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It was recently detected an unidentified emission line in the stacked X-ray spectrum of galaxy clusters. Since this line is not catalogued as being the emission of a known chemical element, several hypotheses have been proposed, for example that it is of a known chemical element but with an emissivity of 10 or 20 times the expected theoretical value. Here we show that there is a divergence in the Stefan-Boltzmann equation at high energy density conditions. This divergence is related to the correlation between gravitational mass and inertial mass, and it can explain the increment in the observed emissivity.

Introduction

The recent detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters [START_REF] Bulbul | Detection of an Unidentified Emission Line in the Stacked X-Ray Spectrum of Galaxy Clusters[END_REF] originated several explanations for the phenomenon. It was proposed, for example that the unidentified emission line, spite to be non-catalogued, it is of a known chemical element but with intensity (emissivity) of 10 to 20 times the expected value.

Here we show that there is a divergence in the Stefan-Boltzmann equation at high energy density conditions. This divergence is related to the correlation between gravitational mass and inertial mass, and it can explain the increment in the observed emissivity.

Theory

The quantization of gravity shows that the gravitational mass m g and inertial mass m i are not equivalents, but correlated by means of a factor χ , which, under certain circumstances can be negative. The correlation equation is [START_REF] De Aquino | Mathematical Foundations of the Relativistic Theory of Quantum Gravity[END_REF] ( )
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where is the rest inertial mass of the particle.
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The expression of χ can be put in the following forms [START_REF] De Aquino | Mathematical Foundations of the Relativistic Theory of Quantum Gravity[END_REF]:
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where

is the density of electromagnetic energy on the particle (
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D is the radiation power density; ρ is the matter density of the particle ( )

3 m kg ;
is the index of refraction, and is the speed of light. χ . Also, these equations show that the gravitational mass of a particle can be significtively reduced or made strongly negative when the particle is subjected to high-densities of electromagnetic energy.

Another important equations obtained in the quantization theory of gravity is the new expression for the kinetic energy of a particle with gravitational mass m g and velocity V, which is given by [START_REF] De Aquino | Mathematical Foundations of the Relativistic Theory of Quantum Gravity[END_REF] ( )
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Only for The thermal energy for a single particle calculated starting from this equation is

2 0 2 1 V m T k i B = [3],
where the line over the velocity term indicates that the average value 2 is calculated over the entire ensemble;

is the Boltzmann constant.
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Now, this expression can be rewritten as follows ( )
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. We have put χ because is always positive, and
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χ can be positive and negative. Thus, we can write that ( ) ( )
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the expression of reduces to
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In the derivation of the Rayleigh-Jeans law, the assumption that , and that each radiation mode can have any energy

T k E B thermal =
E led to a wrong expression for the electromagnetic radiation emitted by a black body in thermal equilibrium at a definite temperature, i.e., Since the continuous Boltzmann probability distribution shows that ( ) ( ) ( )
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One can conclude that the average energy per mode is ( ) ( ) ( )
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This result was later corrected for Planck, which postulated that the mode energies are not continuously distributed, but rather they are quantized and given by , where is the number of photons in that mode. Thus
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and the average energy per mode can be calculated assuming over only the discrete energies permitted instead integrating over all energies, i.e.,
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Note that only for , this expression reduces to
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(the classical assumption that breaks down at high frequencies). Equation ( 9) is therefore the quantum correction factor, which transforms the Rayleigh-Jeans equation ( ) 
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where is the Stefan-Boltzmann's constant. (gravitational mass equal to inertial mass), Eq. ( 14) reduces to the well-known Stefan-Boltzmann's equation. However, at high energy density conditions the factor can become much greater than 1 (See Eqs. ( 2) and ( 3)). This divergence, which is related to the In the case of Thermal radiation, considering Eq. ( 14), we can put Eq. ( 3) in the following form ( ) . According to Kirchhoff law of thermal radiation, at thermal equilibrium (that is, at a constant temperature) the emissivity of a material equals its absorptivity.
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Note that, according to Eq. ( 14), the emissivity of a blackbody is not one, but equal to , only in the case of is that the emissivity of the blackbody becomes equal to 1. Similarly, the emissivity of objects other than blackbodies, is given by , and only in the case of ) the emissivities of the objects can surpass their usual values. This fact, observed in the recent detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters [START_REF] Bulbul | Detection of an Unidentified Emission Line in the Stacked X-Ray Spectrum of Galaxy Clusters[END_REF], has also been observed in an experiment which reveals that, under certain circumstances, the emissivity of metamaterials can surpass its usual emissivity [START_REF] Liu | Taming the Blackbody with Metamaterials[END_REF].
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  of energy per unit surface area per unit time per unit solid angle emitted at a frequency by a black body at temperature T. f Starting from Eq. (11) we can write the expression of the power density D (watts/m 2 ) for emitted radiationTo derive the Stefan-Boltzmann law, we must integrate Ω over the half-sphere and integrate from 0 to ∞. Furthermore, f because black bodies are Lambertian (i.e. they obey Lambert's cosine law), the intensity observed along the sphere will be the actual intensity times the cosine of the zenith angle ϕ , and in spherical coordinates,The integral above can be done in several ways. The result is,
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 4 correlation between gravitational mass and inertial mass, can explain the increment of 10 to 20 times in the recently observed emissivity[START_REF] Bulbul | Detection of an Unidentified Emission Line in the Stacked X-Ray Spectrum of Galaxy Clusters[END_REF]. In this case, fields with these intensities are relatively common in the Universe, and even much more intense as for example, the magnetic field of neutron stars ( to Tesla) and of the magnetars ( to Tesla)

  Universe (close to a star, for example).

  can conclude that there are several ways to produce 2 -≅ χ in an intergalactic plasma (or interstellar plasma) in the Universe. Equation (14) describes the power density radiated from a blackbody. For objects other than blackbodies, the expression is emissivity of the object. Emissivity is therefore the ratio of energy radiated by a particular material to energy radiated by a blackbody at the same temperature, i.e.,

  emissivity of the object becomes equal to (usual emissivity). Thus, at high energy density