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ABSTRACT

In this work, the size effect on the effective through-thickness conductivity of heterogeneous plates
expressed in second-order Hashin—Shtrikman bounds and a third-order correlation approximation is
studied By taking into account the homogeneous temperature boundary conditions, the exact Green
operator for the plate is first established. Then, the respective bound s and correlation approximation are
constructed. With the help of the method based on the fast Fourier transform (FFT), the bounds and
correlation approximation for the effective through-thickness conductivity are computed for the plates
reinforced or weaken randomly either by spherical particles or unidirectional fibers. The numerical re-
sults show that the size effect of the effective through-thickness conductivity is more signifiant than the

one of the effective in-plane conductivity.
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1. Introduction

Macroscopic (effective) properties of randomly inhomogeneous
materials are generally hard to be determined theoretically,
because of the random irregular nature of their microgeometry.
Hence, variational approaches have been developed to construct
upper and lower bounds on the possible values of the effective
properties of the composites, which may involve multi-point cor-
relation parameters describing the microstructure of a composite,
besides the properties of the component materials [1-8|. n-point
correlation functions are related to the probability of finding n
points in certain relative arrangement, i.e. in the spaces of certain
components. One-point correlation information about a particular
component is just its volume proportion. High-order correlation
information about a composite is hard to collect and toinclude into
an estimate, hence one has to restrict oneself to the lowest-order
correlation functions, in particular, the two-point and three-point
ones, the values of which have been tabulated for a number of
practical microgeometries (see e.g. Ref. [7]).

Alternatively, effective medium approximation schemes have
been developed to estimate the effective properties of the com-
posites [79-13]. Refined approximations incorporate correlation
information about composites’ microgeometry |[2.714-18].
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(H Le Quang).

Developed upon the work of Brown [19], Sen and Torquato [15]
derived strong contrast expansions for the effective conductivity
tensor of macroscopically anisotropic two-phase media. Pham and
Torquato | 18] extended further the approach to the n-phase com-
posites. From the expansions, they proposed the three-point cor-
relation approximation for the effective conductivity of isotropic
composites that, in the case of two-phase materials, agrees well
with numerical results for a number of periodic and random
composites, even when the contrast between the phases is infinite
and their volume proportions are near percolation thresholds. The
simple approximation reduces to the well-known Maxwell and
self-consistent ones for the respective asymmetric matrix-inclusion
com posites and symmetric cell mixtures, and it obeys second-order
Hashin—Shtrikman as well as third-order three-point correlation
bounds over all the ranges of parameters.

One is interested in the effect of restricted domains when the
sizes of heterogeneities are no more negligible compared with a
characteristic size of the domain, leading to a well-defined size
effect. This size effect has been studied for plates, because the ge-
ometry allows to extend precisely the results obtained in infinite
domains; this size effect appears when the size of heterogeneities
has the order of the thickness of the plate. For plate problems, first
order and second order bounds were extended in the case of elastic
properties [20-23). In Ref. [24], we extended Pham-Torquato
three-point correlation appraximation and second order Hashin—
Shtrikman bounds, accounting for the size effect and insulation
boundary condition, on the effective in-plane conductivity of het-
erogeneous plates. In this work we continue to develop the



approach in order to study the size effect on through-thickness
conductivity of heterogeneous plates.

In Section 2, a Green operator for the heterogeneous plate with
homogeneous temperature boundary condition is constructed. The
Hashin—Shtrikman-type bounds on the through-thickness effec-
tive conductivity are extended in Section 3. Section 4 develops the
correlation approximation for the through-thickness effective
conductivity. Numerical applications are provided in Section 5,
followed by conclusions.

2. A Green operator for heterogeneous plate

In a three-dimensional Euclidean space B, let us consider a
heterogeneous plate consisting of spherical or unidirectional in-
homogeneities embedded in a matrix phase. The matrix, referred to
as phase 1, and inhomogeneity, denoted by phase 2, are assumed to
be individually homogeneous and have the linear thermal-
conduction behavior described by a local isotropic Fourier's law

qix) = c(x)E(x). (n

Here the local intensity field E(x) is the opposite of the gradient
of temperature field T(x)

E(X) = ~VT(x). (2)

while local heat flux vector field q at position x must verify the
following energy conservation equation

v-q(x) = 0 (3)

in the case of stationary thermal conduction without heat source.
The local scalar conductivity at position X is expressible as

2
cx) = 3 e TW(x), (4)

asl

where 7/ (x) is the indicator function of phase « (« = 1 or 2) which
is defined in such a way that 7®(x) = 1 if X in phase « and
otherwise 7/®(x)=0. For statistically homogeneous media,
(Z1®)(x)) = vy, where angular brackets denote an ensemble average.

For later use, we denote by Z the three-dimensional domain
occupied by a simple or representative volume element (RVE) of
the heterogeneous plate. More precisely, the latter can be defined
by

Z = {xeR’. X = (xl.x;.x;,).x,.e] —%.%[.x;e] —%.%[}. (5)

where a=1or2; 1, [ andt are the length, width and thickness of Z,
respectively. We designate by w = |-1,/2,1j/2 [x]| —12/2,i2/2 the
middle surface of Z and by 4w the boundary of w. The lateral
boundary 87 of Z is defined by 8Z; = dw x |—t/2, t/2|. The top and
bottom surfaces 8Z* of Z are aZ% = w x (£t/2) (see Fig. 1).

In order to determine the effective through-thickness conduc-
tivity of the heterogeneous plate, let Z be subjected to the zero
reference temperature (T = 0) on the bottom surface 4Z° and a
constant temperature (T = 7°) on the top surface 8Z". In addition, a
periodic boundary condition is imposed on the lateral boundary aZ;
of Z The determination of the Hashin—Shtrikman-type bounds
(Section 3) as well as the correlation approximation (Section 4) for
the through-thickness conductivity of composite plates with
possible finite size (thickness) effect needs first to construct the
Green operator for the heterogeneous plates with zero temperature
boundary conditions. This conduction problem defined on Z can be
expressed in the following form

Fig. 1. Description of a representative volume ek

(RVE) of heterog: plates.

v-qix) = 0 inZ

q(x) = c(X)E(x). Ex) = E° 4 Ex) inZ
E(x) = ~VIPT(x) inZ,

TP7(x) periodic on 82,

q(x)-n anti — periodic on 87,

TPT(x) = O onaz*.

(6)

Here, E° being a constant macroscopic gradient field is chosen in
sucha way that the non-zero through-thickness componentis E‘,’ =
7%/t and EY = ES = 0. By introducing the reference medium of
conductivity cp, the conduction problem (6) is equivalent

v-q(x) =0 inZ

q(x) = coE(x) +P(x). E(x) = E° 4+ E(x) inZ,
E(x) = ~VIP(x) inZ,

TPT(x) periodic on 82,

q(x)-n anti - periodic on 82,

TPT(x) = 0 onaz*.

In (7), the polarization p(x) is given by p(xX) = [c(x) — co|E(X). To
solve the problem (7), we decompose (7) into two auxiliary prob-
lems. The first one is obtained from (7) with p(x) = 0 while the
second one is provided from (7) by setting E° = 0.

It is clear that the first auxiliary problem has a trivial solution
Ex)= Eie. e(x) = 0. For the second auxiliary problem, due tothe
linearity of the local constitutive laws, the intensity solution field
E(x) is related linearly to the periodic polarization field p(x) by

&)

1
E = e | GiX ~X')-P(X")dX'. 8
x) ‘Z'z/ (x — X)-P(X') 8)

where |Z| is the volume of Z and G is the Green operator with zero
temperature boundary conditions. Moreover, this intensity solution
field E(x) can be decomposed into 2 parts as E(x) = E'(x) + E(x).
The first part E”{x) corresponds to the intensity solution field of the
periodic boundary value problem in which the domain Z medium
with periodic boundary conditions on 82 and aZ* is undergone by
the periodic polarization field p(x). More precisely,

V-g’(x) =0 inZ

@°(x) = EP(x) + P(x) inZ,

EP(x) = -VIP(x) inZ, (9)
T#(x) periodic on a2,

@”?(x)-nanti — periodic on 8Z;, and aZ*.

By introducing the Green operator GF with periodic boundary
conditions, the intensity solution field E’(x) takes in the following
form

E(x) = I—;I /G’(x ~x')-P(x")dx'. (10)
z



Itis clear that when the dimensions of Z are large enough, the
Green operator G” for the problem (9) is identical to the Green
operator for an infinite medium

(R) 1 dnen -1

Here and thereafter, d = 3 or 2 according as the spherical or
unidirectional inhomogeneity case is concemed; r = X — X;
n = R/|.R|.; &r) is the delta Dirac function, I is the second order
identity tensor. The second part E°(x) is the intensity solution field
of the complementary boundary value problem which is necessary
to comply with the zero temperature boundary conditions on aZ~.
This complementary problem is defined as

V-q°ix) = 0 inZ,
q°(x) = coE°(x) inZ,
ES(X) = ~VT%x) inZ
T¢(x) periodic on 82,

I

(12)

q°(x)-n anti — periodic on 82,
T9(x1.x2, £5) = ~TP(x1.X2.5),

where T¥(x,, x5, £t/2) is the temperature field solution of (9). The
intensityfield solutionof (12 ) can be expressed inthe following form

1 . ,
E(W) = g Z/C‘(x—x’.x3.x'3)-l’()(')dx. (13)

where X = (xy,x) and X = (x).x5); the Green operator
G (X — X, x3.%;) is periodic through-thickness x; — xa. Thus, the
Green operator G with zero temperature boundary conditions is
given in the form

G=@C+C". (14)

For later use, we note from the problems (9) and ( 14) that G and
G? are two self-adjoint operators. Consequently, the Green operator
G¢ related to G and @ by Eq. (14) is also a self-adjoint operator.
Moreover, the explicit expressions of G° and G have been derived
in Appendix A.

The Green operator with zero temperature boundary conditions
obtained in this section can be considered as complementary with
one given in the recent work of Le Quang et al. [ 24| devoted to the
plates isolated undergoing periodic polarizations. Moreover, the
method elaborated and results obtained by our work for the Green
operator of the plates can be used in the thermal conduction
phenomenon but are also applicable to physically analogous
transport phenomena, such as electric conduction, dielectrics,
magnetism, diffusion and flow in porous media

3. Hashin—Shtrikman-type bounds on the through-thickness
conductivity

In this section, the two constituent phases of the heterogeneous
plate are assumed to be randomly distributed. In addition, at

macroscopic scale, this heterogeneous plate is supposed o be
statically homogeneous in the plane (x; — x3). In order to determine
the upper and lower bounds for the effective through-thickness
conductivity of this random plate, we introduce first the thermal
energy Wen defined by

1 1
Wer = 57 z/q(x)-E(x)dx - SE0C (15)

where E° is a constant applied uniform intensity field on the
boundary of the plate and q(x) and E(x) are respectively the flux

and intensity solution fields, and we define then the trial function
W(t)as

Wit) = Wy + Wq(1). (16)

with

Wy = %COEO-IEO. a7

W (1) = ﬁ (2t-E° ~dc vt —t'C-t)dx. (18)
Y

where éc = o(x) — cpand t(x) is a trial periodic polarization field. It
can be shown by applying the well-known Hashin—Shtrikman
variational principle | 1] that

m;ax(wo +Wi(t)), 6c=0,

n}in(Wo+W1(t)}. éc < 0. (19)

- o

Because the function Wy is independent of t(x), the upper and
lower bounds of the effective cond uctivity tensor C* for the random
plate are obtained by looking for the trial periodic polarization field
1(x) in such a way that the function W,(t) attains its maximum
value when éc > 0 and its minimum value when éc < 0, respectively.

The upper and lower Hashin—Shtrikman bounds are obtained
by choosing the trial periodic polarization field as below.

First, the trial periodic polarization field in each phase is given
so thatitis independentof x; and x2, i.e. W(X) = ta{x3)witha = 10r
2. Moreover, owing to the fact that the random plate is statistically
homogeneous along any direction in the transverse plane (x1 — x2),
the characteristic properties are invariant with respect to any
translation along these directions, i.e.,

(T900) = (790a) = 5\ x). (20)

<I“"(x)1""(x')> = S(z‘"’)(xx') = Sg""(i X', x3.%). (21)

An ensemble average of Eq. (18) taking into account Egs. (14),
(20) and (21), leads to

Second, the plate under consideration is discretized along the x3
and x; directions with N3 points each. The trial periodic

2

Wy(t) ) = I—/ Zi 2849 (x5 )ta(x3) - E° — i S (x3)8¢ M a(X3) Ta(X3) — Z TalXy), /G’(X—)‘(' X3.X53) (X, )siax
1 (X3 )talXy 7 (X3 3 3 +X3.X3) T5(X3)5;
ZIZI 7 a=1 a=1 afi<1 Izl 7

2
a4

falXy) / G(x - )’('.X3.,\'3)-tﬁ(x’3)5[2"md)(] dx.
¥4

(22)



polarization field in each phase is approximately expressed by a
piecewise constant function as

Ny
Tu(X3) = Ty TmiX3) (23)
=1

where 7 ,,(x3) stands for the indicator function of the finite intervals
whose assembly yields the part of the x3-axis that is inside the
plate. It follows from (22) that

<W|(t)> = ZN% fj [i(zsz"tz"-ﬁ-sz"dc-‘r:"~':")

m=1l|a=l
Ny 2 gmem
N @ “f G (i
=1 ezl ] (G500
+c;’"”(x'))s;";”(i(')di('].

(24)

where G (X) = G(X,x3(m) — %5 (7)), G (X') = G“(X x3(m),
xym')), SEF(X) = SSPX xs(m).x5m')) and S = S\ (x3(m))
with x3(m)and x; (m') standing for the third coordinates of the m-th
and m'-th discretized points, respectively.

Third, the surface integral in Eq. (24) can be computed by using
the fast Fourier transform (FFT) with wave vectors k = (ky, kz) and
by applying the Parseval theorem. The expression of Eq. (24) re-
duces ©

<W|(¢)> - 2N'—3(ZTT~F STTM T T M T TN T)
(25)

where the discretized trial polarization vector T is defined by

1= (dehdg, ) 26)

with 1" = t4(x3(m)); the vector F is obtained from the one-point
correlation function S™ and the applied uniform intensity field E°.
M, is a symmetric squared matrix to be calculated from the one-
point correlation functions S{*’ and from the conductivities of the
plate and the reference medium. The squared matrices M, and M,
relative to the Green operators G” and G° are computed from the
two-point correlation functions S, In addition, since G* and G°
are self-adjoint operators, then M, and M, are both symmetric. The
expressions of F, M,, M, and M, are provided in Appendix B,

From Eq.(25), it is easy to show that (W,(t)) is stationary when
T = T, or equivalently when t = 1, with

Te = (My+ My + M) ' F. (27)

Correspondingly, the stationary value (W(1,)) of (W,(1)) is then
determined by

1
<wl(cs)> - sl (28)

Finally, by setting the conductivity of the reference medium in
such a way that co =max(c, c2)(or co = min(cy, c2)) and by applying
the Hashin—Shtrikman variational principle described above by Eq.
(19), ie.

1 1 1 .t
Wegr = §|s°~c‘~£° - 5‘050‘50 +W3T, ‘F, (29)

with an appropriate choice of the macroscopic intensity field E?, Eq.
(29) allows us to obtain the upper (or lower) bound of the effective
conductivity components of C*, To illustrate the features of the
upper and lower bounds of the effective through-thickness con-
ductivity obtained above, a few numerical examples will be shown
in Section 5.

4. Correlation approximation for the through-thickness
conductivity

At the macroscopic scale, the two-phase composite plate under
consideration is assumed to be statistically homogeneous and
characterized by a linear anisotropic thermal-conduction law with
the effective conductivity tensor C. For later use, we define

N ox)-cg 2 @
Lix) = ‘°"m = COduZ-:l b T (x). (30)
. Ca — Co
b,,_—cﬁ(di”co. (31)
L® = cod[C® — col]-[€2 4 (d — T)col] ™. (32)

As presented in Refs. [7,1824], by using the strong-contrast
approach, we obtain a third-order approximation equation for the
effective thermal conductivity tensor C as follows

1 T 1
(c_oc* 71) gl =l ~Ay— A, (33)
where
2
B =3 vibg. (34)
a4l

Az and As are, respectively, second and third order termsgiven by

A; = g,/dZ ilbwb”[<ﬂa>(])ﬂ»(2)>
_<z(“>(l)><f"’(2)>] h(1.2)
_ (b207 b10)2 /dz[sm>(| 2) - .%]h(] 2) (35)
T 2 N ’

where x and (X ) have been replaced by 1 and 2 for brevity and with
S5%0(1,2) = z#(1)219(2)) specifying the respective two-point
correlation function and

1 2 o
Ay = 27 / / d2d3 Lgﬂbwbmbw@'( MIPR)ITNG))

1S bbubrbu(00)T0Q)

afyd=1
<z">(2)zl‘>(3)>] h(1.2)h(2.3).

(36)
h(r) = cH(r). (37)



By using the third-order-approximation (33) and by taking the
conductivity cp of the comparison medium that is the solution of

Zé“c +(d— 1)co -

which makes Az vanish in the case of infinite media, Eq. (33) re-
duces to

(38)

1 1 B
(a(‘—l) =gl = A2

(39)
where Az is defined by (35) and B is determined by (34). Note that
the geometric three-point correlation parameters £; and £; in Eq.
(38) with £4,63 > 0 and £ + & = 1 can be found in Refs. [718]. In
particular, an approximation of £; versus particle volume fraction v,
can be given in an explicit analytical way
£, = 0.210681, — 0.0469315 + 0.0024713, (40)
with v2 < 0.6 for the random suspension of equisized hard spheres
in a matrix phase or provided by

£y = %vz ~0.05707:3, (41)
with v; < 0.7 for the random distribution of unidirectionally
aligned, infinitely long identical circular hard fibers in a matrix.

By using a way similar to the com putation of the surface integral
described previously in Section 3, the value of A; is calculated in the
discretization space of Eq. (35) as follows

—%‘— i fh"'"’(i()[S'z"z”’oi'>—-é]di’ (42)

mm=1 g,

where SIE(X) = SFP(X, x3(m), x4(m’)) with x3(m) and ¥(n)
being the third coordmates of the m-th and m-th discretized
points, respectively. The second order tensor h"™ (%) is defined as
™™ (%) = h(X,x3(m).2(n')) with h(X x3(m),x(n’)) deter-
mined from Egs. (37) and (11). Taking into account the expression
of the Green operator G(r) derived in Section 2 tensor h can be
written as:

h(X',x3(m), % (m')) =135(5(.x3(m) —xy(m))l
~ €o[GP (X', x3(m) — Ky (m)) (43)
+ ﬁ(x'~x3(m).#j(mi))].

From Eq.(42), Az is then computed in Fourier space by applying
FFT with the wave vector k = (ky, kz) and taking into account the
Parseval theorem. The Fourier transform of hi(X', x3(m),x’ 5(m'))
given by Eq. (43 ) takes the following form

ﬁ(k.xg(m).xg(m’)) = 5' ) [Cp (R.x;(m) - )Q(m’))
G (lk.x;(m).x’;(m’))] (44)
where
Zcp(k)e""[*""" (0]

&’(R.x;(m) - xg(m’)) (45)

with G” (k) and G (k x3(m), x5 (') ) determined above in Section 2.
By multiplying bothsides of Eq.(39) by E° = (0,0, E2)”, we obtain
the expression for the effective through-thickness cond uctivity.

5. Numerical applications

To numerically illustrate the features of the upper and lower
Hashin—Shtrikman bounds as well as the correlation estimation
established in Sections 3 and 4 for the effective through-thickness
conductivity of the heterogeneous plate, we now consider some
examples in which the identical spherical particles or circular fibers
with the same radius R are introduced into a host matrix phase. In
addition, the one and two-point correlation informations charac-
terized by the one-| pomtcorrelanon functions S‘"(x) and two-point
correlation functions S (x) are used to descnbe the microstruc-
ture of the hetemgeneous plate More precisely, 5, (x) is equal to
the volume fraction v, and S‘2 )(x) are assumed to be invariant with
respect to any translation and rotation. The analytical and numer-
ical methods to estimate the two-point correlation function for
different random material distributions have been studied previ-
ously. For more details about these methods, the reader can refer to
the excellent book of Torquato [7].

The first numerical example consists of a fiber-reinforced plate
containing a host matrix in which unidirectional circular fibers are
introduced. The fibers are infinitely long and aligned belong the
direction x2. The distribution of the fibers is random in the plane

— x3. Precisely, to describe the distribution of circular fibers in the
plane x; — x3 of the heterogeneous plate, the two hard and over-
lapping disk models are used. The hard disk model in two di-
mensions and the hard sphere model in three dimensions serve asa
useful model for unconsolidated media, such as fiber-reinforced
composites [25], colloidal dispersions [26], granular media |27,
and particulate composites [28]. On the other hand, the over-
lapping disk and sphere models, at low disk and sphere densities,
can be used to model dispersed composite materials in which the
particle phase is disconnected. However, at high densities, the
overlapping disk and sphere models approximate well consolidated
media, for example, sandstones and sintered materials [29] In
particular, the overlapping disk and sphere models are appropriate
to describe the porous media in which the voids can be considered
as overlapping inclusions with zero conductivity.

In the hard disk model, the two-point correlation functions
S (r) can be pwvnded by Table 1 in Ref. [30], while in the over-
lapping disk model, S‘z (r) is given explicitly by (see, e.g. Ref. [7])

vy -S4 (r)

%[*'i("ﬁ)m'm"‘(i)]
V2

SE(r) = vy~ 458V (r) =

3 ifr= \l/;?—:g>2k.
(46)

To compute the second order upper and lower bounds of the
effective conductivity for both models with randomly hard and
overlapping distributions of circular disks, we need to calculate the
stationary value of (Wy(t)) given by Eq. (27). This value can be
computed in Fourier space by using FFT. A discretization in the
plane x, — x5 of the plate is carried out by using the discretized
points whose coordinates are given by

I .
Xp = N (i = 1,3),
i N; ( )
where Ni = 2¥ with p e N* and ni = [-Ny/2,..., 0,..., Nif2 — 1]. The
components of the wave vectors are then defined as ki = 2mnifl;
where I3 = t and [, is large enough compared with the plate
thickness and with the size of inclusions. Practically, all results are



the same as soon as [, are greater than 20R, which means that for
these lengths, the Green tensor for a periodic polarization ap-
proximates correctly the Green tensor for a polarization in an
infinite plate. So, all computations are effected with Iy = 20R. In
order to study the convergence of the solution, we show in Fig. 2
the normalized with respect to o upper and lower Hashin—
Shtrikman bounds cums/c1 and awus/ci as well as the normalized
with respect to ¢, correlation approximation cca/c for the effective
through-thickness conductivity of the heterogeneous plate versus
logaNy = logaN; for both cases with hard and overlapping disk
models. The dimensions of the plate, the volume fractions and
conductivities of matrix and inclusion phases are chosen such as i/
2R=10,t/2R=2,v2 =1 — vy = 0.3 and cz/c, = 20 (hard disk model)
or czfcy = 1/20 (overlapping disk model). It can be seen from Fig. 2
that a discretization with Ny = N3 = 2 is sufficient to ensure the
convergence of the solution.

For the randomly hard disk model, by assuming the inclusion
phase © be more conducting than the matrix phase with the
conductivity ratio cz/cy =20, the ratio cyys/cy, Cuus/Cy and cea/cy are
plotted versus the volume fraction v, of the inclusion phase in
Fig. 3 with h/2R = 10 and t/2R = 2. These values for cuns/c1, cuss/C1
and cca/cy are also compared in Fig. 3 with the corresponding
values for an infinite medium. Additionally, compared to the clas-
sical upper and lower Hashin—Shtrikman bounds and the correla-
tion approximation for infinite medium, we show numerically an
important size-effect for the bounds and correlation approximation
of the effective through-thickness conductivity.

When the size of the inhomogeneities is compared to the
thickness of the plate (I;/2R = 10and t/2R = 2), it is seen from Fig. 3
that the correlation approximation values obtained for the effective
through-thickness conductivity are well situated between the up-
per and lower Hashin—Shtrikman bounds. Similar results are
observed in Fig. 3 for the randomly overlapping disk model with
the inclusion phase less thermal conducting than the matrix phase
(ca2/cy =1/20). Moreover, it can be observed also from Figs. 3 and 4
that the values obtained for the effective through-thickness con-
ductivity are close either to the lower Hashin—Shtrikman bound for
the case where the inclusion phase is more thermal conducting
than the matrix phase or to the upper Hashin—Shtrikman bound for
the contrary case. Figs. 3 and 4 show also that the upper and lower
Hashin—Shtrikman bounds as well as the correlation approxima-
tion for the effective through-thickness conductivity appear lower
(larger) than the corresponding classical upper and lower Hashin—
Shtrikman bounds and correlation approximation for infinite me-
dium in the case where the particle phase is more (less) thermal

Norarkrnd abiecton theagh th cemas conductety

1 2 3

L
loga Vs = logs Ny

Fig 2. Normalized with respect to ¢, lower and upper Hashin—Shtrikman bounds and
correlation approximation of the effective through-thickness @nductivity versus
lo@Ns = logaN3 with vz = 1-v; = 03,13/2R = 10,42k = 2 and cyfcy = 20 (hard disk
maodel) or ¢yfcy = 1/20 (overlapping disk model ).
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Fig. 3 Normalized with respect to ¢ lower and upper Hashin—Shtrikman bounds and
correlation approximation of the effective through-thickness cond uctivity versus the
inclusion volume fraction vz with @fcy = 20 and /2R = 10 and t/2R = 2 (hard disk
model).

conducting than the matrix phase. Compared with the results ob-
tained in Ref. 24| for the bounds and correlation approximation of
the effective in-plane conductivity, it is noteworthy that the size
effect is opposite to the one obtained in the case of through
thickness conductivity.

Next, to study more details about the size-dependence of the
Hashin—-Shtrikman bounds and the correlation approximation for
the effective through-thickness conductivity, the volume fraction of
the particle phase v, = 0.7 and the characteristic dimension along
the plane of the plate [, = 20R are kept constant while the thickness
t of the plate is varied in such a way that the ratio t/2R increases
from 2 to 10. We show in Figs. 5 and 6 the normalized with respect
to corresponding values for infinite medium of Hashin—Shtrikman
upper and lower bounds and correlation approximation for the

~—HS upper bound

~—classical HS upper bound

-8—-HS lower bound

---classical HS lower bound

~+—correlation approximaten

——carrelation approximation for infinite medium

Normalized effactive through thickness conductivity dcz
-
=]

R
T,
. A =
02 04 06 08
Inclusion volume fracton v,

Fig. 4 Normalized with respect to ¢ lower and upper Hashin—Shtrikman bounds and
correlation approximation of the effective through-thickness cond uctivity versus the
inclusion volume fraction vawith ey = 1/20 and 4 2R < 10 and /2R = 2 (overlapping
disk model)
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Fig. 5. Normalized with respect to comesponding values for infinite medium lower
Hashin—Shtrikman bound and comelation appraximation of effective through-
thickness conductivity versus the ratio t/2R with v, = 0.7, ¢;fc, = 20 and [ /2R = 10
(hard disk model)

effective through-thickness conductivity in terms of the ratio t/2R
in both cases with hard and overlapping disk models. Figs. 5 and 6
illustrate that the size-dependence of Hashin—Shtrikman bounds is
more pronounced as the ratio t/2R decreases. In particular, when
the thickness of the plate is large (t/2R = 10), the Hashin—Shtrik-
man upper and lower bounds and the correlation approximation
for the effective through-thickness conductivity tend to the corre-
sponding classical values for an infinite medium.

In the second example, the plate reinforced by identically
spherical particles is concerned. The two randomly hard and
overlapping spheres models are used to describe the distribution of
spherical particles in the heterogeneous plate. More precisely, in
the randomly hard sphere model, the two-point correlation func-
tions can be expressed as (31,32

Sg‘m (X~ x') = Vavg + Va (6,,‘ - uﬂ)h(r) (47)

~+~HS upper bound
> ——HS lower bound
3

-e—Correlalion approximaton|

Fig. 6. Normalized with respect to mrresponding values for infinite medium upper
Hashin—Shtrikman bound and elation appr tion of effective throug
thickness conductivity versus the ratio t/2R with v = 0.7, cyfey = 1j20 and Iy
2R = 10 (overlapping disk model .

where r denotes the distance between two points xand X ; 4, is the
Kronecker symbol; and h(r) is an exponential function defined by
(see, eg., Refs. [33.30])

h(r) = e (48)

Here, the coefficient a depends both of the radius R of spherical
inclusions and of the volume fraction v, of the matrix phase as

R25bmd1 + 28 [dl(z + 1) = w(infm)*? (” ~dq + V%)]
10g1(1 -~ v}y '

(49)
where
1 30 (1- 071170 - 0.1145)
o= -t by = . (50)
B D -t
g =120 02 (51)
il|(2+ill). ’

In the overlapping sphere model, the two-point correlation
functions S (r) are provided by Ref. [7,34]

SE(r) = vy~ + 84V () = vy - S§P(r)

"2(1 .i“'%) if r< 2R, (52)

v if r>2R.

As before, the calculation of the stationary value of (W,(1)) in Eq.
(27) is carried out in the Fourier space by using FFT. The coordinates
of the discretized points are given by

Xj = mNi‘ (i =1,2,3),

where N; = 2’ with p e N* and m; = [-Ny/2,..., 0,..., N2 — 1]. The
components of the wave vectors are then defined as k; = 2mny/l;. The
thickness of the plate I; is still equal to t while [, and I, are set at
Iy = I2 = 20R for the reasons given previously in the 2D case. In our
computations for the three-dimensional case, a discretization with
Ni=N2=N3=2is enough t ensure the convergence of the
solution (Fig. 7).

By using the randomly hard sphere model and by assuming the
inclusion phase to be more thermal conducting than the matrix
phase with the conductivity ratio cz/cy = 20 being kept constant,
the normalized upper and lower Hashin—Shtrikman bounds, cyys/
¢y and cyys/cy, as well as the normalized correlation approximation,
ccalcy are plotted versus the volume fraction vy of the matrix phase
in Fig. 8 with [}/2R = [3/2R = 10 and t/2R = 2. These normalized
bounds cyys/c; and cs/c; and normalized correlation approxi-
mation ccafcy are also compared in Fig. 8 with the normalized
classical upper and lower Hashin—Shtrikman bounds, cqyus/cy and
Cans/cy and normalized correlation approximation for infinite
medium. We see from Fig. 8 that the correlation approximation
values obtained for the effective through-thickness conductivity
are well situated between the upper and lower Hashin—Shtrikman
bounds. Moreover, we observe also from Fig. 8 that the estimation
values obtained for the effective through-thickness conductivity for
hard sphere model with higher conducting inclusions are close to
the lower Hashin—Shtrikman bound. It can be remarked from Fig. 8
a size effect on the upper and lower Hashin—Shtrikman bounds
as well as on the correlation approximation for the effective



through-thickness conductivity of the heterogeneous plate where
the size of the inhomogeneities is compared with the thickness of
the plate for t/2R = 2.

For the overlapping sphere model, by setting the inclusion phase
to be less conducting than the matrix phase with cz2/c1 = 1/20, the
normalized upper and lower bounds and correlation approxima-
tion of the effective through-thickness conductivity for a thin
heterogeneous plate with t/2R = 2 are plotted in Fig. 9 and
compared with their counterpart values for infinite medium.
Because the matrix phase is more conducting than the inclusion
phase, it is shown from Fig. 9 that the correlation approximation of
effective through-thickness conductivity obtained in this case is
then nearer to the upper Hashin—Shtrikman bound.

We representinFigs. 10 and 11 the normalized with respect to the
corresponding values for infinite medium upper and lower bounds
and correlation approximation for the effective through-thickness
conductivity in terms of the ratio between the thickness of the
plate and the size of inhomogeneity, t/2R, for a given value of the
matrix and inclusion volume fractions vy =1 — v; = 02 for hard
spheremodeland vy = v, =0.5 foroverlapping sphere model. Figs. 10
and 11 show that the size-dependence of Hashin—Shtrikman
bounds and correlation approximation is more pronounced as the
ratiot/2R decreases, whichis physicallycoherent. A point whichmay
be troublesome is that the curve for the correlation approximation
crosses the one for the upper Hashin—Shtrikman bound. It means
that the size effect on the correlation approximation is stronger than
the one for the upper Hashin—Shtrikman bound. However, the
effective conductivity obtained for the correlation approximation is
always lower than the one for Hashin—Shtrikmanbound, asit can be
seen in other figures.

Compared with the effective in-plane conductivity obtained by
Le Quangetal. |24 with both hard and overlapping sphere models,
itis seenfrom Figs. 811 that the size-dependence of the upperand
lower bounds and correlation approximation of the effective
through-thickness conductivity is much larger than the one of the
effective in-plane conductivity.

6. Concluding remarks

The size effect on the through thickness conductivity has been
studied by producing Hashin—Shtrikman bounds and correlation
approximations for the effective conductivity. This size effect is
produced within heterogeneous plates whose sizes of heterogene-
ities are no more negligible compared with the plate thickness. The
2D case of the distribution of random cylinders and the 3D case of
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Fig 7. Normalized with respect to ¢, lower and upper Hashin—Shtrikman bounds and
correlation approximation of the effective through-thickness @nductivity versus
lo@mN; = logaNs = logaNa with §ij2R < 10, t/2R = 2, cyfey = 20 andva = 1 — vy = 04
(hard disk model) or ¢y/c; = 1/20 and v; = 1 — v, = 0.3 (overlapping disk model).

~—HS upper bound

~=—classical HS upper bouna

~=—HS lower bound

--—classical HS lower bound

—-+—correlation approximation

I [~+—corralation approximation for infinite medum)|

-
=
T

-
=
T

-
B
T

- -
> = 2 LY
T T T T

'y
T

Normalized effective through thickness conductivity clc,

q 0.1 02 03 04 05 06
Malrice volume fracton v,

Fig. & Normalized with respect to c; lower and upper Hashin—Shtrikman bounds and
correlation approximation of the effective through-thickness cond uctivity versus the
matrix volume fraction v, with ¢y/c, = 20 and L /2R = /2R = 10 and /2R = 2 (hard
sphere model).

distribution of random spheres have been studied. The order of
magnitude of the size effect is comparable with the one obtained for
thein-plane conductivity, reaching around 10% for the highest value
of thesize effect. It is noteworthy that the size effect obtained for the
case of through thickness conductivity is opposite to the case of in-
plane conductivity. Indeed, in the case of through thickness con-
ductivity, the size effect produces effective conductivities which are
lower than for the case of an infinite medium for more conductive
inclusions and reversibly for less conductive inclusions. The size
effect on the correlation approximation and on the bounds produce
the same trend for the size effect, but have different magnitudes. It
seems probable that the size effect could be strongly dependent on
the shape of inclusions (see, e.g. Refs. [35-37]) and the presence of
imperfect interface between the constituent phases (see, e.g Refs.
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4" ||+-classical HS upper bound
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16H—*comrelation approximation
g ximation for infinite mediul

—+-correlation

s Y
.,
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Fig. 9 Normalized with respect to ¢, lower and upper Hashin—Shtrikman bounds and
correlation approximation of the effective through-thickness cond uctivity versus the
matrix volume fraction vy with cafcy = 120 and L/2R = L/2R = 10 and t/2R = 2
(overlapping sphere model .
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Fig. 10 Normalized with respect to the corresponding values for infinite medium
lower and upper Hashin—Shtrikman bounds and correlation approximation of effective
through-thickness conductivity versus the ratio t/2R with vy = 1 - v = 02, cafcy =20
and L /2R = /2R = 10 (hard sphere model ).

|38-40] ). It should be therefore interesting to study the coupling
between shape, imperfect interface and size effect.

Finally, we recall that all results obtained in the present work for
the bounds and correlation approximation of the effective through-
thickness conductivity hold under consideration that spherical
particles and unidirectional fibers are randomly distributed in
plates. The statistical description of the microgeometry of these
heterogeneous plates is characterized by the both one- and two-
point correlation functions that can be estimated by using some
analytical and numerical methods. However, in many situations of
practice, by certain production or technological reasons, such a
description is not available. For these cases, it is necessary to pro-
pose another random distribution model for heterogeneities in the
composite under consideration, for example, one of shaking-
geometry composites (see, e.g. Ref. [41] and the references cited

1
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---HS lower bound - o
-=—Correlation approximation| —
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through thick
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Fig. 11. Normalized with respect to the corresponding values for infinite medium
lower and upper Hashin—Shtrikman bounds and correlation approximation of effective
through-thickness conductivity versus the ratio /2R with vy = v = 0.5, cafcy = 1/20
and /2R = /2R = 10 (overlapping sphere model)

therein). By using the exact Green operator established in the
present work and combining with an iterative method based on the
FFT, the effective through-thickness conductivity of heterogeneous
plates can be numerically determined. On the other hand, it has
been proven that a regular periodic lattice provides the extreme
effective properties among the corresponding sharking-geometry
random microstructures (see Ref. [41]). Thus, the problem of
determining the effective conductivity and its bounds of sharking-
geometry random plates is remaining open. We plan to work on
this open problem and present it in a future paper.
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Appendix A. The expressions for the Green operators G” and
G in Eq. (14)

This appendix is dedicated to show that the expressions of the
solution fields in (9) and(12)as well as the expressions of ¢, G° and
G can be obtained explicitly in the Fourier space by using FFT
[42.43]. In general, the expansions into Fourier series of any 3D-
periodic function fx) and 2D-periodic functiong(x) are given by

fx) = 3oFekx, gx) = 37 g(k.xs)ek*, (A-1)
k k

where i = V-1; k = (kj,ka) and k = (ky, ka, ks) are the discrete
wave vectors arranged along a discrete lattice with period 2m/l;
(I3 = t) along the direction x;; the coefficients of the Fourier series
fik) and g(k, x;) are calculated by FFT.

By applying the previously defined Fourier series expansions to
the temperature solution fields Tx) and T9x) of the boundary
value problems (9) and (12), we obtain

TP(x) = pr(k)e“”‘. TS(X) = Zf‘(k.x;)e“‘i. (A-2)
k Kk

The resulting intensity fields are given by

E’(X) = Zﬁp(k)e“"‘. ES(x) = ZE‘(R.Xg)e‘."’.‘. (A-3)
K Kk

where ﬁ’(!} and E‘(l‘(,xg) are related to the temperature fields
7(k) and T (k,x3) by
Fk = -vweT’ (k). is‘(k.x3) = _W@?‘(k.x3) (A-4)
where ¥¥ and v are two operators defined by W = [ik, ik, iks)"
and V¢ = [ik, ik, 8|7, the operator & denoting the partial dif-
ferentiation with respect to the coordinate subscript that follows.
In a similar way, the polarization field p(x) is expanded into the
Fourier series as
P(x) = 3 plkjex. (A-5)
k
In the Fourier space, the combination of the Fourier's law and
the use of the polarization tensor lead to:
- - ~ oy -
Tk = oF (k) +pk). G (kxs) = oF (ko). (A-6)
and the energy conservation equation, in the stationary thermal
conduction case without a heat source, becomes



coklf (k) + ik-p(k) = 0,
cos?T (k x;) ~ P35 (k x;) =0,
withk = (k3 + k3 + k3)"2 ands = (i +k3)'/2. Theexprssnonsof

the temperature solunon fields 7% (k) and T‘(k X3) given from (A
7) take an explicit analytical form

(A7)

(k) = _ik;:k(;‘)' Vk=0, (A-8)
f(k.x;) —a'e™ pae ™, wk=0. (A-9)

Here, a* are two constants to be determined via the vector
AKk) = (a*.a )T from the boundary conditions on a¥*

T‘(k.x; :t—) Z’i"(k)e*'-'a’- (A-10)
Combining (A-10) with (A-8) and (A-9) yields

A(k) = A e-,.)Zq(k)(k p(k)). vk=0, (A1)

where

Rl |

By introducing (A-9) into (A-4) and by taking into account (A-
11)-{A-12), we have

Ek) = _( ) pk). Vk=0, (A-13)
P i X
E (ko) = WP(R.J&;)
qkeky - ¥ :
’ g(_k,_) p(K), Yk=0, (A-14)
with
. lklf(x’ l’k]C’“‘
P(koxs) = —|ikpess ikpeso |, (A-15)
e g™
By expressing (10) in the Fourier space
k) = 6" p" (k). (A-16)

and by comparing (A-16) with (A-13), we obtain the Fourier
transform of the Green operator G¥ as follows

&k = ("‘9") Vk=0. (A17)
By writing Eq. (13) in the Fourier space
§
E(kx ) = —%/C‘(R.x;.x’s)ﬁ(kxg)dxg. (A-18)
_é

and accounting for (A-14), the Fourier transform of the Green
operator G° is then given by

¢ (lkoxgxy) = _mp(k'x3)

XZ

In the particular case where k = 0, due to the periodic boundary
conditions on #Z and on 4Z* in (9), the Fourier transform of the
intensity solution field EAx) is therefore equal to zero, ie.
"'(k 0) = 0. From this it follows immediately that

=0 =0 Slmlhry due to the penodlc boundary condition
onaZnn(lZ\ we have E,(k = 0,x3) = OandEJ(k 0,x3)#0. By
using the boundary condition (A-10) and the second differential
ation of (A-7) the non-null out-of-plane component
3(k = 0,x3) is given by

- S ak) @k, V=0, (A-19)

E;(k N O.X3) _ Tlogl'ﬁg(kk:[o.kl) (t.’:;:—e‘:l’:)

(A-20)

This equanon allows us to derive the expression for non-zero
components of G (k. x5, xy)at k = 0as follows

o€ fr - i 1 ¢ _5}: X, B
Cap(k = 0.x3,%) = mgg(&—e Jets (A21)

As mentioned previously, the Green operator defined by (14)
together with (A-17) and (A-19) is related to a periodic distribu-
tion of sources within the plate.

Appendix B. The expressions for the vector F and matrix M,,
M, and M€ in Eq. (25)

T
= (S}Eo,S}Eo, S}E0, S3E, ... Sk, Eo, S}, Eo ) (B-1)
st 0o 0 o 0 0
0 s 00 0 0
00 % 0 0 0
M, =dc'fo 0 0 83 0 o (B-2)
00 0 0 b0
(0 0 0 0 0 sy
r Ml 12 1N,
Mgl Mp ng N%N:
Mp = dc! M'3’1 g M:::: oM (8-3)
~¢,I M#,z M,',"3 M;J;N;
with
[am s s [ G s)st
mm’ w
14

AT /@"’(k’ﬁ'ﬂ"'(i’)dk’ /Q‘”’(i()s'ﬁ"'(ﬁ)d;( R



11 12 13 1Ny

1
M. = et it ::32 &33 "

(B-4)

Mfo,l M2 Mél,a N wl}ns
with
[ wsras [er s
T / G (S () [ G2 () S X
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