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It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport

parameters involved in the description of long wavelength acoustic wave propagation and

dissipation through real foam samples may also be used as a standpoint to estimate their

macroscopic linear elastic properties. Application of the model yields quantitative agreement

between numerical homogenization results, available literature data, and experiments. Key

contributions of this work include recognizing the importance of membranes and properties of the

base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may

be used to understand and predict not only the sound absorbing properties of porous materials but

also their transmission loss, which is critical for sound insulation problems.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4872296]

PACS number(s): 43.20.Jr, 43.35.Ns, 43.50.Gf [KVH] Pages: 3172–3185

I. INTRODUCTION

This paper presents a study that attempts to relate pore

structure to both transport and elastic properties on the basis of

easily measured single properties of porous materials. The

authors are not aware of any comparable study, previous stud-

ies separating usually the prediction of transport and elastic

properties. The porous materials under study are of the sort

used extensively in the building and transportation industries

for soundproofing applications. Previous works mainly

focused on long-wavelength sound absorption through micro-

structured materials assumed to be non-deformable1 or on the

effect of cellular morphology on the effective elastic proper-

ties of foam samples.2,3 Also, the published works show how

the coefficients in poroelasticity equations can be calculated in

principle from the microstructure,4–6 but often exclude appli-

cations to real samples except in a very limited number of

cases: synthetic microstructures made of a regular arrange-

ment of metallic hollow spheres7–9 and complex random geo-

metries, such as a real sandstone reconstructed according to

prescribed porosity and correlation length.10 Our opinion is

that idealization of the porous medium through the reconstruc-

tion of a realistic three-dimensional periodic unit cell (3D

PUC) is a key to understanding and predicting macroscopic

behavior as it becomes possible to trace local geometry

features from the microscale to the macroscale of day-to-day

engineering applications.11,12 It was shown recently that three-

dimensional (3D) rigid-framed PUC can be used to capture

the essential physics of the frequency-dependent fluid-

structure interactions for a viscous and thermally conducting

fluid saturating air-saturated foams. The rigid-frame porous

material assumption is still widely adopted to treat sound

absorbing property applications in which the elastic properties

of the skeleton do not play a significant role.

Although it has long been recognized that elastic foams

are able to contribute to sound insulation, there is still no uni-

fied numerical homogenization approach which can make use

of the cellular morphology to estimate both transport and elas-

tic coefficients of a polyurethane foam sample with specified

membrane content. The separate problems of the determina-

tion of transport properties on the one hand, and elastic prop-

erties on the other hand, knowing the microstructure, were

considered extensively in the past. However, these problems

are coupled through the microstructure properties and the

present paper intends to show how this coupling allows pro-

viding data to be introduced when determining the elastic

properties. Obviously, our approach has some similarities with

the studies which aim at obtaining the linear elastic properties

of solid foams by pore-scale simulation. This field of research

has grown over the last decade and numerical simulations are

mostly performed by finite elements and fast Fourier trans-

form techniques. Gong et al.2 compared the finite element

approach and other models in order to predict the response of

open cell foams to uniaxial compression by using the space

filling Kelvin cell characterized by the geometric characteris-

tics found in polyester urethane foams.2 The cells are elon-

gated in the rising direction; the ligaments are assumed to be

straight, and meant to have Plateau border cross-sections and

nonuniform cross-sectional area distribution. The amount of

material in the nodes is represented accurately. The linear

elastic properties of the base material are measured directly

from the foam ligaments. Comparison between measurements

and predictions was satisfying. This paper also contains a thor-

ough review of the elastic properties of solid foams to which

the reader is referred. Sullivan et al. used finite element mod-

els of two elongated tetrakaidecahedron unit cells: one without

cell faces13 and one with faces;14 they illustrated it with ana-

lytical, numerical, and experimental data. Jang et al. built on

the work of Gong et al.2 by providing a more systematic and
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detailed study of the microstructure of the same foams and

using micro-computed x-ray tomography.3 The renderings are

used in Finite Element (FE) models including irregular ones

to estimate the elastic properties of the foams. The elastic

moduli predicted by the Kelvin cell models were found to be

within engineering accuracy of prediction for random foams.

Thiyagasundaram et al. derived a finite element based micro-

mechanics procedure to calculate the elastic properties of

equisized and elongated tetrakaidecahedral unit cells without

cell faces, which have a very high porosity and where the

effect of varying strut cross-sections plays an important role.15

The purpose of the present work is to systematically

study the effect of cellular morphology and membrane con-

tent on both transport and linear elastic properties of two real

polyurethane foam samples, with and without solid films or

membranes, with the solid geometry being the same as the

one used for transport properties. The solid foam samples

are chosen to cover different closure rates of membranes and

elastic properties of the base material. The results of this

work can then be used to relate the microstructural properties

of a cellular foam structure and its closure rate of mem-

branes to sound absorption and sound transmission loss of

the poroelastic material. These results, together with a mea-

sure of the typical pore size through scanning electron

micrographs, are used to reconstruct a 3D PUC with the cor-

responding closure rate of the membranes. Without any fit-

ting parameters, the local characteristic sizes of the local

geometry model, i.e., pore and throat sizes (see Fig. 1) are in

close agreement with microscopy analysis (Fig. 2). This sug-

gests that direct reconstruction of the 3D PUC could be done

FIG. 1. (Color online) Geometrical characteristics of two different solid

foam samples, H1 (top) and H2 (bottom).

FIG. 2. (Color online) Numerical experiments allowing to identify the elastic constants C11, C22, and C44 (in contracted notations) of the elasticity matrix for a

solid foam model having cubic symmetry; illustrated with foam sample H2. (A) Tensile strain numerical experiment. A uniform strain vector, E ¼ E11e1 � e1,

is applied (along the principal coordinate direction [100]) in the equivalent homogeneous material with E11¼ 0.01 showing (a) the displacement field (lm),

(b) the stress field r11 (N=m2), and (c) the stress field r22 (N=m2). The data are then averaged over the periodic unit cell as follows: R11 ¼ ð1=VÞ
Ð

Vr11 dV,

R22 ¼ ð1=VÞ
Ð

Vr22 dV, and R33 ¼ ð1=VÞ
Ð

Vr33 dV. Elastic constants, C11 and C12, are computed using the relations R11 ¼ C11E11 and R22 ¼ C12E11(or

R33 ¼ C12E11). With a transversely isotropic configuration, the effective Young’s modulus was found to be unchanged; ETI ¼ EL and �TI ¼ �L. Contrary to

the transversely isotropic configuration, the effective Young’s modulus and Poisson’s ratio for an isotropic material configuration were modified; EI 6¼ EL and

�I 6¼ �L. (B) Shear strain numerical experiment. A uniform strain vector, E ¼ E12 e1 � e2 þ e2 � e1ð Þ, is applied to the equivalent homogeneous material with

E12¼ 0.01, showing (a) the displacement field (lm) and (b) the stress field r12 (N=m2). The data are then averaged over the periodic unit cell as follows:

R12 ¼ ð1=VÞ
Ð

Vr12 dV [Eq. (17)]. The last elastic constant, C44, is computed using the relation R12 ¼ C44E12. See also Sec. III.
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without any prior characterization of the static viscous per-

meability. Then, a micromechanical procedure is defined to

compute linear elastic properties of the 3D reconstructed

PUCs. It is proved that the linear elastic properties of the

base material and the geometrical characteristics of mem-

branes dominate the effective mechanical behavior of these

poroelastic materials. This method accounts numerically for

both visco-thermal dissipations and mechanical behavior

caused by the presence of large membrane content in poroe-

lastic foam submitted to long-wavelength acoustic waves.

The paper is organized as follows: Sec. II describes the

reconstruction methodology, Sec. III presents the microme-

chanical analysis, and Sec. IV discusses the results in terms

of the transport, mechanical, and acoustical quantities corre-

sponding to microstructured poroelastic foams.

II. MATERIALS AND METHODS

A. Regular solid foam structure with a specified
closure rate of solid films or membranes

The spatial structure of the solid foam models proposed

here is derived from routinely available laboratory measure-

ments (permeability, porosity, ligament length) and transport

processes simulation inside porous media. A general view of

the representation of solid foams and on the generation proc-

esses can be found in the studies of Perrot et al.16 and Hoang

and Perrot.11 The solid foam models that are going to be

used are spatially periodic in all directions of space. Hence,

the unit cell provides the basic structure from which the

whole medium can be derived by translation along three

coordinate axes. Two different samples of solid foams were

studied; we consider them more precisely in Fig. 1, which

summarizes their more important geometrical characteris-

tics. The ordered networks, analyzed in this article and

shown in Fig. 1, are truncated octahedron networks with tet-

rahedral vertices; the ligaments of circular cross-section

shape connect the spherical center of a regular tetrahedron,

with plates either partially opened or not forming the faces

of this polyhedron. This regular foam structure of cubic sym-

metry follows this geometry from an initially open-cell

structure, whose close rate of solid films or membranes is

allowed to grow. The cell size is provided by scanning elec-

tron microscopy (SEM) images and the closure rate of mem-

branes is adjusted in order to comply with permeability data

(see Ref. 11 for further details).

B. Purely geometrical macroscopic properties

Local geometry models corresponding to the real foam

samples, namely, H1 and H2, were generated with the

following measured porosity,17 / ¼ 0:9360:01 and

/ ¼ 0:9760:01, respectively. In the first sample, the liga-

ment length, L, is smaller with larger ligament thickness 2r
than in the second one (see Fig. 1 of this paper and Eq. (1) of

Ref. 16).

The pore solid surface, S, and pore volume, Vp, were

systematically calculated for each model of solid foam sam-

ple with elementary spatial integration. These two quantities

can be combined in order to define the length scale,

K0 ¼ 2Vp=S, a generalized hydraulic radius also named ther-

mal characteristic length in the context of sound absorbing

material.18

C. Transport parameters

The macroscopic permeability, k0, of each solid foam

sample was measured.19 It was also computed on a unit cell

considered as a representative volume element through solv-

ing the Stokes equations using a finite element method.11,16

The viscous characteristic length, K, can be used to

characterize the throat size, TS, of a porous medium. K was

introduced by Johnson et al.20 It is essentially a volume-to-

surface pore ratio with a measure weighted by the local

value of the velocity field, v1ðXÞ, in a (non-viscous) poten-

tial flow,

K ¼
2

ð
Vp

jv1ðXÞj2 dVð
S

jv1ðXÞj2 dS
: (1)

The tortuosity, a1, can be calculated when this velocity

field is known

a1 ¼
hv1ðXÞ2i
hv1ðXÞi2

; (2)

where h�i denotes a fluid phase average. This quantity was

also obtained from our computation on the unit cell.

The static “thermal permeability” k00 is related to the

“trapping constant” C of the frame by k00 ¼ 1=C.21 In the

context of diffusion-controlled reactions, it was demon-

strated by Rubinstein and Torquato22 that the trapping con-

stant is related to the mean value of a “scaled concentration

field,” uðrÞ, by

C ¼ 1=hui; (3)

where uðrÞ solves

Du ¼ �1 in Vp; and u ¼ 0 on S: (4)

The present study also reports computational results of k00 for

the considered cell structures. This parameter was shown to

be very sensitive to membrane effects.11

D. Effective mechanical properties

The effective mechanical properties were obtained

numerically for the two different solid foam models from fi-

nite element calculations and compared to values coming

from experiments on real samples, namely, H1 and H2. The

effective linear-elastic properties of the solid networks are

determined by a finite element scheme operating on discre-

tized representations of the structure; see Sec. III for further

details. The material constituting the skeleton is assumed to

be locally isotropic and linear-elastic; the elastic properties

of the gaseous fluid phase are considered as negligible com-

pared to the ones of the solid skeleton.
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The effective elastic longitudinal modulus, EL, and

Poisson’s ratio, �L, are obtained by applying two macro-

scopic external strains on the cube that bounds the solid foam

model: a tensile strain and a shear strain related to the main

coordinate directions. Since the solid foam models have

cubic symmetry, three independent elastic constants, C11,

C22, and C44 (in contracted notations), exist in the elasticity

matrix, whose identification requires two numerical experi-

ments using periodic boundary conditions, to express EL and

�L. The effective elastic longitudinal modulus, EL, and

Poisson’s ratio, �L, are obtained by applying the EL¼ (C11
2

þC11C12� 2C12
2)/(C11þC12) and �L¼C12 / (C11þC12)

formulas which are valid for the effective elastic properties

along the principal coordinate directions, [100], [010], or

[001] of materials with cubic symmetry.

The real porous frame does not have the cubic symme-

try. On the contrary, real foams are either isotropic or trans-

versely isotropic, the isotropy plane being orthogonal to the

growing direction of the foam during the manufacturing pro-

cess. However, the main idea is that “locally” the elastic

properties of the material are correctly represented by a cellu-

lar model that exhibits cubic symmetry. The properties of

“effective” materials having isotropic or transversely iso-

tropic properties can be obtained by considering that the local

cubic cells can have random orientations. Following this

idea, the effective elastic properties of an effective trans-

versely isotropic material (respectively, of an effective iso-

tropic material) correspond to the properties obtained by

random orientation of the unit cell when using arbitrary rota-

tion around a given axis (respectively, when using any arbi-

trary rotation in space). It should be interesting to use the

average of effective properties corresponding to different ori-

entations of the unit cell. As is well known, this average cor-

responds to bounds on the effective properties. Thus, two

bounds on the effective properties can be obtained, one given

by averaging the elasticity tensor (components Cij), the other

by averaging the compliance tensor (components Sij). Due to

the fact that properties corresponding to different orientations

display a moderate contrast, these two bounds are close and,

in the following procedure, only the bound related to the av-

erage of compliances will be used. The detailed expression

obtained by this angular averaging procedure yields, for the

isotropic case, a lower bound for the Young’s modulus of the

isotropic material: EI¼ [5(C11�C12)(C11þ 2C12) C44]/[C44

(3C11þC12)þ 2(C11�C12)(C11þ 2C12)], and an estimate of

the Poisson’s ratio �I¼ [�(C11� 3C12) C44þ (C11�C12)

(C11þ 2C12)]/[C44(3C11þC12)þ 2(C11�C12) (C11þ 2C12)].

Figure 2 shows the displacement and stress fields of the

solid foam model corresponding to the real sample H2 during

the shear strain and the tensile strain numerical experiments.

III. MICROPOROELASTIC ANALYSIS

A. Elastic stiffnesses and compliances

With respect to a fixed coordinate system, ðx1; x2; x3Þ,
let rij and eij be the stresses and strains, respectively, in an

anisotropic elastic material. The stress-strain law can be

written as

rij ¼ cijkseks; (5)

in which cijks are the elastic stiffness coefficients that are

components of a fourth rank tensor. They satisfy symmetry

conditions. The inverse of this relation is written as

eij ¼ sijksrks; (6)

where sijks are the elastic compliances that are components

of a fourth rank tensor. They possess the same symmetry

conditions as the stiffness tensor.

B. Contracted notations

Introducing the contracted notation the stress-strain law

(5) can be written as

ri ¼ cijej; cij ¼ cji: (7)

In other words, due to the symmetry (rij ¼ rji and

eij ¼ eji), only six independent components can appear in the

stress and strain tensors. These six independent components

of stress and strain can be “contracted” to a single index

notation by writing

rij ¼ rk; eij ¼ ek; (8)

and using for the substitution i; jð Þ ! k, the rule 1; 1ð Þ ! 1,

2; 2ð Þ ! 2, 3; 3ð Þ ! 3, 2; 3ð Þ and 3; 2ð Þ ! 4, 1; 3ð Þ and

3; 1ð Þ ! 5, and 1; 2ð Þ and 2; 1ð Þ ! 6. As a consequence, the

fourth order elastic constant tensor may be contracted to a

two-index notation by the application of the following

conventions:

r ! r
~

:¼

r11

r22

r33ffiffiffi
2
p

r23ffiffiffi
2
p

r31ffiffiffi
2
p

r12

0
BBBBBB@

1
CCCCCCA
; and e ! e

~
:¼

e11

e22

e33ffiffiffi
2
p

e23ffiffiffi
2
p

e31ffiffiffi
2
p

e12

0
BBBBBB@

1
CCCCCCA
;

(9)

the factor of
ffiffiffi
2
p

being inserted so that the equality r : e ¼
r
~
e
~

holds true. Following this convention, the generalized

Hooke’s law relationship between the elements of the stress

and strain tensor (represented as six element column vectors)

can be compactly written in matrix notations as

r
~
¼ c

~~
e
~
; (10)

where c
~~

is a six-by-six symmetric matrix. An expanded form

of the matrix notation is given by

r11

r22

r33ffiffiffi
2
p

r23ffiffiffi
2
p

r31ffiffiffi
2
p

r12

0
BBBBBB@

1
CCCCCCA
¼

c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

sym c44 c45 c46

c55 c56

c66

0
BBBBBB@

1
CCCCCCA

e11

e22

e33ffiffiffi
2
p

e23ffiffiffi
2
p

e31ffiffiffi
2
p

e12

0
BBBBBB@

1
CCCCCCA
:

(11)
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As indicated previously, it is frequently useful to

express the strain in terms of the stress,

e
~
¼ s

~~
r
~
; (12)

where s
~~

is the compliance tensor made of the 21 independent

elements, sij. The quantity, s
~~
, is the inverse of c

~~
in the matrix

sense, s
~~
¼ c

~~

�1. The 21 coefficients, sij, are called the com-

pliance constants.

C. Material symmetries

This paper addresses the linear elastic properties of par-

tially closed cell solid foams with membrane-based tetrakai-

decahedral cellular morphologies. This geometry exhibits a

cubic symmetry. In this case, the elasticity tensor is defined

by three independent coefficients, the elastic stiffnesses,

Ccubic ¼

C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C44 0 0

sym C44 0

C44

0
BBBBBB@

1
CCCCCCA
: (13)

Consequently, the elastic behavior can be described as based

on only three independent elastic parameters, e.g., C11, C12,

C44. Alternatively, the elastic compliances, Sij, might be

expressed in terms of the elastic stiffnesses,

S11¼S22¼S33¼
C11þC12

C2
11þC11C12�2C2

12

;

S12¼S21¼S13¼S31¼S23¼S32¼
�C12

C2
11þC11C12�2C2

12

;

S44¼S55¼S66¼
1

C44

:

8>>>>>><
>>>>>>:

(14)

Attention will be directed in the next sections to: (i) the spec-

ification of two kinds of numerical experiments required to

completely characterize the elastic compliances and stiff-

nesses in terms of the base material’s properties, and (ii) the

obtention of averaged (a) transversely isotropic properties or

(b) isotropic properties obtained from the results of the nu-

merical experiments.

D. Numerical experiments

A simple tensile numerical experiment is such that r11

is different from zero and all other loads are null. Under

these loading conditions, the relationship e
~
¼ S

~~
r
~

greatly

simplifies to yield

e11 ¼ S11r11;

e22 ¼ S12r11;

e33 ¼ S13r11;

e23 ¼ e31 ¼ e12 ¼ 0:

8>>><
>>>:

(15)

The longitudinal elastic modulus and Poisson ratios were

deduced by definition

EL ¼
r11

e11

¼ 1

S11

;

�12 ¼
e22

e11

¼ � S12

S11

;

�13 ¼
e33

e11

¼ � S13

S11

:

8>>>>>>><
>>>>>>>:

(16)

For materials with cubic symmetry, substituting the expres-

sions in Eq. (14) into Eq. (16) leads to

EL ¼
C2

11 þ C11C12 � 2C2
12

C11 þ C12

;

�12 ¼ �13 ¼
C12

C11 þ C12

;

8>>><
>>>:

(17)

which relates the longitudinal modulus and Poisson ratios to

the elastic constants.

To calculate the macroscopic elastic constants of materi-

als, a macroscopic strain is applied to the unit cell (Fig. 2).

The displacement field inside the cell is the solution of the

cell problem obtained from the homogenization of periodic

media.

It is given by

u ¼ Exþ uper; (18)

where uper complies with periodicity conditions on the cell

boundary. It can be shown23 that, accounting for the sym-

metries of the cell, these periodicity conditions can be

changed into mixed boundary conditions enforcing that

some components of u are equal to the similar components

of Ex, while expressing that the other components of the

traction vector are null. For further details, the reader is

referred to Sec. 4.2.1 of Ref. 24 from Michel et al. entitled

“Symmetry conditions” and Appendix A of the same

paper.

The components of the macroscopic effective stress ten-

sor, R
~

, induced by the macroscopic strain, E, are obtained by

averaging the local stress tensor, r
~
, obtained after solving

the cell problem,

R
~
¼ hr

~
iV ¼

1

V

ð
V

r dV: (19)

Yet, from another point of view, the microscopic stress ten-

sor is related to the macroscopic strain tensor by

8E
~
; R

~
¼hr

~
iV ¼ C

~~
E
~
: (20)

This computation therefore produces some components of

the elasticity tensor.

For the materials with cubic symmetry which contain

only three independent elastic coefficients, only two numeri-

cal experiments are required to completely find out the elas-

ticity matrix, one by using a macroscopic tensile strain and

another one by using a macroscopic shear strain.

In a first step, we pay attention to a tensile strain numer-

ical experiment for which we impose a uniform macroscopic
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strain, E ¼ E11e1 � e1, from which two elastic constants are

found from the macroscopic stress tensor

C11 ¼ R11=E11;

C12 ¼ R22=E11:

(
(21)

In a second step, we impose a uniform macroscopic strain,

E ¼ E12 e1 � e2 þ e2 � e1ð Þ, to model a shear strain numeri-

cal experiment. This leads to

C44 ¼ R12=E12: (22)

This completes the elasticity tensor.

E. Macroscopically transversely isotropic and
isotropic material configurations

As explained before, the properties of “effective” iso-

tropic and transversely isotropic materials can be obtained

by a convenient angular averaging. The properties of an

equivalent isotropic material can be built on the basis of the

cubic cell by considering that the real material is made of

cubic cells that have an arbitrary orientation. It can be

obtained by computing the compliance tensor S0ijðw; h;uÞ
for an arbitrary orientation of the axes of the cell, using the

usual axis transformation of a tensor, and by averaging these

properties over all orientations, i.e., on all possible Euler

angles ðw; h;uÞ. As previously explained, this leads to an

upper bound of the compliance tensor and a lower bound of

the elasticity tensor,

SI
ij ¼

1

8p2

ð2p

0

ðp

0

ð2p

0

S0ijðw; h;uÞsin h dw dh du: (23)

This finally produces a relationship between the lower bound

of the components of the equivalent isotropic tensor, SI
ij, and

those of the elastic properties of the cubic material.

SI
11 ¼ SI

22 ¼ SI
33 ¼

3S11þ 2S12þ 2S44

5
;

SI
12 ¼ SI

21 ¼ SI
13 ¼ SI

31 ¼ SI
23 ¼ SI

32 ¼
S11þ 4S12� S44

5
;

SI
44 ¼ SI

55 ¼ SI
66 ¼

2S11� 2S12þ 3S44

5
:

8>>>>>>><
>>>>>>>:

(24)

Obviously, for the elastic material, these elastic constants

are all functions of two elastic constants because

SI
66 þ SI

12 ¼ SI
11. For a transversely isotropic material, the

computation is similar, but by restricting the random orienta-

tion of the axes to the ones perpendicular to the growth

direction, i.e., by averaging over only all values of h

STI
ij ¼

2

p

ðp=2

0

S0ijðhÞ dh: (25)

This finally produces an upper bound of the components of

the compliance tensor, which possess the properties of a

transversely isotropic tensor, including STI
22 � STI

23 ¼ STI
44

STI
11 ¼ S11;

STI
22 ¼ STI

33 ¼
3S11 þ S12 þ S44

4
;

STI
44 ¼

S11 � S12 þ S44

2
;

STI
55 ¼ STI

66 ¼ S44;

STI
12 ¼ STI

21 ¼ STI
13 ¼ STI

31 ¼ S12;

STI
23 ¼ STI

32 ¼
3S12 þ S11 � S44

4
;

STI
24 ¼ STI

42 ¼ 0;

STI
34 ¼ STI

43 ¼ 0:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(26)

These elastic constants are only functions of five independ-

ent constants, as is well known for a transversely isotropic

elastic material.

IV. RESULTS AND DISCUSSION

A. Geometrical and transport macroscopic properties

Before looking at the mechanical results, let us consider

the purely geometrical macroscopic properties (/, K0) and

transport parameters (k0, K, a1), which were obtained on

the cubic cell.

Note that in the regular solid foam structure, each unit

cell can be generated by taking into account the experi-

mental uncertainty in the input parameters /6D/
(/þ ¼ /þ D/, /� ¼ /� D/), k06Dk0 (k0

þ ¼ k0 þ Dk0,

k0
� ¼ k0 � Dk0), and L6DL(Lþ ¼ Lþ DL, L� ¼ L� DL).

Such a generation process can be useful to obtain more

detailed results for a given foam sample. For instance, the

successive values of K0, K, a1, and k00 were computed using

1 (mean) þ 23 unit cells; and the standard deviation, D, was

subsequently calculated from these 1þ 23 numerical results.

The porosity, /, was measured with a reasonable accu-

racy from the pressure/mass method.17 The permeability, k0,

was also directly measured as in Stinson and Daigle,19 after

having removed a film on the surface of foam sample, H1,

whose presence is due to the injection process. Then, the

determination of the missing parameters, K0, K, a1, and k00
is based on an inverse procedure25,26 using an analytical

inversion from standing wave tube measurements27 and

Johnson-Champoux-Allard-Lafarge model.18,20,21

The purely geometrical macroscopic properties (K0) and

transport parameters (K, a1, k00) computed from the course

of this multi-scale approach are in a rather good agreement

with experimental data (K0, K, a1, k00), especially when

standard deviations are taken into account as seen in Table I.

Considering the experimental characterization as the

ground truth, one might, however, find the coefficients K to

be slightly overestimated by the local geometry model,

which occurs for idealized unit cells with monodisperse

throat sizes [see Sec. IV B of Ref. 12, together with Eq. (8)

of the same paper]. Indeed, the computed and measured val-

ues are—in the most favorable cases when taking the uncer-

tainties into account—of similar magnitude for the H1 foam

sample [32% of relative difference]; whereas, for the

H2 foam sample a factor of at least 2 is observed [e.g.,
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ð53� 9Þ=ð13þ 6Þ (231% of relative difference)]. Because

the viscous characteristic length was determined for a peri-

odic unit cell with a single closure rate of the membranes,

the latter model is insensitive to the polydispersity of the

throat sizes. More complex structures that contain, for exam-

ple, additional throats of very small sizes could be used to

extend this analysis. In agreement with this explanation, a

microstructure analysis from SEM images is conducted in

Sec. IV B, confirming that the overestimation of K calcula-

tion was due to the fact that the model ignores the presence

of many very small holes inside the membranes. While an

excellent agreement is obtained between the experimental

and numerical evaluations of the thermal characteristic

length, K0, for H1, however, they differ significantly at first

sight for H2. This discrepancy is due to the very low perme-

ability of the latter foam sample, but also to the vibrations of

its solid skeleton under acoustic excitation (see Secs. IV D

and IV E for a detailed discussion of these coupled phenom-

ena). The experimental estimation of K0 in such circumstan-

ces is often affected by errors and uncertainties. This

suggests that, in situations for which the classical experimen-

tal characterization methods are difficult to apply, a 3D PUC

may be used as a tool which helps to interpret data, reduce

uncertainties, and conclude on the validity of experimental

results. Together with an overall relatively close match

between the measured and computed macroscopic parame-

ters (K0, a1, k00), the former analysis about the origin of K
discrepancies and microstructural results below indicate that

the local geometry models presented in Fig. 1 (with their

local characteristic lengths summarized in Table II) capture

the essential physics of the transports phenomena inside the

foams.

B. Analysis of the representativity of the
microstructure from SEM imaging

Note that in the case of high closure rate of membranes,

as it happens for H2, the foam sample preparation may

destroy some membranes, at least in the vicinity of the

cutting tool. This tends to prevent an accurate quantitative

characterization of the closure rate of membranes for real

foam samples from micrographs. Nondestructive characteri-

zation techniques such as computed microtomography using

x-ray laboratory sources may also fail in this task due to their

limited resolution. Keeping in mind these limits, it is, how-

ever, desirable to perform an investigation on the experimen-

tal closure rate of membranes measurable on SEM images.

In order to reduce the projection bias, care was taken during

measurements to select only ligaments and interconnections

lying in the plane of observation (for three perpendicular

surfaces). Interconnections were considered as ellipses on

micrographs so that an estimate of their characteristic size,

i.e., the throat size, T, was simply obtained by measuring

and further averaging the two axes of inscribed ellipses. The

cell sizes, D, were obtained from the measurement of liga-

ment lengths, L, with D¼ 2
ffiffiffi
2
p

L. The corresponding distri-

butions are reported in Fig. 3. Unsurprisingly, the agreement

between measured and computed cell size is good

[Fig. 3(A)], because in this case ligament length measure-

ments were taken as input values for the scaling of the local

geometry model [see Fig. 2(b) of Ref. 11; note that a better

agreement in Fig. 3(A)(b) of this paper simply requires a

smaller closure increment Dd, like Dd¼ dmax/30 (where dmax

was defined by dmax¼ L/2 - r)].

Looking now at the comparison between measured (Tm)

and computed (Tc) throat sizes, one can see that the model is

also consistent with real microstructure [Fig. 3(B)]. The

local geometry model of foam sample H1 displays two throat

sizes, Ts1 and Ts2, with Ts1¼ (L� 2r)� (1� d/dmax) and

Ts2¼ L� (
ffiffiffi
3
p
� d/dmax)þ 2r� (d/dmax� 1). The associated

values are Ts1¼ 34 6 15 lm and Ts2¼ 136 6 15 lm.

Because we also want to compare these throat sizes with a

single scalar originating from measurements on SEM, we

calculate Tc by Tc¼ (3Ts1þ 8Ts2)/11 — squared faces being

shared by two cells. This yields Tc¼ 108 6 15 lm, a value

fairly comparable to Tm¼ 92 6 57 lm [Fig. 3(B)(a)].

Because the local geometry model of foam sample H2 exhib-

its only a single throat size due to a closure rate of mem-

branes, d/dmax> 1, this time Ts1¼ 0 6 7 lm, Ts2¼ 121

6 17 lm, and Tc¼ 121 6 22 lm (for a single throat size,

Tc¼ Ts2). This latter computed throat size is still in close

agreement with the experimental one, Tm¼ 125 6 83 lm

[Fig. 3(B)(b)]. The larger relative proportion of small inter-

connections in the throat size distribution of foam sample H2

might explain why, in the single throat size model, its vis-

cous characteristic length, K, is overestimated [Fig. 3(B)].

TABLE I. Macroscopic parameters: comparison between computational and experimental results. Experimental results include direct measurements of poros-

ity / (Ref. 17) and permeability k0 (Ref. 19), and inverse characterization (Refs. 25 and 26) of the remaining parameters.

Foam Method / K0 (lm) k0 (�10�10 m2
) K (lm) a1 k00 (�10�10 m2)

H1 Computation 146 6 22 55 6 6 1.40 6 0.26 28 6 12

Measurements 0.93 6 0.01 5.35 6 0.42

Characterization 143 6 57 33 6 4 1.05 6 0.08 55 6 28

H2 Computation 179 6 46 53 6 9 2.40 6 0.55 48 6 26

Measurements 0.97 6 0.01 2.56 6 0.60

Characterization 424 6 92 13 6 6 1.58 6 0.64 53 6 16

TABLE II. Local characteristic length parameters of the microstructure

models for foam samples, H1 and H2.

Foam L (lm) 2r (lm) D (lm) Ts2 (lm) Ts1 (lm) d/dmax (—)

H1 139 42 393 136 34 0.65

H2 198 38 560 121 0 1.15
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C. Discussion on the relative influence of membrane
closure rate and thickness

The derivation of the local characteristic lengths of the

model in the following subsection is based on a few assump-

tions related to the cellular morphology. This subsection

aims at validating the effect of these assumptions on elastic

properties with data coming from complementary experi-

ments and modeling. Additional and more systematic quanti-
tative comments can be given on the linear elastic properties

of partially open cell foams to justify the use of the proposed

models. Some results of the literature relative to the effects

of cellular morphology modifications on the effective elastic

properties are summarized below. We shall then compare

them to the relative influence of membrane closure rate and

thickness on the evolution of the effective Young’s modulus.

1. The effect of cross-section shape (at constant
relative density or porosity)

The Young’s modulus is 38% higher for a given relative

density if the ligament cross-sections are Plateau borders

rather than equilateral triangles28 (analytical calculations).

2. The effect of cross-sectional variation (at constant
relative density or porosity)

Foams with Plateau border cross-sections with uniform

and nonuniform cross-sections were compared by Gong

et al.2 The effect of cross-sectional variation was found to be

significant with the nonuniform cross-section foam being

generally stiffer. For example, in the range of porosities

(95%–98%), the nonuniform foam Young’s modulus is

�69%–74% higher than the uniform foam. This response is

governed by the following adverse mechanisms. On the one

hand, the Young’s modulus to first order is governed by

beam bending and, as a result, it is proportional to (r0/l)4,

where r0 is the radius of a three-cusp hypocycloid

cross-section at mid-span of the ligament length, l. On the

other hand, the nonuniformity makes the ligament stiffer by

about a factor of 5 (difference between C11’ 0.017 and

1/12), which has a stronger effect than the difference in r0/l.
By contrast, the Poisson’s ratio is only slightly reduced by

cross-sectional nonuniformity.

3. The effect of randomness (with a statistically
identical foam morphology)

Kelvin cell models and random foam models were com-

pared by Jang et al.3 In all models, the cells were elongated

in one direction and the ligaments were straight, but with a

nonuniform cross-sectional area distribution. For nearly

monodisperse foams, the random foams were found to be

5%–10% stiffer than the Kelvin cell models.

4. The effect of correction for the volume of material
in the nodes (at constant relative density or porosity)

When ligaments are modeled as beams, each node con-

necting four of them, the ends of the beams overlap. The

works of Gong et al.2 and Jang et al.3 account for excess ma-

terial when calculating the material volume. For that pur-

pose, they removed the excess material by cutting the ends

of the beams with appropriately chosen smooth curved surfa-

ces. Nodes were generated through that process for the

Plateau borders, triangular, and circular ligament cross-

sections. Without this correction, the relative density is pro-

portional to the respective geometric ratios raised to the

power of 2, i.e., {(r0/l)2, (a0/l)2, (R0/l)2} where {r0,a0,R0} are

FIG. 3. (Color online) Distributions of

(A) pore (top) and (B) interconnection

or window (down) sizes for foam sam-

ples (a) H1 (left) and (b) H2 (right).
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the characteristic cross-sectional dimensions at mid-span.

With this correction, the power is no longer 2 and, further-

more, depends on the anisotropy according to a power-law

relationship whose coefficients were fitted and listed by the

authors. It might be noticed that, even for this advanced

modeling work, some details of the real microstructure are

omitted in the local geometry models such as some lumped

material observed in closed faces. In this particular case, this

results in estimated ligament dimensions somewhat larger

than in the actual foams. In our work, the spherical nodes

roughly account for the material concentration at the liga-

ments intersection. Let us mention that in actual measure-

ments, uncertainty on porosity or relative density (taken as

an input parameter for all of the aforementioned models),

may have a stronger effect on ligament length estimates than

accounting for excess material in the nodes when calculating

the material volume.

5. The effect of membrane thickness (at slightly
varying relative density or porosity)

The effect of membrane thickness on the elastic proper-

ties of foam samples H1 and H2 was found to be very signifi-

cant with the thicker membrane being stiffer, and the

stiffness being linearly dependent on the membrane thick-

ness. For example, in the range of membrane thickness

(0–10 lm), the Young’s modulus reaches an approximate

value of 296% (respectively, 1244%) higher than without

membrane for foam sample H1 (respectively, H2). Clearly,

the effect of membrane thickness is more significant for H2

than for H1 because the closure rate of membranes d/dmax is

higher for H2 (d/dmax¼ 1.15) than for H1 (d/dmax¼ 0.65).

6. The effect of membranes’ closure rate (at slightly
varying relative density or porosity)

The effect of membranes’ closure rate on the elastic prop-

erties of foam samples H1 and H2 was also found to be very

significant with higher closure rates corresponding obviously

to stiffer materials. For example, in the range of membranes’

closure rates d/dmax [0–2.043] and for a constant membrane

thickness, the Young’s modulus reaches an approximate value

of 164% (respectively, 768%) higher than without membranes

for foam sample H1 (respectively, H2). Clearly, the effect of

membranes’ closure rate is more significant for H2 than for H1

because the porosity is higher for H2 than for H1.

Interestingly, the effects of membrane thickness and clo-

sure rate appear as having a stronger weight on the overall

response of the foam sample linear elastic behavior compared

to the effect of cross-section shape and cross-sectional varia-

tion of the ligaments (especially when porosity or relative

density uncertainties are taken into account). This tends to jus-

tify the use of the proposed idealized unit cell. We shall now

try to examine if these unit cells are also representative of in-

dependently measured effective linear poroelastic properties.

D. Linear elastic properties

The basic ingredients of flexible urethane foams of the

type considered in this study are ester resin (or polyol),

diisocyanate, water, catalysts, and surfactants.29,30 Foam H1

was manufactured from the standpoint of these typical ingre-

dients with a view of significantly lowering the Young’s

modulus of the resulting porous material when compared to

standard plastic foams, and foam H2 is a commercial prod-

uct. The samples represent cylindrical subsections of large

panels of diameter equal to 44.5 mm. Their heights are equal

to 25 mm for H1, and 10 mm, 15 mm, and 20 mm for H2.

Accurate literature values for the microscopic Young’s

modulus, El, and Poisson’s ratio, �l, are not available

because these values are dependent on processing strategy.

The values obtained in the literature for El are scattered

within a range of more than one order of magnitude; they are

typically lying between 2 and 30 MPa.31 By contrast, the mi-

croscopic Poisson’s ratio seems relatively stable, with

�l¼ 0.25. As mentioned by Gong et al.,2 some foam chem-

ists believe that the polymer flow resulting from the foaming

process may cause preferential alignment of the long mole-

cules of the material along the ligaments. Since these charac-

teristics may not be easily achievable in bulk material, they

recommend that the mechanical properties of the polymer be

measured directly from foam ligaments. Therefore, the main

conclusion which can be drawn is that specific measure-

ments should be made on the material.

From the above analysis it can be concluded that because

of the strong dependence of the foam properties on the base

material, it is better to replace all results of the computations

performed along the lines of Sec. III by non-dimensional val-

ues; for instance, End
I ¼ EI=El. These non-dimensional data

were first computed with membranes; a parameter which has

a strong effect on the results is the membrane thickness (see

Table III and Sec. IV C). An estimate of the membrane thick-

ness t¼ 1.7 6 0.4 lm was obtained by scanning electron

micrographs. Two simulation results were given in Table III:

with and without membranes.

The experimental values of macroscopic Young’s mod-

ulus were obtained from compressional experiments and

plotted in Fig. 4, which presents the evolution of the normal-

ized Young’s modulus, EexpðsÞ=Emax
exp , as a function of the

degree of compression, s. They are obtained by uniaxial

compression experiments32,33 on polyurethane foam samples

and mainly correspond to the linear “compression of beam”

regime (zone A) reported in the recent work of Geslain

et al.34 (Sec. IV and references therein). The modulus during

this regime can be approximated by a linear regression. Emax
exp

is the maximum value of EexpðsÞ on the compression range

of interest; Emax
exp ¼Eexpðs ¼ 0:035Þ¼ 17.7 kPa for H1, and

Emax
exp ¼Eexpðs ¼ 0:05Þ¼ 122.7 kPa for H2. The slopes are,

respectively, equal to 5.99 and 17.62 for foam samples H1

and H2. H1’s slope is smaller than H2’s slope, and clearly

below the range of data presented by Geslain et al. (Table II

of Ref. 34). This involves an unusually low sensitivity of the

Young’s Modulus with pre-constraint for foam sample H1,

which consequently acts as a guarantee to maintain a strong

decoupling effect whatever the mounting conditions. This

unusual property is consistent with special research efforts

supporting the manufacturing process in collaboration with

chemists. The asymptotic values of Eexp at s¼ 0 correspond

to the Young’s modulus for a zero pre-constraint, yielding
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Eexpðs ¼ 0Þ¼ 14.4 kPa (Eexpð0Þ=Emax
exp ¼ 0.8138) for H1 and

Eexpðs ¼ 0Þ¼ 5.4 kPa (Eexpð0Þ=Emax
exp ¼ 0.0441) for H2. Note

that the frequency-dependent characterization35,36 results

were deliberately not presented in this paper because of the

static nature of the proposed computational approach.

For comparison with the static computed results, the rel-

ative Young’s moduli of both foams are given for ultimate

values of El (2–30 MPa); see Table IV. These values can be

compared on the same table and through Fig. 5 with relative

macroscopic Young’s moduli coming from the

computations.

Obviously, the range of the experimental relative mod-

uli, Eexp/El, follows the range of the polyurethane base ma-

terial modulus, El. However, some conclusions can still be

drawn. It can be seen for H1 that the estimation of the rela-

tive modulus with membranes is not far from the experimen-

tal one, providing that the Young’s modulus of the base

material is in the vicinity of the smallest values available in

the literature (circle). For H2 foam sample, the value of the

relative Young’s modulus obtained with membranes is

clearly within the admissible range of relative moduli, below

the higher values, so that the Young’s modulus of the base

material must also be relatively low (square). From the

above examples, it can be concluded that membranes must

be modeled when the goal is to determine the homogenized

linear elastic properties for foams containing a high closure

rate of membranes. In the following, the experimental prop-

erties given in Table IV are used.

E. Acoustical properties

Let us go further to another possible consequence of this

study, namely, the linear elastic properties derivation from

microstructures representative of transport parameters and

their effects on the acoustical characteristics of the poroelas-

tic medium. The multi-scale determination of purely geo-

metrical parameters, transport, and elastic properties was

studied for the regular packing of partially open cell struc-

tures for two samples of solid foams. The numerical and ex-

perimental data relative to these macroscopic parameters are

gathered in Tables I, III, and IV. These results can be used as

input parameters of approximate but robust semi-

phenomenological models18,20,21 (“universal curves”) as

summarized in Appendix B of Ref. 16. We shall focus the

presentation on the sound absorption, a xð Þ, and sound trans-

mission loss, STLðxÞ, properties relative to the recon-

structed poroelastic media (and we shall point out the

features specific to each of these solid foams, H1 and H2). In

what follows, measurement of the complex wave number

and characteristic impedance of the foam samples was car-

ried out using a three-microphone impedance tube setup as

in the method introduced by Iwase et al.37 and further modi-

fied and discussed by Salissou and Panneton38 [see Fig. 1(a)

of the latter reference]. The STLðxÞ estimates are modeled

at normal incidence using transfer matrices39 for configura-

tions with an impervious rigid backing at the rear face of the

sample when assuming homogeneous, isotropic, and sym-

metric porous materials.

Some results relative to a xð Þ and STLðxÞ are displayed

in Fig. 6. We first focus on the sound absorbing behavior.

Real foam samples sound absorbing behavior is often

believed to be widely governed by local visco-thermal dissi-

pations that supposedly explain their effective properties.

TABLE III. (a) Computed non-dimensional elastic properties of foam samples H1 and H2. In these simulations, the membrane thickness is equal to 10 lm. (b)

Computed non-dimensional elastic properties of foam samples H1 and H2. In these simulations, the membrane thickness is equal to 1.7 lm.

(a) Rnd
11 Rnd

22 Rnd
12 Cnd

11 Cnd
12 Cnd

44 End
TI �TI End

I �I

Foam Method (�10�3) (�10�3) (�10�3) (�10�3) (�10�3) (�10�3) (�10�3) (—) (�10�3) (—)

H1 Without membranes 0.13 6 0.02 0.09 6 0.01 0.03 6 0.01 13.06 6 2.50 9.33 6 1.36 3.15 6 0.94 5.28 6 1.57 0.42 6 0.01 4.79 6 1.40 0.43 6 0.01

With membranes 0.36 6 0.04 0.14 6 0.01 0.14 6 0.03 36.01 6 3.72 14.04 6 1.26 14.44 6 2.71 28.13 6 3.14 0.28 6 0.01 22.20 6 3.47 0.32 6 0.01

H2 Without membranes 0.04 6 0.02 0.04 6 0.01 0.00 6 0.00 4.24 6 1.88 3.72 6 1.45 0.47 6 0.38 0.76 6 0.62 0.47 6 0.01 0.71 6 0.57 0.47 6 0.01

With membranes 0.28 6 0.06 0.12 6 0.02 0.15 6 0.02 28.43 6 6.01 11.69 6 1.85 15.02 6 2.39 21.61 6 5.28 0.29 6 0.01 20.41 6 3.80 0.30 6 0.00

(b) Rnd
11 Rnd

22 Rnd
12 Cnd

11 Cnd
12 Cnd

44 End
TI �TI End

I �I

Foam Method (�10�3) (�10�3) (�10�3) (�10�3) (�10�3) (�10�3) (�10�3) (—) (�10�3) (—)

H1 Without membranes 0.13 6 0.02 0.09 6 0.01 0.03 6 0.01 13.06 6 2.50 9.33 6 1.36 3.15 6 0.94 5.28 6 1.57 0.42 6 0.01 4.79 6 1.40 0.43 6 0.01

With membranes 0.18 6 0.03 0.10 6 0.01 0.05 6 0.01 17.62 6 2.57 10.00 6 1.3 5.34 6 1.07 10.38 6 1.71 0.36 6 0.01 8.43 6 1.56 0.38 6 0.01

H2 Without membranes 0.04 6 0.02 0.04 6 0.01 0.00 6 0.00 4.24 6 1.88 3.72 6 1.45 0.47 6 0.38 0.76 6 0.62 0.47 6 0.01 0.71 6 0.57 0.47 6 0.01

With membranes 0.09 6 0.02 0.05 6 0.01 0.03 6 0.01 8.77 6 2.33 5.03 6 1.38 3.27 6 0.68 5.10 6 1.51 0.36 6 0.02 4.73 6 1.12 0.37 6 0.01

FIG. 4. The Young’s modulus, E, measured from compression testing for

foam samples, H1 and H2 as a function of the degree of compression s (from

the origin up to 0.06), and normalized by Emax [the maximum value of E(s)

on the compression range of interest].
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Yet, this assertion is, in general, correct, as we prove using

semi-phenomenological models with a rigid or so-called

“limp” frame assumption; see Fig. 6(A)(a) and Fig. 6(B)(a).

Using our microscopic approach, we study the visco-thermal

and structural dissipations in polyurethane foams and show

that a rigid-skeleton assumption suffices to describe most of

the sound absorbing behaviors of these poroelastic materials.

A better agreement with experimental data might be

obtained using a FE code for foam sample H2 by adjusting

the Young’s modulus to a value which corresponds to the

state of the foam under compression when mounted in the

tube. Here, our goal is to avoid using any fitting parameter to

keep tracing local geometry features from the microscale to

the macroscale. We note that by taking into account the ex-

perimental uncertainty in the input parameters, /, k0, and L,

the resonance falls within the error bars; see Fig. 6(B)(a).

The transmission of sound through such poroelastic

matrials, on the contrary, cannot be predicted by a model in

which the frame is motionless. In Fig. 6(A)(b), it is seen that

a rigid model fails at describing the low frequency behavior

of the sound transmission loss, whereas the acoustical behav-

ior of foam sample H1 of measured density equal to

68 kg/m3 is well described by a limp model;40 see Fig. 6(A).

It is possible to verify the pertinence of the limp model from

the experimental results measured with a standing wave

tube, since limx!0 STL xð Þ ¼ 0 (rigid body motion of the

frame); see Fig. 6(A)(b). Using the measured density of H2

of 25 kg/m3, the sound absorbing behavior of the

low-density foam was estimated using a limp model in a

good agreement with the impedance tube measurements; see

Fig. 6(B)(a). The additional sound absorption generated

using a limp model for the low density foam was determined

to be due to an added rigid body motion of the overall sam-

ple (because of the apparent mass added in the equivalent

fluid at the resonant frequency). The sound transmission loss

that dropped in the low frequency range with the resonance

frequency was more sensitive to elastic properties compared

with sound absorbing properties whose essential behavior

can be captured with a limp model.

Using the elastic properties of the foam sample (H1),

which can be established using the method of microme-

chanics described in this paper, we obtain a prediction for

the sound absorption and sound transmission loss in agree-

ment with experimental results in a standing wave tube; see

Fig. 6(A). This is done without prior experimental knowl-

edge of the sound transmission loss behavior in the asymp-

totic low frequency range. Figure 6(B) also illustrates the

utility of the elastic results derived in the preceding sections.

We begin with considering the frame acoustical excitability

(FAE) of the foam sample.41 By computing the FAE, our in-

terest is (i) to examine the edge constraint effect on the

acoustic behavior of the foam and (ii) to illustrate the effect

of the elastic properties of the foam on the behavior of a xð Þ
and STLðxÞ in agreement with the results simulated in a

standing wave tube numerical experiment. The values of per-

meability, k0, and bulk density, q1, are much lower for H2

(q1¼ 25 kg/m3) than for H1 (q1¼ 68 kg/m3). For foam sam-

ples H1 and H2 having identical thicknesses and radii with a

similar stiffness, we note that the value of the FAE for H2

increases over more than 1 order of magnitude. This indi-

cates that the boundary conditions in the tube will influence

the overall sound absorption and sound transmission results,

and their effect must be simulated within an axisymmetric

poroelastic FE formulation of the Biot–Allard equations42–45

for better agreement with the experiments. Details on the

axisymmetric FE poroelastic formulation can be found in

Refs. 46 and 47. As previously discussed, our estimates

using the elastic properties of the frame with a Biot–Allard

model are close to laboratory measurements of sound

absorption; see Fig. 6(B)(a). By contrast, it was also neces-

sary to use an axisymmetric poroelastic FE formulation to

properly model the bounded edge boundary condition for the

sound transmission loss because the frame acoustical excit-

ability was quite strong; see Fig. 6(B)(b). Meanwhile, we

FIG. 5. (Color online) Comparison between non-dimensional experimental

and numerical quasi-static Young’s moduli for H1 (top) and H2 (bottom)

foam samples.

TABLE IV. Comparison between measured Eexp and computed Ecomp elastic Young’s moduli for a membrane thickness value t¼ 1.7 lm. Ecomp stands for the

macroscopically isotropic computed value, EI [see Table III(b)]. Eexp¼ 14.02 kPa (�exp¼ 0.16, gexp¼ 0.29) and Eexp¼ 11.93 kPa (�exp¼ 0.03, gexp¼ 0.36)

represent the measured Young’s moduli (together with each corresponding Poisson’s ratio and loss factor) for H1 and H2 foam samples at very small compres-

sion rates (s¼ 0 and s¼ 0.005, respectively; see Fig. 4). Note that the extrapolated value at s¼ 0 for H2, deduced from linear least-squares regression of com-

pressional measurements, is equal to 5.4 kPa.

1000Eexp 1000Eexp/El(min) 1000Eexp/El(max) 1000Ecomp/El 1000Ecomp/El

Foam (Pa) (—) (—) (with membranes) (without membranes)

H1 14.02 7.01 0.46 8.43 4.79

H2 11.93 5.96 0.40 4.73 0.71
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also observed numerically that the dip in the experimental

sound transmission loss is properly reproduced by the poroe-

lastic FE formulation when the Young’s modulus corre-

sponding to a compression rate �3% is used (Fig. 4); the

effective Young’s modulus of the foam was significantly

increased by the mounting conditions in the tube. Modeling

this effect by a micro–macro approach will be the topic of a

future work. Also, it is worth mentioning that the very large

range of measurement dispersion observed for H2 [Fig. 6(B)]

may be understood as a direct consequence of its very low

Young’s modulus (Figs. 4 and 5) originating from the consti-

tuting material itself (H2 displays a higher closure rate of

membranes, which tends to rigidify the cellular structure).

Understanding these dominant mechanisms as an overall

consistent picture strongly supports the interest of this type

of calculation. The results of this analysis, therefore, show

that the elastic properties derived from the micromechanical

model are directly relevant for the determination of the

acoustical properties of real foam samples. Using a glued

sample between the rear face and hard wall, as an experi-

mental boundary condition in order to reinforce the sensitiv-

ity of the elastic constants of the frame to acoustic

excitation, will be dealt in a future analysis.

V. CONCLUDING REMARKS

Let us have an overall view of the results that were

derived from this multi-scale approach with the poroelastic

foam samples used in this paper (Fig. 1). For the sake of

clarity, let us recall the procedure. The porosity, /, perme-

ability, k0, and ligament length, L, are assumed to be known

from the measurements. In the multi-scale approach, the

extension of the solid film constituting the membranes was

implemented at growing rates. The cell size is known from

SEM experiments and the closure rate of membranes is

adjusted for obtaining the experimental permeability.

Macroscopic parameters are then computed from numerical

homogenization and compared to the values that were meas-

ured at macro-scale in Sec. IV and gathered in Tables I and

IV. These latter values serve in a way as bridges between

microstructure and acoustical macro-behavior with micro-

physical and micromechanical foundations. The numerical

simulations are generally in good agreement with the stand-

ing wave tube measured values. As also shown above, the

proposed micromechanical method can provide reasonable

estimates of linear elastic properties for poroelastic foams

including the significant effects of membranes’ closure rate

and thickness. The method is based on the use of a simplified

cellular morphology with identified local characteristic

lengths, a so-called “idealized periodic unit cell.” Further

systematic investigation on the sensitivity of the results with

regard to the choice of particular features of the cellular mor-

phology should be carried out. It is to be noted that accurate

values for the Young’s modulus and Poisson’s ratio of the

base material are difficult to obtain because of the variability

of the base material itself encountered in the foaming pro-

cess and the need to implement advanced characterization

techniques at this scale. In other words, extending this multi-

scale method to real life sound insulation optimization prob-

lems is not straightforward, but the present methodology

should readily be extended.

The scaling of the 3D membrane-based unit cell was

obtained through both numerical simulations and macro-

scopic measurements (/, k0) following the critical-path argu-

ment discussed in Refs. 11 and 16. The experimentally

measured pore and throat sizes were shown to agree fairly

FIG. 6. (Color online) Acoustical

properties of two different poroelastic

foam samples, H1 (A) and H2 (B).
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well with calculated (Fig. 3) sizes, meaning that the local ge-

ometry model can be obtained by measurements of the

microstructure itself, which opens a new robust characteriza-

tion and optimization avenue.

To our knowledge, the present method and procedure

for the calculation of mechanical and fluid flow properties

from partially open cell membrane-based solid structures are

new. Although our micromechanical approach for the linear

elastic properties determination is rather classical in the field

of numerical homogenization techniques, the same is not

true for the generalization of the calculation to all coeffi-

cients entering into the macroscopic theory of long-

wavelength acoustic wave propagation and dissipation

through poroelastic media in relation with their microstruc-

tures—except for the damping loss factor, g. One would then

have to use the full dynamic equations for the calculation of

g (and not only the quasi-static ones). Another possible com-

plication is the non-linear behavior that can result from the

compression rate of the foam.

Generating precise control over pore morphology48,49

and mechanical properties50 of the base material makes this

multi-scale approach particularly promising for various

advanced applications. See, in particular, Sec. 3 of Ref. 50,

where the principles enabling to tune the mechanical proper-

ties of the base material are addressed from the chemistry

point of view.

To summarize, we have developed a general methodol-

ogy in which the morphological dependence of intrinsic pa-

rameters in the acoustics of poroelastic foam samples can be

considered in a unified framework.
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