− 15ðM2ωÞ2I3ðt;MÞ þ buηðMωÞ2I2ðtÞg
�
;

ð10Þ
whereN φ ¼ 1 for the massless scalar, while for the photon,
we have N γ ¼ ð2MωÞ2=ð2hp1jp3jp2�2Þ for the (þ−) pho-
ton helicity contribution and its complex conjugate for the
(−þ) photon helicity contribution. The photon amplitude
vanishes for the polarization configurations (þþ) and (−−)
is a direct consequence of the properties of the tree
amplitudes in Eq. (4). Notice that jN γj2 → 1 in the low-
energy limit and that this prefactor does not affect the cross
section. The coefficients of the bubble contributions are
buφ ¼ 3=40 and buγ ¼ −161=120.
It is a striking example of the universality of the

gravitational couplings that all coefficients—except those
for the bubble—are identical (for the leading contribution)
for the scalar and photon scattering.
From this result, we can compute the leading contribu-

tion to the amplitude (expanding all integrals in terms of
leading-order contributions as done in Refs. [2,3]),

iM½ηðp1Þηðp2Þ�
½ϕðp3Þϕðp4Þ� ≃

N η

ℏ
ðMωÞ2

�
κ2

t
þ κ4

15

512

Mffiffiffiffiffi
−t

p þ ℏκ4
15

512π2

× log

�
−t
M2

�
− ℏκ4

buη

ð8πÞ2 log
�
−t
μ2

�

þ ℏκ4
3

128π2
log2

�
−t
μ2

�

þ κ4
Mω

8π

i
t
log

�
−t
M2

��
; ð11Þ
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where μ2 is an arbitrary mass scale parameter used in
dimensional regularization. The two terms in the second
line correspond, respectively, to the leading Newtonian
contribution and the first post-Newtonian correction [1–3].
The next three logarithmic terms represent quantum gravity
corrections. The first term on the third line corresponds to
the quantum correction to the metric evaluated in Ref. [15].
The second term on the third line arises from the one-loop
ultraviolet divergence of the amplitude and is the only
contribution depending on the spin of the massless field.
On the fourth line, the first term involves a new form not
found in the previous analysis. Finally, the last term, arising
from the discontinuity of the box integral, contributes to
the phase of the amplitude and is not directly observable.
For this reason it will not be considered further.
It is very interesting that in the low-energy limit the one-

loop amplitudes for the massless scalar and for the photon
involve the same coefficients except for the buη logð−t=μ2Þ
contribution from the massless bubble. This means that
these massless particles feel the same gravitational inter-
action from the massive object except for this quantum
contribution. Since the matter content and properties are
different for the scalar and photonic theories, obtaining a
universal result for the bubble coefficient should not be
expected. (The arguments in Refs. [3,4] imply that the
amplitude for a massless spin-1

2
scattering on the Sun will

differ as well only by the bubble contribution.)
Note that, because of the vanishing of the photon

scattering amplitudes for the helicity configurations
(þþ) and (−−), the amplitude is the same in the plane
of scattering or along its orthogonal component, which
explicitly rules out the possibility of birefringent effects.
We do not know of a fully quantum treatment of the

bending of light which is capable of describing the one-
loop amplitude. However, in order to try to understand the
impact of the above corrections, we can proceed by
defining, in the small momentum transfer limit t≃ −~q2,
a semiclassical potential for a massless scalar and photon
interacting with a massive scalar object by use of the Born
approximation,

VηðrÞ ¼
ℏ

4Mω

Z
M½ηðp1Þηðp2Þ�

½ϕðp3Þϕðp4Þ�ð~qÞei~q·r
d3q
ð2πÞ3

≃ −
2GMω

r
þ 15

4

ðGMÞ2ω
r2

þ 8buη − 15

4π

G2Mωℏ
r3

þ 12G2Mωℏ
π

log r
ro

r3
;

where r0 is an infrared scale.
Using naïvely the semiclassical formula for angular

deflection given in Chap. 21 of Ref. [16] and in
Ref. [17] and the form of the above potential, we find
for the bending angle of a photon and for a massless scalar

θη ≃ −
b
ω

Z þ∞

−∞

V 0
ηðb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p du

≃ 4GM
b

þ 15

4

G2M2π

b2
þ
8buη þ 9þ 48 log b

2ro

π

G2ℏM
b3

:

ð12Þ

The first two terms give the correct classical values,
including the first post-Newtonian correction, expressed
in terms of the gauge-invariant impact parameter b (see, for
instance, Ref. [18]). The last term is a quantum gravity
effect of the orderG2ℏM=b3 ¼ l2

PrS=ð2b3Þwhich involves
the product of the Planck length and the Schwarzschild
radius of the massive object divided by the cube of the
impact parameter.
The quantum effect depends on the spin of massless

particle scattering on the massive target. Of course, this
dependence does not necessarily violate the equivalence
principle, in that the logarithmic quantum corrections
correspond to nonlocal effects in coordinate space.
Because of the long-distance propagation of massless
photons and gravitons in loops, such quantum effects are
not localized, and the difference can be interpreted as a tidal
correction in that the massless particle can no longer be
described as a point particle. There is no requirement
from the equivalence principle that such nonlocal effects
be independent of the spin of the massless particle.
Nevertheless, we see that particles no longer travel on
geodesics and that different particles bend differently. This
is certainly in contrast to classical applications of the
equivalence principle.
Let us compare the bending angle of a photon with that

of a massless scalar by the Sun. The only difference given
by the above treatment will be given by the bubble effect

θγ − θφ ¼ 8ðbuγ − buφÞ
π

G2ℏM
b3

ð13Þ

and is far too small to be seen experimentally [19].
However, it is interesting that quantum effects do predict
such a difference, modifying one of the key features of
classical general relativity. Moreover, this is another dem-
onstration that effective field techniques can make well-
defined predictions within quantum gravity. We have
focused on the bending of light in the vicinity of a massive
object. One can envision other situations wherein the
effective field theoretic framework might be very useful
to analyze and understand effects in quantum gravity.
We find such a prospect indeed to be very exciting.
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