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Abstract

Vertex coloring of a graph G with n-colors can be equivalently thought to be a graph
homomorphism (edge preserving vertex mapping) of G to the complete graph Kn of order n.
So, in that sense, the chromatic number χ(G) of G will be the order of the smallest complete
graph to which G admits a homomorphism to. As every graph, which is not a complete
graph, admits a homomorphism to a smaller complete graph, we can redefine the chromatic
number χ(G) of G to be the order of the smallest graph to which G admits a homomorphism
to. Of course, such a smallest graph must be a complete graph as they are the only graphs
with chromatic number equal to their order.

The concept of vertex coloring can be generalize for other types of graphs, namely, ori-
ented graphs (directed graphs with no cycle of length 1 or 2), 2-edge-colored or signed graphs
(graphs with positive or negative signs assigned to each edge) and switchable signed graphs
(equivalence class of signed graph with respect to switching signs of edges incident to the
same vertex) using the notion of graph homomorphism. Naturally, the chromatic number is
defined to be the order of the smallest graph (of the same type) to which a graph admits
homomorphism to. For the above mentioned type of graphs, the graphs with smallest order,
that is, the graphs with order equal to their (so defined) “chromatic number” are called
ocliques, scliques and [s]-cliques respectively. These “cliques” turns out to be much more
complicated than their undirected counterpart and are interesting objects of study.

In this article, we mainly study different aspects of “cliques” for signed and switchable
signed graphs. In particular, we show that it is NP-hard to decide if edges of a given
undirected graph can be assigned positive and negative signatures such that it becomes
an sclique or an [s]-clique. We also show that, asymptotically, almost all signed graphs are
scliques or [s]-cliques. Furthermore, we prove a sufficient and necessary condition for a signed
graph (or switchable signed graph) to be an sclique (or [s]-clique). We study the number of
vertices that an sclique (or [s]-clique) can have when their underlying graph is planar and
prove a tight upper bound of 15. We also study the same for outerplanar graphs and planar
graphs with given girth (length of the smallest cycle). Finally, we generalize the concept of
“cliques” for n-edge-colored graphs (graphs with one among n different colors assigned to
each of its edge) and do a similar study for outerplanar and planar graphs.

Keywords: signed graphs, switchable signed graphs, graph homomorphism, cliques, chromatic
number, oriented graph.
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1 Introduction

A signed graph or 2-edge-colored graph (G,Σ) is a graph G with an assignment of positive (black
lines used to denote them in the figures) and negative (black “dashed” lines used to denote them
in the figures) signs to its edges where Σ is the set of negative edges and G is its underlying graph.
We denote the set of positive edges by Σc. When the set of negative edges Σ is understood, we
can denote the signed graph (G,Σ) by (G). In general, the set of vertices and the set of edges
of the signed graph (G,Σ) are denoted by V (G) and E(G). Two incident edges uv ∈ Σ and
vw ∈ Σc are together called a rainbow 2-path with terminal vertices u,w and internal vertex v.
In such cases, we say that the vertices u and w are connected by a rainbow 2-path.

A signed k-coloring [1] of a signed graph (G,Σ) is a mapping φ from the vertex set V ((G,Σ))
to the set {1, 2, ...., k} such that,

- (i) φ(u) 6= φ(v) whenever u and v are adjacent and

- (ii) if uv is a positive edge and wx is a negative edge of (G,Σ), then φ(u) = φ(w) implies
φ(v) 6= φ(x).

The signed chromatic number χs((G,Σ)) of a signed graph (G,Σ) is the smallest integer k for
which (G,Σ) has a signed k-coloring. The signed chromatic number χs(G) of an undirected graph
G is the maximum of the signed chromatic numbers of all the signed graphs with underlying
graph G. The signed chromatic number χs(F) of a family F of graphs is the maximum of the
signed chromatic numbers of the graphs from the family F .

Alternatively, we can define the signed chromatic number using homomorphisms of signed
graphs. Given two signed graphs (G,Σ) and (H,Λ), φ is a homomorphism of (G,Σ) to (H,Λ)
if φ : V (G) −→ V (H) is a mapping such that every edge of (G,Σ) is mapped to an edge of
the same sign of (H,Λ) (that is, uv ∈ E(G) and φ(u)φ(v) ∈ E(H) have the same sign). We
write (G,Σ) → (H,Λ) whenever there exists a homomorphism of (G,Σ) to (H,Λ). The signed
chromatic number χs((G,Σ)) of a signed graph (G,Σ) is the minimum order (number of vertices)
of a signed graph (H,Λ) such that (G,Σ) admits a homomorphism to (H,Λ).

Homomorphism of signed graphs were studied by Nešetřil and Raspaud [26], Alon and Mar-
shall [1] and Montejano et al. [21]. In fact, initially, the notion of signed vertex coloring and
chromatic number was defined using the notion of homomorphism, in a way similar to oriented
vertex coloring and oriented chromatic number of oriented graphs [8, 28, 32, 31]. Intuitively,
homomorphism of an oriented graph to another is an arc preserving vertex mapping, while the

oriented chromatic number χo(
−→
G) of an oriented graph

−→
G is the minimum order of an oriented

graph
−→
H to which

−→
G admits a homomorphism (detailed definitions are given in Section 3).

In practise, while studying signed coloring, it was observed that analogous versions of several
results from the theory of oriented coloring can be proved using similar techniques. This made
us wonder if there is an underlying general relation between the two kinds of graph colorings.
In this article we study this idea and actually end up proving the opposite. We prove that given
an (undirected) graph, its signed chromatic number and its oriented chromatic number can be
arbitrarily different.

To resign a vertex v of a signed graph (G,Σ) is to change the signs of the edges incident
to v. Two signed graphs (G,Σ) and (G,Σ′) are in a resign relation if we can obtain (G,Σ′) by
resigning some vertices of (G,Σ). Note that the resign relation is an equivalence relation. A
switchable signed graph [G,Σ] is an equivalence class of signed graphs (where (G,Σ) is an element
of the equivalence class) with respect to resign relation. Any element of the equivalence class
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[G,Σ] is a presentation of it. We use the notation (G,Σ) ∈ [G,Σ] for (G,Σ) is a presentation of
[G,Σ].

The most important component in the study of switchable signed graphs are its two kinds
of cycles, namely, balanced cycles: cycles with even number of negative edges and unbalanced
cycles: cycles with odd number of negative edges. Note that the parity of the number of negative
edges in a cycle of a switchable signed graph remains invariant under the resign operation and
hence the above two definitions are consistent.

switchable signed graphs have been studied since the middle of the last century [12, 35].
Naserasr, Rollová and Sopena [25] recently introduced and studied homomorphisms of switchable
signed graphs. In their beautifully written article they showed that many important theorem and
conjectures of classical graph theory can be captured and extended using the notion of switchable
signed homomorphism. That work has since inspired a significant number of works [23, 24, 9,
27, 30] on switchable signed homomorphism in a short period of time.

Given two switchable signed graphs [G,Σ] and [H,Λ], we say there is a homomorphism φ
of [G,Σ] to [H,Λ] if φ is a homomorphism of a presentation (G,Σ′) ∈ [G,Σ] to a presentation
(H,Λ′) ∈ [H,Λ]. We write [G,Σ] → [H,Λ] whenever there exists a homomorphism of [G,Σ] to
[H,Λ].

A switchable signed k-coloring of a switchable signed graph [G] is a vertex coloring which
is a signed k-coloring of a presentation of the graph. The switchable signed chromatic number
χ[s]([G]) of a switchable signed graph [G] is the minimum of the signed chromatic numbers of the
elements of the equivalence class [G]. The switchable signed chromatic number of an undirected
graph and of a family of graphs is defined similarly like in the case of signed chromatic number.

Alternatively, the switchable signed chromatic number χ[s]([G]) of the switchable signed
graph [G] is the minimum order of a switchable signed graph [H] such that [G] admits a homo-
morphism to [H].

The chromatic number χ(G) of an undirected simple graph G is the minimum number of
colors needed to color the vertices of G such that no two adjacent vertices receive the same color.
A clique is a simple undirected graph whose order and chromatic number are equal. It is easy
to notice that cliques are nothing but the complete graphs.

The notion analogous to “cliques” for oriented graphs, known as oriented cliques or ocliques
(oriented graphs with oriented chromatic number equal to their order), was introduced by
Klostermeyer and MacGillivray [15] and have been further studied in [29, 22, 3, 33]. The
structure of ocliques seems way more difficult to understand than in the undirected case. For
instance, the exact value of the minimum number of arcs in an oclique of order k is not known
yet. Füredi, Horak, Pareek and Zhu [10], and Kostochka,  Luczak, Simonyi and Sopena [16],
independently proved that this number is (1 + o(1))k log2 k. In the same paper, Füredi et. al.
commented that a similar result can be proved for signed graphs as well using the exact same
technique (they did not define signed cliques though).

For signed graphs, no similar study is published yet while switchable signed cliques were
defined and studied in [25]. Here, in this article, we introduce signed cliques and study it along
with switchable signed cliques. It seems that the structure of signed and switchable signed cliques
are also quite difficult to comprehend and, hopefully, this study would open a new interesting
line of research within the domain of graph coloring.

A signed clique or an sclique is a signed graph (G,Σ) for which χs((G,Σ)) = |V ((G,Σ))|.
The signed absolute clique number ωas((G,Σ)) of a signed graph (G,Σ) is the maximum order of
an sclique contained in (G,Σ) as a subgraph. Similarly, a switchable signed clique or simply an
[s]-clique is a switchable signed graph [G] for which χ[s]([G]) = |V (G)|. The switchable signed
absolute clique number ωas([G]) of a switchable signed graph [G] is the maximum order of an
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(b) Example of [s]-cliques.

(a) Example of scliques.

(i) (ii) (iii) (iv)

Figure 1: (a) Examples of signed cliques. (b) Examples of switchable signed cliques.

[s]-clique contained in [G] as a subgraph. The signed and switchable signed absolute clique
numbers of an undirected graph and of a family of graphs is defined similarly like in the case of
signed chromatic number.

These cliques are an important component in the study of signed or switchable signed ho-
momorphism – as to find out the signed or switchable signed chromatic number of a graph we
need to study homomorphism of that graph to a signed or a switchable signed clique. In this
article we study different aspects of signed and switchable signed cliques, namely, asymptotic,
complexity and structural aspects. Later we extend the concept of cliques to n-edge-colored
graphs [26, 1, 21, 4] and briefly study them as well. Curiously our definition of an sclique co-
incides with the definition of graphs with rainbow connection number 2 [13, 18, 6]. As rainbow
connection number [19, 7, 5, 17, 34, 2] is a well studied topic, this coincidence increases the
significance of this work.

In Section 2 we fix some notations and study the general structure of signed and switchable
signed cliques. In Section 3 we compare 2-edge-colored coloring and oriented coloring. Then in
Section 4 and Section 5 we study the asymptotic and complexity aspects of signed and switchable
signed cliques, respectively. In Section 6 we investigate the structure of signed and switchable
signed cliques for planar graphs. In Section 7 we introduce the definition of n-edge-colored cliques
and study them briefly. Finally, in Section 8 we conclude the article.

2 Preliminary notations and basic properties

In order to get used to the concept of scliques and [s]-cliques we provide some examples in Fig. 1.
To verify these examples the following characterizations are useful.
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Proposition 2.1. A signed graph (G,Σ) is an sclique if and only if its each pair of non-adjacent
vertices are connected by a rainbow 2-path.

Proof. Let (G,Σ) be a signed graph with its each pair of non-adjacent vertices connected by a
rainbow 2-path. Clearly, from the definition of signed coloring, any two vertices must receive
different colors under any signed coloring of (G,Σ). Hence (G,Σ) is an sclique. This proves the
“if” part of the proposition.

To prove the converse, let (G,Σ) be an sclique. Let u and v be a pair of vertices in (G,Σ)
which are not connected by a rainbow 2-path. Let f be a signed coloring with f(u) = f(v) and
f(x) 6= f(y) for all distinct x, y ∈ V (G) such that {x, y} 6= {u, v}. It is easy to note that f
is indeed a signed coloring of (G,Σ). In fact, f is a (|G| − 1)-signed coloring of (G,Σ). This
implies χs((G,Σ)) < |G| contradicting the fact that (G,Σ) is an sclique. This proves the “only
if” part of the proposition.

A similar characterization was proved for [s]-cliques in [25]. We recall it here.

Proposition 2.2. A switchable signed graph [G,Σ] is an [s]-clique if and only if its each pair
of non-adjacent vertices are contained in an unbalanced 4-cycle.

Two non-adjacent vertices are contained in an unbalanced 4-cycle means the two vertices are
connected by two disjoint 2-paths among which exactly one 2-path is a rainbow path. Therefore,
the condition for being an [s]-clique is stronger than the condition for being an sclique while
there are scliques which are not [s]-cliques (a rainbow 2-path, for instance).

Proposition 2.3. Every [s]-clique is an sclique but every sclique is not an [s]-clique.

Therefore, the [s]-cliques depicted in Fig. 1(b) are also scliques.
From the definition of signed (or switchable signed) chromatic number and absolute clique

number it immediately follows that the signed (or switchable signed) absolute clique number of
a graph is bounded above by its signed (or switchable signed) chromatic number.

Proposition 2.4.

(i) For any signed graph (G,Σ) we have ωas((G,Σ)) ≤ χs((G,Σ)).

(ii) For any switchable signed graph [G,Σ] we have ω[as]([G,Σ]) ≤ χ[s]([G,Σ]).

We also note that the parameter signed (or switchable signed) absolute clique number re-
spects homomorphism in the following sense:

Proposition 2.5.

(i) Let (G,Σ) → (H,Λ). Then ωas((G,Σ)) ≤ ωas((H,Λ)).

(ii) Let [G,Σ] → [H,Λ]. Then ω[as]([G,Σ]) ≤ ω[as]([H,Λ]).

Now we will define some notations and a few parameters to be used in this article. For

a signed graph (G,Σ) (or for an oriented graph
−→
G), every parameter we introduce below is

denoted using (G,Σ) (or
−→
G) as a subscript. In order to simplify notation, this subscript will be

dropped whenever there is no chance of confusion.
The set of all adjacent vertices of a vertex v in a signed graph (G,Σ) is called its set of

neighbors and is denoted by N(G,Σ)(v). If uv ∈ Σ, then v is a positive-neighbor of u and if
uv ∈ Σc, then v is a negative-neighbor of u. The set of all positive-neighbors and the set of all
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Figure 2: List of all triangle-free planar graphs with diameter 2 (Plesńık (1975)).

negative-neighbors of v are denoted by N+
(G,Σ)(v) and N−

(G,Σ)(v) respectively. The degree of a

vertex v in a signed graph (G,Σ), denoted by dG(v), is the number of neighbors of v in (G,Σ).
Naturally, the positive-degree (resp. negative-degree) of a vertex v in a signed graph (G,Σ) is
denoted by d+(G,Σ)(v) (resp. d−(G,Σ)(v)) for v in (G,Σ). Two vertices u and v of a signed graph

agree on a third vertex w of that graph if w ∈ Nα(u)∩Nα(v) for some α ∈ {+,−}. Two vertices
u and v of a signed graph disagree on a third vertex w of that graph if w ∈ Nα(u) ∩Nβ(v) for
some {α, β} = {+,−}.

For an oriented graph
−→
G if there is an arc −→uv, then u is an in-neighbor of v and v is an

out-neighbor of u. The set of all in-neighbors and the set of all out-neighbors of v are denoted
by N−

−→
G

(v) and N+
−→
G

(v), respectively.

We define some graph parameters, not related to coloring, and some results related to those
parameters which will be used later.

The distance dG(x, y) (or d(x, y) when there is no confusion) between two vertices x and y
of a graph G is the smallest length of a path connecting x and y. The diameter diam(G) of a
graph G is the maximum distance between pairs of vertices of the graph.

Theorem 2.6. [14] The triangle-free graphs with diameter 2 are precisely the graphs listed in
Fig. 2.

The graphs depicted in Fig. 2 are the stars, the complete bipartite graphs K2,n for some
natural number n, and the graphs obtained by adding copies of two non-adjacent vertices of the
5-cycle.

A vertex subset D is a dominating set of a graph G if every vertex of G is either in D
or adjacent to a vertex of D. The domination number γ(G) of a graph G is the minimum
cardinality of a dominating set of G.

Theorem 2.7 (Goddard and Henning [11]). Any planar graph with diameter 2 has domination
number at most 2, except for a particular planar graph on 9 vertices (depicted in Fig. 3) which
has domination number 3.

Figure 3: The unique planar graph with diameter 2 and domination number 3.

Now let us observe one curious example. The signed graph depicted in Fig. 4 has signed
absolute clique number 3 but its four vertices with degree more than two can never receive the

6



Figure 4: A signed graph with relative clique number 4 and absolute clique number 3.

same color under any signed coloring. One can note that whenever two vertices of a signed
graph are adjacent or connected by a rainbow 2-path, they must receive different color. These
kinds of examples motivated the definition of “relative cliques” in signed graphs, a notion that
will be used for proving results in this article.

A relative clique of a signed graph (G,Σ) is a set R ⊆ V ((G,Σ)) of vertices such that any
two vertices from R are either adjacent or connected by a rainbow 2-path. The relative clique
number ωrs((G,Σ)) of a signed graph (G,Σ) is the maximum order of a signed relative clique of
(G,Σ). The term relative clique and the definition are given by following the similar term and
definition used in [25] for switchable signed graphs. Naturally, we can extend Proposition 2.4(i)
in the following manner:

Proposition 2.8. For any signed graph (G,Σ) we have ωas((G,Σ)) ≤ ωrs((G,Σ)) ≤ χs((G,Σ)).

Here we also mention a result that we will recall in one of the succeeding sections.

Theorem 2.9. Let (G,Σ) be a signed outerplanar graph. Then ωrs((G,Σ)) ≤ 7.

The proof follows from a generalized result (Theorem 7.3) proved in Section 7.

3 Signed vs oriented coloring

Colorings of oriented graphs first appeared in the work of Courcelle [8] on the monadic second
order logic of graphs. Since then it has been considered by many researchers, following the work
of Raspaud and Sopena [28] on oriented colorings of planar graphs.

An oriented k-coloring [32] of an oriented graph
−→
G is a mapping φ from the vertex set V (

−→
G)

to the set {1, 2, ...., k} such that,

- (i) φ(u) 6= φ(v) whenever u and v are adjacent and

- (ii) if −→uv and −→wx are two arcs in
−→
G , then φ(u) = φ(x) implies φ(v) 6= φ(w).

The oriented chromatic number χo(
−→
G) of an oriented graph

−→
G is the smallest integer k for

which
−→
G has an oriented k-coloring.

Alternatively, we can define oriented chromatic number by defining homomorphisms of ori-

ented graphs. The oriented chromatic number χo(
−→
G) of an oriented graph

−→
G is the minimum

order of an oriented graph
−→
H such that

−→
G admits a homomorphism to

−→
H .

The oriented chromatic number χo(G) of an undirected graph G is the maximum of the
oriented chromatic numbers of all the oriented graphs with underlying graph G. The oriented
chromatic number χo(F) of a family F of graphs is the maximum of the oriented chromatic
numbers of the graphs from the family F .
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It is observed that similar bounds hold for oriented chromatic number and signed chromatic
number for several families of graphs, namely, paths, cycles, trees, graphs with bounded maxi-
mum degree, graphs with bounded acyclic chromatic number, outerplanar graphs, outerplanar
graphs with given girth (length of the smallest cycle), k-trees, planar graphs, planar graphs with
given girth etc. [21].

Naturally this made us curious if there is an underlying relation between the two chromatic
numbers or not. Hence we studied the difference between the two parameters, that is, χs(G) −
χo(G) for a given graph G and managed to prove the following result.

Theorem 3.1. Given any integer n, there exists an undirected graph G such that χs(G) −
χo(G) = n.

Proof. All the complete graphs have their oriented chromatic number equal to their signed
chromatic number. So, we need to prove χs(G) − χo(G) = n for non-zero integers n.

Let A and B be two undirected graphs. Let A + B be the undirected graph obtained by
taking disjoint copies of A and B and adding a new vertex ∞ adjacent to all the vertices of A
and B. So, A+B is the undirected graph dominated by the vertex ∞ and N(∞) is the disjoint
union of A and B.

It is easy to observe that

χs(A + B) ≤ χs(A) + χs(B) + 1.

Let ΣA ⊆ E(A) and ΣB ⊆ E(B) be such that we have χs((A,ΣA)) = χs(A) and χs((B,ΣB)) =
χs(B). Now choose ΣA+B ⊆ E(A + B) such that,

ΣA+B = ΣA ∪ ΣB ∪ {∞b|b ∈ V (B)}.

Clearly, the vertex ∞ must receive a color different from any other vertex in the graph in
any signed coloring. Also, due to the choice of ΣA+B, the signed graph induced by N+(∞) is
isomorphic to (A,ΣA) and the signed graph induced by N−(∞) is isomorphic to (B,ΣB). Note
that the vertices of N+(∞) must receive colors different from the colors received by the vertices
of N−(∞) in any signed coloring. Therefore,

χs((A + B,ΣA+B)) ≥ χs((A,ΣA)) + χs((B,ΣB)) + 1

= χs(A) + χs(B) + 1.

This implies

χs(A + B) = χs(A) + χs(B) + 1. (1)

Similarly, consider orientations
−→
A ,

−→
B and

−−−−→
A + B of A, B and A + B respectively such that

χo(
−→
A ) = χo(A), χo(

−→
B ) = χo(B) and that the oriented graphs induced by N+(∞) and N−(∞)

in
−−−−→
A + B are isomorphic to

−→
A and

−→
B respectively.

With arguments similar to what we gave for proving equation 1 we have,
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χo(A + B) = χo(A) + χo(B) + 1. (2)

Let H be an undirected graph. Then we define, by induction, the graph Hk = H +Hk−1 for
k ≥ 2 where H1 = H. Note that,

χs(Hk) = k × χs(H) + (k − 1) and χo(Hk) = k × χo(H) + (k − 1).

The above two equations imply

χs(Hk) − χo(Hk) = k × (χs(H) − χo(H)). (3)

It is easy to observe that, a path P5 of length 5 has oriented chromatic number equal to
3 while its signed chromatic number is 4. On the other hand, a cycle P5 of length 5 has
oriented chromatic number equal to 5 while its signed chromatic number is 4. Hence we have
χs(P5) − χo(P5) = 1 and χs(C5) − χo(C5) = −1.

Now by replacing H with P5 and C5 in equation 3 we are done.

4 Asymptotic aspects

It is well known that almost all graphs have diameter 2 [18]. As both scliques and [s]-cliques
are graphs with diameter 2, it is interesting to find how “rare” these objects are. Upon a study
to this end, we can show that almost all signed graphs are [s]-cliques, which clearly implies that
almost all signed graphs are scliques. Both the results are stronger than proving that almost all
graphs have diameter 2.

To show that almost all signed graphs are [s]-cliques, we require the following result.

Lemma 4.1. For a fixed set of n vertices V and a pair u, v ∈ V , there are no more than

2 · 5(n− 2)3(n
2
)−2(n−2)−1 signed graphs with vertex set V such that u and v are not adjacent and

are not part of an unbalanced 4-cycle.

Proof. We begin by bounding the number of signed graphs in which u and v are the terminal
vertices of a rainbow 2-path but not the terminal vertices of a 2-path with edges of the same
type. Each of the other n − 2 vertices are either adjacent to either exactly one of u and v or
to neither u nor v or to both u and v by edges of the different types. This gives a total of 5
possibilities for the edges between the remaining vertices and u and v. As such there are no
more than

5(n− 2)3(n
2
)−2(n−2)−1

signed graphs with vertex set V such that u and v are not adjacent and are terminal vertices
of a rainbow 2-path but not ends of a 2-path with edges of the same type.

A similar argument shows that the number of signed graphs in which u and v are the terminal
vertices of a 2-path which is not a rainbow 2-path is no more than

5(n− 2)3(n
2
)−2(n−2)−1

Therefore the total number of signed graphs on vertex set V in which u and v are not
adjacent and and are not part of an unbalanced 4-cycle is at most
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2 · 5(n− 2)3(n
2
)−2(n−2)−1

.

Theorem 4.2. Almost all signed graphs are [s]-cliques.

Proof. The total number of signed graphs on n vertices is 3(n
2
) and the number of n vertex signed

graphs which are not [s]-cliques is at most
(

n
2

)

· 2 · 5(n− 2)3(n
2
)−2(n−2)−1.

lim
n→∞

(

n
2

)

· 2 · 5(n− 2)3(n
2
)−2(n−2)−1

3(n
2
)

= 0.

As n goes to infinity, the ratio of the number signed graphs on n vertices which are not [s]-
cliques to the number of n vertex signed graphs goes zero. This implies that almost all signed
graphs are [s]-cliques.

The above result clearly implies the following:

Theorem 4.3. Almost all signed graphs are scliques.

5 Complexity aspects

We herein focus on complexity aspects related to scliques and [s]-cliques. Due to Propositions 2.1
and 2.2, recall that deciding whether a given signed or switchable signed graph is an sclique or
[s]-clique, respectively, can be done in polynomial time. So the next interesting question is to
think in terms of underlying graphs: can we easily decide whether a graph G underlies (that
is, is underlying graph of) an sclique or an [s]-clique? Or, rephrased differently, when can we
assign signs to the edges of G so that we obtain an sclique or an [s]-clique?

Sclique Signing
Input: a graph G.
Question: is G underlying graph of an sclique?

[S]-clique Signing
Input: a graph G.
Question: is G underlying graph of an [s]-clique?

It was shown that Sclique Signing is NP-hard in context of “rainbow connection number”
(we omit the definition) in [6]. It is interesting that our newly defined concept has already been
dealt with in a different context. Here we will prove that [S]-clique Signing is also NP-complete
in general, hence implying that an easy characterization of scliques and [s]-cliques in terms of
underlying graph should not exist (unless P=NP). As the NPness of [S]-clique Signing is
obvious (given a signature Σ of G, one can check in polynomial time, due to Proposition 2.2,
whether [G,Σ] is an [s]-clique or not), we now just focus on the NP-hardness of the problem.
Due to the proof given in [6] we have the following result.

Theorem 5.1. Sclique Signing is NP-complete.

Now we prove below that [S]-clique Signing is NP-hard.

Theorem 5.2. [S]-clique Signing is NP-complete.
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Proof. We prove the NP-hardness of [S]-clique Signing by reduction from the following NP-
complete problem.

Monotone Not-All-Equal 3-Satisfiability
Instance: a 3CNF formula F over variables x1, x2, ..., xn and clauses C1, C2, ..., Cm involving no
negated variables.
Question: is F not-all-equal satisfiable, that is, does there exist a truth assignment to the
variables under which every clause has at least one true and one false variable?

Due to the NP-completeness of the 2-Colouring of 3-Uniform Hypergraph problem
(see [20]), it is easily seen that Monotone Not-All-Equal 3-Satisfiability remains NP-
complete when every clause of F has its three variables being different. So this additional
restriction is understood throughout. From a 3CNF formula F , we construct a graph GF such
that

F is not-all-equal satisfiable
⇔

GF underlies an [s]-clique.

The construction of GF is achieved in two steps. We first construct, from F , a graph HF such
that F is not-all-equal satisfiable if and only if there exists a signature ΣH of H under which
only some representative pairs of non-adjacent vertices belong to unbalanced 4-cycles. This
equivalence is obtained by designing HF in such a way that every representative pair belongs to
a unique 4-cycle, with some of these 4-cycles overlapping to force some edges to have the same
or different signs by ΣH . Then we obtain GF by adding some vertices and edges to HF in such
a way that no new 4-cycles including representative pairs are created, and there exists a partial
signature of the edges in E(GF ) \E(HF ) for which every non-representative pair is included in
an unbalanced 4-cycle. In this way, the equivalence between GF and F is only dependent of the
equivalence between HF and F , which has not been altered when constructing GF from HF .

Step 1. Start by adding two vertices r1 and r2 to HF . Then, for every variable xi of F ,
add two vertices ui and u′i to HF , and link these vertices to both r1 and r2. Now, for every
i ∈ {1, 2, ..., n}, assuming the variable xi belongs to the (distinct) clauses Cj1 , Cj2 , ..., Cjni

, add
ni new vertices vi,j1 , vi,j2 , ..., vi,jni

to HF , and join all these new vertices to both r1 and r2.
Finally, for every clause Cj = (xi1 ∨ xi2 ∨ xi3) of F , add a new vertex wj to HF , and join it to
all of vi1,j , vi2,j , vi3,j .

The representative pairs are the following. For every variable xi of F , all pairs {ui, u
′

i} and
those of the form {u′i, vi,j} are representative. Also, for every clause Cj = (xi1 ∨ xi2 ∨ xi3) of F ,
the pairs {vi1,j , vi2,j}, {vi1,j , vi3,j} and {vi2,j , vi3,j} are representative.

We below prove some claims about the existence of a good signature of HF , i.e. a signature
under which every representative pair of HF belongs to an unbalanced 4-cycle.

Claim 1. Let ΣH be a good signature of HF , and let xi be a variable appearing in clauses
Cj1 , Cj2 , ..., Cjni

of F . If r1 and r2 agree (resp. disagree) on ui, then r1 and r2 agree (resp.
disagree) on vi,j1 , vi,j2 , ..., vi,jni

.

Proof. Because {ui, u
′

i} is representative and uir1u
′

ir2ui is the only 4-cycle containing ui and u′i,
the vertices r1 and r2 agree on ui and disagree on u′i in (HF ,ΣH) without loss of generality.
Now, because every pair {u′i, vi,j} is representative, the only 4-cycle including u′i and vi,j is
u′ir1vi,jr2u

′

i, and r1 and r2 disagree on u′i in (HF ,ΣH), necessarily r1 and r2 agree on vi,j .

11



Claim 2. Let ΣH be a good signature of HF , and let Cj = (xi1 ∨ xi2 ∨ xi3) be a clause of F .
Then r1 and r2 cannot agree or disagree on all of vi1,j , vi2,j , vi3,j.

Proof. First note that the only 4-cycles of HF containing, say, vi1,j and vi2,j are vi1,jr1vi2,jr2vi1,j ,
vi1,jwjvi2,jr1vi1,j and vi1,jwjvi2,jr2vi1,j . The claim then follows from the fact that if r1 and r2,
say, agree on all of vi1,j , vi2,j , vi3,j , then (HF ,ΣH) has no unbalanced 4-cycle including r1 and r2
and two of vi1,j , vi2,j , vi3,j . So, since ΣH is a good signature, necessarily there are at least three
unbalanced 4-cycles containing wj and every two of vi1,j , vi2,j , vi3,j , but one can easily convince
himself that this is impossible.

Assume on the contrary that e.g. r1 and r2 agree on vi1,j and disagree on vi2,j and vi3,j .
So far, note that r1vi1,jr2vi2,jr1 and r1vi1,jr2vi3,jr1 are unbalanced 4-cycles of (HF ,ΣH). Then
there is no contradiction against the fact that ΣH is good, since e.g. vi2,j and vi3,j can agree
on wj (and, in such a situation, vi2,jwjvi3,jr1vi2,j is an unbalanced 4-cycle). The important
thing to have in mind is that signing the edges incident to wj can only create unbalanced 4-
cycles containing the representative pairs {vi1,j , vi2,j}, {vi1,j , vi3,j} and {vi2,j , vi3,j}. So signing
the edges incident to wj to make vi2,j and vi3,j belong to some unbalanced 4-cycle does not
compromise the existence of other unbalanced 4-cycles including farther vertices from another
representative pair.

We claim that we have the desired equivalence between not-all-equal satisfying F and finding
a good signature ΣH of HF . To see this holds, just assume, for every variable xi of F , that
having r1 and r2 agreeing (resp. disagreeing) on ui simulates the fact that variable xi of F is
set to true (resp. false) by some truth assignment, and that having r1 and r2 agreeing (resp.
disagreeing) on some vertex vi,j simulates the fact that variable xi provides value true (resp.
false) to the clause Cj of F . Then the property described in Claim 1 depicts the fact that if xi
is set to some truth value by a truth assignment, then xi provides the same truth value to every
clause containing it. The property described in Claim 2 depicts the fact that every clause Cj is
considered satisfied by some truth assignment if and only if Cj is supplied different truth values
by its variables. So we can deduce a good signature of HF from a truth assignment not-all-equal
satisfying F , and vice-versa.

Step 2. As described above, we now construct GF from HF in such a way that

• every 4-cycle of GF including the vertices of a representative pair is also a 4-cycle in HF ,

• the edges of E(GF ) \E(HF ) can be switchable signed so that every two vertices which do
not form a representative pair belong to an unbalanced 4-cycle.

In this way, GF will underlie an [s]-clique if and only if HF admits a good signature, which is
true if and only if F can be not-all-equal satisfied. The result will then hold by transitivity.

For every vertex u of HF , add the edges uau and ubu, where au and bu are two new vertices.
Now, for every two distinct vertices u and v of HF , if {u, v} is not a representative pair, then add
another vertex cu,v to the graph, as well as the edges ucu,v and vcu,v. Finally turn the subgraph
induced by all newly added vertices into a clique. The resulting graph is GF . As claimed above,
note that the only 4-cycles of GF containing two vertices u and v forming a representative pair
are those of HF . Every other such new cycle has indeed length at least 6. Namely, every such
new cycle starts from u, then has to enter the clique by either au or bu, cross the clique to either
av or bv, reach v, before finally going back to u.

Consider the following signing to the edges in E(GF )\E(HF ). For every vertex u ∈ V (HF ),
let ubu be negative. Similarly, for every two distinct vertices u and v of HF such that {u, v} is
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not representative (i.e. cu,v exists), let cu,vv be negative. Let finally all other edges be positive.
Clearly, under this partial signature of GF , every two vertices u and v of GF not forming a
representative pair are either adjacent or belong to some unbalanced 4-cycle:

• if u and v do not belong to HF , then they belong to the clique and are hence adjacent;

• if u belongs to HF but v does not, then observe that either u and v are adjacent (in this
situation v is either au, bu or cu,i for some i), or uauvbuu is an unbalanced 4-cycle;

• if u and v are vertices of HF and {u, v} is not representative, then e.g. ucu,vvavauu is an
unbalanced 4-cycle.

According to all previous arguments, finding a truth assignment not-all-equal satisfying F is
equivalent to finding an [s]-clique overlying GF , as claimed. So [S]-clique Signing is NP-hard,
and hence NP-complete.

Note that the analogous result for oriented graph is proved in [3].

6 Signed and switchable signed absolute clique numbers

In this section we study the parameters signed and switchable signed absolute clique numbers
for some specific classes of graphs. We start off with the easy classes, namely, paths, forests and
cycles. As every sclique has diameter at most 2, we have the following results.

Theorem 6.1.

(i) Let G be a path. Then ωas(G) ≤ 3 and ω[as](G) ≤ 2.

(ii) Let G be a forest. Then ωas(G) ≤ 3 and ω[as](G) ≤ 2.

(iii) Let G be a cycle. Then ωas(G) ≤ 4 and ω[as](G) ≤ 4.

Now we shift our focus to the family of outerplanar graphs. Let Ok denote the family
of outerplanar graphs with girth (length of the smallest cycle) at least k. Then we have the
following results.

Theorem 6.2.

(a) ωas(O3) = 7 and ω[as](O3) = 4.

(b) ωas(O4) = 4 and ω[as](O4) = 4.

(c) ωas(Ok) = 3 and ω[as](Ok) = 2 for k ≥ 5.

Proof. (a) The proof for ωas(O3) ≤ 7 follows from Theorem 2.9. Now notice that the graph
depicted in Fig. 1(a)(iv) is an outerplanar sclique of order 7. Hence we have ωas(O3) = 7.

We know that the switchable signed chromatic number for outerplanar graphs is at most
5 [25]. It is easy to check that there exists no outerplanar switchable signed graph of order 5.
Also note that an unbalanced 4-cycle is an [s]-clique. Hence we have ω[as](O3) = 4.

(b,c) We know that an [s]-clique has diameter at most 2. Hence the rest of the proof of the
above theorem easily follow from the list of triangle-free planar graphs with diameter 2 given by
Plesnik in Theorem 2.6.
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φ(w) φ(u)
φ(v)

φ(b) φ(c)

φ(a)

Figure 5: Planar signed graphs with diameter 2 and girth at least 4 (the dotted edge bc refers
to an edge which can be negative or positve as per necessity).

Finally, we study the parameter for planar graphs. Let Pk denote the family of planar graphs
with girth (length of the smallest cycle) at least k. Then we have the following results.

Theorem 6.3.

(a) ωas(P3) = 15 and ω[as](P3) = 8. [25]

(b) ωas(P4) = 6 and ω[as](P4) = 4.

(c) ωas(Pk) = 3 and ω[as](Pk) = 2 for k ≥ 5.

The proof of ω[as](P3) = 8 was given by Naserasr, Rollová and Sopena [25]. The proof of
ωas(P3) = 15 is big and is proved separately in the end of this section.

Proof of Theorem 6.3(b,c)

(b) In 1975, Plesńık [14] characterized and listed all triangle-free planar graphs with diameter
2. They are precisely the graphs depicted in Fig. 2 (see Theorem 2.6). First we will prove that
ωas(P4) = 6.

Note that any signed graph with the graphs from Fig. 2 as underlying graphs admits a
homomorphism to the graphs depicted in Fig. 5 respectively (that is, the first signed graph
depicted in Fig. 5 is a universal bound for the first family of graphs described in Fig. 2; the
second ... etc.).

To prove the homomorphisms we map the vertices w, u, v, a, b, c from Fig. 2 to the corre-
sponding vertices φ(w), φ(u), φ(v), φ(a), φ(b), φ(c) in Fig 5 respectively. Choose the sign of the
edge φ(b)φ(c) the same as the sign of the edge bc.

Now to complete the first homomorphism, map the vertices of Nα(w) to the unique vertex
in Nα(φ(w)) for α ∈ {+,−}.

To complete the second homomorphism, map the vertices of Nα(u) ∩ Nβ(u) to the unique
vertex in Nα(φ(u)) ∩Nβ(φ(v)) for α, β ∈ {+,−}.

To complete the third homomorphism, map the vertices of Nα(a) ∩ Nβ(t) to the unique
vertex in Nα(φ(a)) ∩Nβ(φ(t)) for α, β ∈ {+,−} and t ∈ {b, c}.

Now note that the first two signed graphs depicted in Fig. 5 are scliques of order 3 and 6
respectively, while the third graph is not an sclique but clearly has signed relative clique number
5.

Hence, there is no triangle-free planar sclique of order more than 6. Also, the only example
of a triangle-free sclique of order 6 is the second graph depicted in Fig. 5.

The result ω[as](P4) = 4 follows similarly from Theorem 2.6 and from the fact that an
unbalanced 4-cycle is an [s]-clique. �
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(c) It is easy to check the upper bounds using Theorem 2.6 and the lower bounds follows
from the fact that the rainbow 2-path is an sclique of order 3 and an edge is ab [s]-clique of
order 2. �

Proof of Theorem 6.3(a)

(a) Take two copies of the signed outerplanar sclique depicted in Fig. 1(a)(i) and a vertex ∞.
Join ∞ and the vertices of the first copy of the signed outerplanar sclique depicted in Fig. 1(a)(i)
with positive edges. Join ∞ and the vertices of the second copy of the signed outerplanar sclique
depicted in Fig. 1(a)(i) with negative edges. This so-obtained graph is an sclique of order 15.
Note that the graph is also planar. This proves the lower bound.

For proving the upper bound, first consider an sclique (H) with domination number 1.
Suppose (H) is dominated by the vertex v. As (H) is an sclique, the set of vertices N+(v) are
part of a relative clique in the signed outerplanar graph ((H[N(v)]). Therefore, by Theorem 2.9
we have |N+(v)| ≤ 7.

Similarly we have |N−(v)| ≤ 7. Hence, |N(v)| ≤ 14. This implies that the order of the graph
(H) is at most 15.

Goddard and Henning [11] (see Theorem 2.7) proved that every planar graph of diameter 2
has domination number at most 2 except for a particular graph on nine vertices.

Hence, to prove the theorem, it will be enough to prove that any planar sclique with dom-
ination number 2 must have order at most 15. More precisely, we need to prove the following
result.

Lemma 6.4. Let (H) be a planar sclique with domination number 2. Then |V ((H))| ≤ 15.

If two vertices u and v are adjacent (or connected by a rainbow 2-path) we say they are at
rainbow distance 1 (or 2) and denote it by rd(u, v) = 1 (or rd(u, v) = 2). In any other case we
say rd(u, v) > 2. If every pair of vertices of a signed graph (G) are at rainbow distance at most
2 then we say that the signed graph has rainbow diameter 2. It is easy to note that the signed
graphs with rainbow diameter 2 are precisely scliques.

Let (G,Γ) be a planar sclique with |V (G)| > 15. Assume that G is triangulated and has
domination number 2.

We define the partial order ≺ for the set of all dominating sets of order 2 of G as follows:
for any two dominating sets D = {x, y} and D′ = {x′, y′} of order 2 of (G), D′ ≺ D if and only
if |N(x′) ∩N(y′)| < |N(x) ∩N(y)|.

Let D = {x, y} be a maximal dominating set of order 2 of G with respect to ≺. Also for the
rest of this proof, t, t′, α, α, β, β are variables satisfying {t, t′} = {x, y} and {α, α} = {β, β} =
{+,−}.

Now, we fix the following notations (Fig: 6):

C = N(x) ∩N(y), Cαβ = Nα(x) ∩Nβ(y), Cα
t = Nα(t) ∩ C,

St = N(t) \ C, Sα
t = St ∩Nα(t) and S = Sx ∪ Sy.

Hence we have,

16 ≤ |(G,Γ)| = |D| + |C| + |S|. (4)

Let (H) be the signed graph obtained from the induced subgraph (G)[D ∪ C] of (G) by
deleting all the edges between the vertices of D and all the edges between the vertices of C.
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Figure 6: Structure of G (not a planar embedding)

x y

c0

c1

c2

ci

ck−2

ck−1

R0

R1

Rk−1

Figure 7: A planar embedding of und(H)
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x1
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y1
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x yc0

Figure 8: For |C| = 1 while x and y are non-adjacent

Note that it is possible to extend the planar embedding of H given in Fig 7 to a planar embedding
of G for some particular ordering of the elements of, say C = {c0, c1, ..., ck−1}.

Notice that H has k faces, namely the unbounded face F0 and the faces Fi bounded by edges
xci−1, ci−1y, yci, cix for i ∈ {1, ..., k − 1}. Geometrically, H divides the plane into k connected
components. The region Ri is the ith connected component (corresponding to the face Fi) of
the plane. Boundary points of a region Ri are ci−1 and ci for i ∈ {1, ..., k − 1} and, c0 and ck−1

for i = 0. Two regions are adjacent if they have at least one common boundary point (hence, a
region is adjacent to itself).

Now for the different possible values of |C|, we want to show that H cannot be extended
to a planar sclique of order at least 16. Note that, for extending H to (G), we can add new
vertices only from S. Any vertex v ∈ S will be inside one of the regions Ri. If there is at least
one vertex of S in a region Ri, then Ri is non-empty and empty otherwise. In fact, when there
is no chance of confusion, Ri may also be used to represent the set of vertices of S contained in
the region Ri.

As any two distinct non-adjacent vertices of (G) must be connected by a rainbow 2-path, we
have the following three lemmas:

Lemma 6.5. (a) If (u, v) ∈ Sx × Sy or (u, v) ∈ Sα
t × Sα

t , then u and v are in adjacent regions.
(b) If (u, c) ∈ Sα

t ×Cα
t , then c is a boundary point of a region adjacent to the region containing

u.

Lemma 6.6. Let R,R1, R2 be three distinct regions such that R is adjacent to Ri with common
boundary point ci while the other boundary points of Ri is ci for all i ∈ {1, 2}. If v ∈ Sα

t ∩ R
and ui ∈ ((Sα

t ∪ St′)∩Ri)∪ ({ci} ∩Cα
t ), then v disagrees with ui on ci, where i ∈ {1, 2}. If both

u1 and u2 exist, then |Sα
t ∩R| ≤ 1.

Lemma 6.7. For any edge uv in (G), we have |Nα(u) ∩Nβ(v)| ≤ 3.

Now we ask the question “How small |C| can be?” and try to prove possible lower bounds
of |C|. The first result regarding the lower bound of |C| is proved below.

Lemma 6.8. We have |C| ≥ 2.

Proof. We know that x and y are either connected by a rainbow 2-path or by an edge. If x and
y are adjacent, then as (G) is triangulated, we have |C| ≥ 2. If x and y are non-adjacent, then
|C| ≥ 1. Hence it is enough to show that we cannot have |C| = 1 while x and y are non-adjacent.

If |C| = 1 and x and y are non-adjacent, then the triangulation will force the configuration
depicted in Fig 8 as a subgraph of G, where C = {co}, Sx = {x1, ..., xnx

} and Sy = {y1, ..., yny
}.

Without loss of generality we may assume |Sy| ≥ |Sx|. Then by equation (4) we have,

ny = |Sy| ≥ ⌈(16 − 2 − 1)/2⌉ = 7.
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Clearly nx ≥ 3 as otherwise {c0, y} is a dominating set with at least two common neighbors
{y1, yny

} which contradicts the maximality of D.
For nx = 3, we know that c0 is not adjacent to x2 as otherwise {c0, y} is a dominating set

with at least two common neighbors {y1, yny
} contradicting the maximality of D. But then x2

should be adjacent to yi for some i ∈ {1, ..., ny} as otherwise d(x2, y) > 2. Now the triangulation
will force x2 and yi to have at least two common neighbors. Also x2 cannot be adjacent to yj for
any j 6= i, as it will create a dominating set {x2, y} with at least two common neighbors {yi, yj}
contradicting the maximality of D. Hence, x2 and yi are adjacent to both x1 and x3. Note that
tℓt and tℓt+k are adjacent if and only if k = 1, as otherwise d(tℓt+1, t

′) > 2 for 1 ≤ ℓt < ℓt+k ≤ nt.
In this case, by equation (4) we have,

ny = |Sy| ≥ 16 − 2 − 1 − 3 = 10.

Assume i ≥ 5. Hence, c0 is adjacent to yj for all j = 1, 2, 3, as otherwise d(yj , x3) > 2. This
implies d(y2, x2) > 2, a contradiction. Similarly i < 5 will also force a contradiction. Hence
nx ≥ 4.

For nx = 4, c0 cannot be adjacent to both x3 and xnx−2 = x2 as it creates a dominating set
{c0, y} with at least two common neighbors {y1, yny

} contradicting the maximality of D. For
nx ≥ 5, c0 is adjacent to x3 implies, either for all i ≥ 3 or for all i ≤ 3, xi is adjacent to c0, as
otherwise d(xi, y) > 2. Either of these cases will force c0 to become adjacent to yj , as otherwise
we will have either d(x1, yj) > 2 or d(xnx

, yj) > 2 for all j ∈ {1, 2, ..., ny}. But then we will have
a dominating set {c0, x} with at least two common neighbors contradicting the maximality of
D. Hence for nx ≥ 5, c0 is not adjacent to x3. Similarly we can show, for nx ≥ 5, that c0 is not
adjacent to either x3 or xnx−2.

So, for nx ≥ 4, without loss of generality we can assume that c0 is not adjacent to x3. We
know that d(y1, x3) ≤ 2. We have already noted that tlt and tlt+k are adjacent if and only if
k = 1 for any 0 ≤ lt < lt + k ≤ nt. Hence to have d(y1, x3) ≤ 2, we must have one of the
following edges: y1x2, y1x3, y1x4 or y2x3. The first edge will imply the edges x2yj as otherwise
d(x1, yj) > 2 for all j = 3, 4, 5. These three edges will imply d(x4, y3) > 2. Hence we do not
have y1x2.

The other three edges, assuming we cannot have y1x2, will force the edges x2c0 and x1c0 for
having d(x2, y) ≤ 2 and d(x1, y) ≤ 2. This will imply d(x1, y4) > 2, a contradiction. Hence we
cannot have the other three edges also.

Hence we are done.

Now we will prove that, for 2 ≤ |C| ≤ 5, at most one region of (G) can be non-empty. Later,
using this result, we will improve the lower bound of |C|.

Lemma 6.9. If 2 ≤ |C| ≤ 5, then at most one region of (G) is non-empty.

Proof. For pictorial help one can look at Fig 7. For |C| = 2, if x and y are adjacent, then the
region that contains the edge xy is empty, as otherwise triangulation will force x and y to have
a common neighbor other than c0 and c1. So for the rest of the proof we can assume x and y to
be non-adjacent for |C| = 2.

Step 0: First we shall show that it is not possible to have either Sx = ∅ or Sy = ∅ and have
at least two non-empty regions. Without loss of generality assume that Sx = ∅. Then x and y
are non-adjacent, as otherwise y will be a dominating vertex which is not possible.
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For |C| = 2, if both Sy ∩ R0 and Sy ∩ R1 are non-empty, then triangulation will force,
either multiple edges c0c1 (one in each region) or a common neighbor of x, y other than c0, c1, a
contradiction.

For |C| = 3, 4 and 5, triangulation implies the edges c0c1, ..., ck−2ck−1, ck−1c0. Hence every
v ∈ Sy must be connected to x by a rainbow 2-path through ci for some i ∈ {1, 2, ..., k − 1}.
Now assume |Sα

y | ≥ |Sα
y | for some α ∈ {+,−}. Then by equation (4) we have,

|Sα
y | ≥ ⌈(16 − 2 − 5)/2⌉ = 5.

Now by Lemma 6.5, we know that the vertices of Sα
y will be contained in two adjacent regions

for |C| = 4, 5. For |C| = 3, Sα
y ∩ Ri for all i ∈ {0, 1, 3} implies |Sα

y | ≤ 3 by Lemma 6.6. Hence,
without loss of generality, we may assume Sα

y ⊆ R1 ∪ R2. If both Sα
y ∩ R1 and Sα

y ∩ R2 are
non-empty, then by Lemma 6.6, each vertex of Sα

y ∩ R1 disagrees with each vertex of Sα
y ∩ R2

on c1. Then {c1, y} becomes a dominating set with at least six common neighbors (c0, c2 and
four vertices from Sα

y ) which contradicts the maximality of D.
Hence, all the vertices of Sα

y must be contained in one region, say R1. Then each of them
should be connected to x by a rainbow 2-path with internal vertex either c0 or c1. However,
the vertices that are connected to x by a rainbow 2-path with internal vertex c0 should have
rainbow distance at most 2 with the vertices connected to x by a rainbow 2-path with internal
vertex c1. It is not possible to connect them unless they are all adjacent to either c0 or c1. But
then it will contradict the maximality of D.

Hence both Sx and Sy are non-empty.

Step 1: Now we will prove that at most four sets out of the 2k sets St ∩ Ri can be non-
empty, for all t ∈ {x, y} and i ∈ {0, 1, ..., k − 1}. It is trivial for |C| = 2. For |C| = 4 and 5, the
statement follows from Lemma 6.5. For |C| = 3, we consider the following two cases:

(i) Assume St ∩ Ri 6= ∅ for all t ∈ {x, y} and for all i ∈ {0, 1, 2}. Then by Lemma 6.6 we
have, |St ∩Ri| ≤ 1 for all t ∈ {x, y} and for all i ∈ {0, 1, 2}. Then by equation (4) we have,

16 ≤ |(G)| = 2 + 3 + 4 = 9.

This is a contradiction.

(ii) Assume that five out of the six sets St ∩Ri are non-empty and the other one is empty,
where t ∈ {x, y} and i ∈ {0, 1, 2}. Without loss of generality we can assume Sx ∩ R0 = ∅. By
Lemma 6.6 we have |St ∩Ri| ≤ 1 for all (t, i) ∈ {(x, 1), (x, 2), (y, 0)}. In particular, |Sx| ≤ 2.

Now, all vertices of St ∩ Ri is adjacent to c1, for being at rainbow distance at most 2 from
each other, by Lemma 6.6. That means, every vertex of Sx is adjacent to c1. Hence, there can
be at most three vertices in (Sy ∩ R1) ∪ (Sy ∩ R2) as otherwise the dominating set {c1, y} will
contradict the maximality of D. Hence |Sy| ≤ 4.

Therefore by equation (4) we have,

16 ≤ |(G)| = 2 + 3 + (2 + 4) = 11.

This is a contradiction.
Hence at most four sets out of the 2k sets St ∩ Ri can be non-empty, where t ∈ {x, y} and

i ∈ {0, 1, ..., k − 1}.
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Step 2: Now assume that exactly four sets out of the sets St ∩ Ri are non-empty, for all
t ∈ {x, y} and i ∈ {0, ..., k− 1}. Without loss of generality we have the following three cases (by
Lemma 6.5):

(i) Assume the four non-empty sets are Sx ∩R1, Sy ∩R0, Sy ∩R1 and Sy ∩R2 (only possible
for |C| ≥ 3). We have the edges c0ck−1 and c1c2 by triangulation. Lemma 6.6 implies that
Sx ∩R1 = {x1} and that the vertices of Sy ∩R0 and the vertices of Sy ∩R2 disagree with x1 on
c0 and c1 respectively. Hence by Lemma 6.7, we have |Sy ∩R0|, |Sy ∩R2| ≤ 3.

For |C| = 3, if every vertex from Sy ∩R1 is adjacent to either c0 or c1, then {c0, c1} will be a
dominating set with at least four common neighbors {x, y, x1, c2} contradicting the maximality
of D. If not, then triangulation will force x1 to be adjacent to at least two vertices y1, y2 (say)
from Sy. But then {x1, y} will become a dominating set with at least four common neighbors
{y1, y2, c0, c1} contradicting the maximality of D.

For |C| = 4 and 5, Lemma 6.5 implies that vertices of Sy∩R0 and vertices of Sy∩R2 disagree
with each other on y. Now by Lemma 6.6, any vertex of Sy ∩ R1 is adjacent to either c0 (if it
agrees with the vertices of Sy ∩ R0 on y) or c1 (if it agrees with the vertices of Sy ∩ R2 on y).
Also vertices of Sy ∩ R0 and Sy ∩ R2 are connected to x1 by a rainbow 2-path through c0 and
c1 respectively.

Now by equation (4) we have,

|Sy| ≥ (16 − 2 − 5 − 1) = 8.

Hence, without loss of generality, at least four vertices y1, y2, y3, y4 of Sy are adjacent to
c0. Hence {c0, y} is a dominating set with at least five common neighbors {y1, y2, y3, y4, ck−1}
contradicting the maximality of D for |C| = 4.

For |C| = 5, each vertex of Sy ∩ R1 disagree with c3 by Lemma 6.5 and hence without loss
of generality are all adjacent to c0. Now |Sy ∩R2| ≤ 3 and |Sy| ≥ 8 implies |Sy ∩ (R0 ∪R1)| ≥ 5.
But every vertex of Sy ∩ (R0 ∪R1) and c4 are adjacent to c0. Hence {c0, y} is a dominating set
with at least six common neighbors, contradicting the maximality of D for |C| = 5.

(ii) Assume the four non-empty sets are Sx ∩R0, Sx ∩R1, Sy ∩R0 and Sy ∩R1. For |C| = 2
every vertex in S is adjacent to either c0 or c1 (by Lemma 6.6). So, {c0, c1} is a dominating set.
Hence no vertex w ∈ S can be adjacent to both c0 and c1 because otherwise {c0, c1} will be a
dominating set with at least three common neighbors {x, y, w} contradicting the maximality of
D. By equation (4) we have,

|S| ≥ 16 − 2 − 2 = 12.

Hence, without loss of generality, we may assume |Sx ∩ R0| ≥ 3. Assume {x1, x2, x3} ⊆
Sx ∩R0. Now all vertices of Sx ∩R0 must be adjacent to c0 (or c1), as otherwise it will force all
vertices of Sy ∩R1 to be adjacent to both c0 and c1 (by Lemma 6.6). Without loss of generality
assume all vertices of Sx ∩ R0 are adjacent to c0. Then all w ∈ Sy will be adjacent to c0, as
otherwise d(w, xi) > 2 for some i ∈ {1, 2, 3}. But then {c0, x} will be a dominating set with at
least three common vertices {x1, x2, x3} contradicting the maximality of D.

For |C| = 3, 4, every vertex of S will be adjacent to c0 (by Lemma 6.6). By equation (4) we
have,

|S| ≥ (16 − 2 − 4) = 10.

20



Hence, without loss of generality, |Sx| ≥ 5. Hence {co, x} is a dominating set with at least
five common neighbors Sx ∪ {y} contradicting the maximality of D for |C| = 3, 4.

For |C| = 5, every vertex of St ∩ Ri disagree with ci+2 on t and hence |St ∩ Ri| ≤ 3 for
i ∈ {0, 1} by Lemma 6.5. Assume, |Sx ∩ R0| = 3 and Sx ∩ R0 = {x1, x2, x3}. Now assume
without loss of generality that c2 ∈ Nα(x). Hence, we must have {x1, x2, x3} ⊆ Nα(x).

Note that x1, x2, x3 must agree on c0 in order to be at rainbow distance at most 2 with
the vertices of Sy ∩ R1. Further assume that {x1, x2, x3} ⊆ Nβ(c0). But then as all the three
vertices {x1, x2, x3} are adjacent to both x and c0, the only way each of them can be at rainbow
distance 2 with c3 is by a rainbow 2-path with internal vertex x. Hence we have c3 ∈ Nα(x).
This implies that x4 ∈ Nα(x) for any vertex x4 ∈ Sx ∩ R1. But then the vertices of Sx ∩ R1

must disagree with vertices of Sx ∩ R0 on c0 making it impossible for the vertices of S1 ∩ R0

to be at rainbow distance at most 2 with x1, x2, x3 and with the vertices of Sx ∩R1. Hence we
must have |Sx ∩R0| ≤ 2.

Similarly we can prove |St ∩Ri| ≤ 2 for i ∈ {0, 1}.
Now we will show that it is not possible to have |St ∩Ri| = 2 for all (t, i) ∈ {x, y} × {0, 1}.
Suppose we have |St ∩ Ri| = 2 for all (t, i) ∈ {x, y} × {0, 1}. Then clearly, the vertices of

St ∩ Ri disagree with ci+2 and ci+3 on t. Hence, the vertices of St ∩ R0 agree with the vertices
of St ∩R1 on t. Therefore, the vertices of St ∩R0 must disagree with the vertices of St ∩R1 on
c0.

Then it will not be possible to have both the vertices of Sx∩R0 at rainbow distance at most
2 with all the four vertices of Sy.

Therefore, we have |S| ≤ 7. Hence by equation (4) we have,

16 ≤ |(G)| ≤ 2 + 5 + 7 = 14.

This is a contradiction. Hence we are done.

(iii) Assume the four non-empty sets are Sx∩R1, Sx∩R2, Sy∩R0 and Sy∩R1 (only possible
for |C| = 3). Now Lemma 6.6 implies that every vertex of (Sx ∩ R1) ∪ (Sy ∩ R0) is adjacent to
c0 and every vertex of (Sx ∩R2) ∪ (Sy ∩R1) is adjacent to c1.

Moreover triangulation forces the edges c0c2 and c1c2. Triangulation also forces some vertex
v1 ∈ Sy ∩R1 to be adjacent to c0. This will create the dominating set {c0, c1} with at least four
common neighbors {x, y, v1, c2} contradicting the maximality of D.

Hence at most three sets out of the 2k sets St ∩Ri can be non-empty, where t ∈ {x, y} and
i ∈ {0, 1, ..., k − 1}.

Step 3: Now assume that exactly three sets out of the sets St ∩ Ri are non-empty, where
t ∈ {x, y} and i ∈ {0, ..., k − 1}. Without loss of generality we have the following two cases (by
Lemma 6.5):

(i) Assume the three non-empty sets are Sx∩R0, Sy∩R0 and Sy∩R1. Triangulation implies
the edge c0c1 inside the region R1.

For |C| = 2, there exists u ∈ Sy∪R1 such that u is adjacent to both c0 and c1 by triangulation.
Now if |Sy ∪ R1| ≥ 2, then some other vertex v ∈ Sy ∪ R1 must be adjacent to either c0 or c1.
Without loss of generality we may assume that v is adjacent to c0. Then every w ∈ Sx ∩R0 will
be adjacent to c0 to have d(v, w) ≤ 2. But then {c0, y} will be a dominating set with at least
three common neighbors {c1, u, v} contradicting the maximality of D.

So we must have |Sy∪R1| = 1. Now let us assume that Sy∪R1 = {u}. Then any w ∈ Sx∩R0

is adjacent to either c0 or c1. If |Sx| ≥ 5, then without loss of generality we can assume that at
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least three vertices of Sx are adjacent to c0. Now to have at most distance 2 with all those three
vertices, every vertex of Sy will be adjacent to c0. This will create the dominating set {c0, x}
with at least three common neighbors contradicting the maximality of D.

Also |Sx| = 1 clearly creates the dominating set {c0, y} (as x1 is adjacent to c0 by triangula-
tion) with at least three common neighbors (a vertex from Sy ∩ R0 by triangulation, u and c1)
contradicting the maximality of D.

For 2 ≤ |Sx| ≤ 4, c0 (or c1) can be adjacent to at most two vertices of Sy ∩ R0 because
otherwise there will be one vertex v ∈ Sy ∩ R0 which will force c0 (or c1) to be adjacent to
all vertices of w ∈ Sx in order to satisfy d(v, w) ≤ 2 and create a dominating set {c0, y} that
contradicts the maximality of D.

Also, not all vertices of Sx can is adjacent to c0 (or c1) as otherwise {co, y} (or {c1, y}) will be
a dominating set with at least three common neighbors (u, c1 (or c0) and a vertex from Sy ∩R0)
contradicting the maximality of D.

Note that, by equation (4), we have,

|Sy ∩R0| ≥ 10 − Sx.

Assume Sx = {x1, ..., xn} with triangulation forcing the edges c0x1, x1x2, ..., xn−1xn, xnc1
for n ∈ {2, 3, 4}.

For |Sx| = 2, at most four vertices of Sy ∩ R0 can be adjacent to c0 or c1. Hence there will
be at least four vertices of Sy ∩ R0 each connected to x by a rainbow 2-path through x1 or x2.
Without loss of generality x1 will be adjacent to at least 2 vertices of Sy and hence {x1, y} will
be a dominating set contradicting the maximality of D.

For |Sx| = 3, without loss of generality assume that x2 is adjacent to c0. To satisfy d(x1, v) ≤
2 for all v ∈ Sy ∩R0, at least four vertices of Sy will be adjacent connected to x1 by a rainbow
2-path through x2 (as, according to previous discussions, at most two vertices of Sy can be
adjacent to c0). This will create the dominating set {x2, y} contradicting the maximality of D.

For |Sx| = 4 we have x2c0 and x3c1 as otherwise at least three vertices of Sx will be adjacent
to either c0 or c1 which is not possible (because it forces all vertices of Sy to be adjacent to c0
or c1). Now each vertex v ∈ Sy ∩R0 must be adjacent to either c0 or x2 (to satisfy d(v, x1) ≤ 2)
and also to either c1 or x3 (to satisfy d(v, x4) ≤ 2) which is not possible to do keeping the graph
planar.

For |C| = 3, 4, 5 by Lemma 6.6, each vertex of Sx disagree with each vertex of Sy ∩R1 on c0.
We also have the edge x1c2 for some x1 ∈ Sx by triangulation. Now by equation (4) we have,

|S| ≥ (16 − 2 − |C|) = 13 − |C|.

Hence |Sx| ≤ 2 for |C| = 3, 4, as otherwise every vertex u ∈ Sy will be adjacent to c0 creating
a dominating set {c0, t} with at least (|C| + 1) common neighbors St ∪ {c1} for some t ∈ {x, y}
contradicting the maximality of D. For |C| = 5, as every vertex in Sx ∩ R0 agree with each
other on x (as they all must disagree with c2 on x) and on c0 (as they all disagree with vertices
of Sy ∩ R1 on c0). So, by Lemma 6.7, we have |Sx ∩ R0| ≤ 3. But if |Sx ∩ R0| = 3 then every
vertex of Sy will be adjacent to c0 creating a dominating set {c0, y} with at least six common
neighbors Sy ∪ {c1} contradicting the maximality of D.

Hence |Sx| ≤ 2 for |C| = 3, 4 and 5.

Now for |C| = 3, we can assume x and y are non-adjacent as otherwise {c0, y} will be a
dominating set with at least four common neighbors (x, c1 and, two other vertices each from the
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sets Sy ∩R0, Sy ∩R1 by triangulation) contradicting the maximality of D. Hence triangulation
will imply the edge c1c2. Now for |Sx| ≤ 2, either {c0, c2} is a dominating set with at least
four common neighbors {x, y, c1, x1} contradicting the maximality of D or x1 is adjacent to at
least two vertices y1, y2 ∈ Sy ∩ R0 creating a dominating set {x1, y} (the other vertex in Sx

must be adjacent to x1 by triangulation) with at least four common neighbors {y1, y2, c0, c2}
contradicting the maximality of D.

For |C| = 4 we have |Sy∩R1| ≤ 2 as otherwise we will have the dominating set {c0, y} with at
least five common neighbors (c1, vertices of Sy ∩R1 and one vertex of Sy ∩R0 by triangulation)
contradicting the maximality of D. Now by equation (4) we have,

|Sy ∩R0| ≥ (16 − |D| − |C| − |Sx| − |Sy ∩R1|)

≥ (16 − 2 − 4 − 2 − 2) = 6.

Now, at most two vertices of Sy ∩ R0 can be adjacent to c0 as otherwise {c0, y} will be a
dominating set with at least five common neighbors (c1, vertices of Sy ∩ R0 and one vertex of
Sy ∩R1 by triangulation) contradicting the maximality of D.

Also by triangulation in R3 we either have the edge xy or have the edge c2c3. But, if we
have the edge xy, then |Sy ∩R1| = 1 as otherwise the dominating set {c0, y} will contradict the
maximality of D. Hence, by triangulation, and to have rainbow distance at most 2 with the
vertices of Sx, each vertex of Sy ∩ R0 will be adjacent either to c3 or to x1. This will create a
dominating set {x1, y} or {c3, y} that contradicts the maximality of D. Hence, we do not have
the edge xy (not even in other regions) and have the edge c2c3.

For |Sx| ≤ 2, the vertices of Sy ∩R0 will be adjacent to either c3 or c0 or x1 to have rainbow
distance at most 2 with x. But then triangulation will force at least one vertex of Sy ∩R0 to be
common neighbor of c3 and x1 and another vertex of Sy ∩R0 to be common neighbor of c3 and
x1 or the edge c0c3. It is not difficult to check, casewise, (drawing a picture for individual cases
will help in understanding the scenario) that one of the sets {c0, y}, {c3, y} or {x1, y} will be a
dominating set contradicting the maximality of D.

For |C| = 5 by Lemma 6.5, each vertex of Sy ∩ Ri must disagree with ci+2 on y. If vertices
of Sy ∩R0 and vertices of Sy ∩R1 agree with each other on y, then they must disagree with each
other on c0 which implies |Sy ∩ Ri| ≤ 3 for all i ∈ {0, 1}. If vertices of Sy ∩ R0 and vertices of
Sy ∩R1 disagree with each other on y, then vertices of Sy ∩Ri must agree with c3−i on y. Then,
by Lemma 6.6, each vertex of Sy ∩ Ri must be connected to c3−i by a rainbow 2-path through
c4−3i which implies |Sy ∩Ri| ≤ 3 for all i ∈ {0, 1}.

Assume, we have |Sy ∩R0| = 3 and |Sy ∩R1| = 3. Then each vertex of Sy ∩Ri must disagree
with both ci+2 and ci+3 on y. This will imply that the vertices of Sy ∩R0 and vertices of Sy ∩R1

disagree with each other on c0. Now there will be no way to have rainbow distance at most 2
between a vertex of Sx and all the six vertices of Sy.

Hence we must have |Sy| ≤ 5. Then by equation (4) we have,

16 ≤ |(G)| ≤ 2 + 5 + (2 + 5) = 14.

This is a contradiction. This concludes this particular subcase.

(ii) Assume the three non-empty sets are Sx ∩ R1, Sy ∩ R0 and Sy ∩ R2 (only possible for
|C| ≥ 3). By Lemma 6.6, we have Sx = {x1} and the fact that each vertex of Sy ∩Ri disagrees
with ci2/4 on x1 for i ∈ {0, 2}. Triangulation implies the edges x1c0, x1c1, ck−1c0, c0c1 and c1c2.

23



For |C| = 3, {c0, c1} is a dominating set with at least four common neighbors {x, y, c2, x1}
contradicting the maximality of D. For |C| = 4 and 5 we have, every vertex of Sy ∩R0 disagree
with every vertex of Sy ∩R2 on y. Hence, by Lemma 6.7, we have |Sy ∩Ri| ≤ 3 for all i ∈ {0, 2}.
Hence by equation (4) we have

16 ≤ |(G)| = |D| + |C| + |S|

≤ [2 + 5 + (1 + 3 + 3)] = 14.

This is a contradiction.

Step 4: Hence at most two sets out of the 2k sets St∩Ri can be non-empty, where t ∈ {x, y}
and i ∈ {0, 1, ..., k − 1}.

Now assume that exactly two sets out of the sets St ∩ Ri are non-empty, where t ∈ {x, y}
and i ∈ {0, ..., k − 1}, yet there are two non-empty regions. Without loss of generality assume
that the two non-empty sets are Sx ∩R0 and Sy ∩R1. Triangulation will force x and y to have
a common neighbor other than c0 and c1 for |C| = 2 which is a contradiction.

For |C| = 3, 4, 5 triangulation implies the edges ck−1c0 and c0c1. By Lemma 6.6, we know
that each vertex of S is adjacent to c0. By equation (4) we have,

|S| ≥ (16 − 2 − 5) = 9.

Hence, without loss of generality, we may assume |Sx| ≥ 4. Then {c0, x} will be a dominating
set with at least six common neighbors Sx ∪ {ck−1, c1} contradicting the maximality of D.

Hence we are done.

The lemma proved above was one of the key steps to prove the theorem. Now we will improve
the lower bound of |C|.

Lemma 6.10. We have |C| ≥ 6.

Proof. For |C| = 2, 3, 4, 5 without loss of generality by Lemma 6.9, we may assume R1 to be the
only non-empty region. Then triangulation will force the configuration depicted in Fig 9 as a
subgraph of G, where C = {co, ..., ck−1}, Sx = {x1, ..., xnx

} and Sy = {y1, ..., yny
}. Without loss

of generality we may assume,

|Sy| = ny ≥ nx = |Sx|.

Then by equation (4) we have,

ny = |Sy| ≥ (16 − 2 − |C| − |Sx|) = 14 − |C| − |Sx|. (5)

First of all assume nx = 0. Then x is non-adjacent to y as otherwise y will dominate the
whole graph. So we have the edges c0c1, c1c2, ..., ck−1c0 by triangulation. Then by equation 5
we have,

|Sy| ≥ 14 − 5 = 9.

Now to have rd(x, yi) ≤ 2, every yi must be connected to x by a rainbow 2-path with internal
vertex either c0 or c1. Hence at least four vertices of Sy must be adjacent to either c0 or c1.

24



x y

c0

c1

ck−2

ck−1

x1
x2

xnx

y1
y2

yny

Figure 9: The only non-empty region is R1

Note that c0 is also adjacent to ck−1, c1 and that c1 is also adjacent to c0, c2. So, the dominating
set {c0, y} or {c1, y} will contradict the maximality of D. Hence nx ≥ 1.

Claim 1: |C| = 5 is not possible.

Proof of claim 1: Assume that |C| = 5. Then by equation 5 we have,

|Sy| ≥ 14 − 5 − nx = 9 − nx.

Therefore, as ny ≥ nx, we have ny ≥ 5. Now every vertex of Sy disagree with c3 on y. They
also must disagree with y on c2 as otherwise all of them will be connected to c2 by rainbow
2-paths with internal vertex c1 and imply rd(y1, y4) > 2. For similar reason, the vertices of Sy

must disagree with c4 on y.
Moreover, the edge c0c1 does not exist because it will force each vertex of Sy to be connected

to vertices of Sx by rainbow 2-paths with internal vertex either c0 or c1. In fact, for nx ≥ 2, as
not all vertices of Sx can be adjacent to both c0 and c1, every vertex of Sy will be connected to
the vertices of Sx by rainbow 2-paths with internal vertex being exactly one of c0, c1 implying
rd(y1, y4) > 2. For nx = 1, as ny ≥ 8, at least four vertices of Sy will be connected to the vertices
of Sx by rainbow 2-paths with internal vertex being exactly one of c0, c1 implying rd(yi, yi+3) > 2
for some i ∈ {1, 2, ..., ny}. Hence the edge c0c1 does not exist.

Also, if we have the edge y1y4 and without loss of generality assume the edge y1y3 by
triangulation, then every vertex of Sx must be connected to y2 by rainbow 2-paths with internal
vertex y1. In this case {y1, y} is a dominating set with at least ny common neighbors (c0 and
ny−1 common neighbors from Sy). Hence, to avoid contradicting the maximality of D, we must
have ny ≤ 5. Then we must also have nx ≥ 4. But then, as every vertex of Sx agree on y1 and
on x (as they all disagree with c3 on x) we have rd(x1, x4) > 2, a contradiction. Hence we do
not have the edge y1y4.

Therefore, y1 and y4 must be connected by a rainbow 2-path with an internal vertex xj from
Sx for some j ∈ {1, 2, .., nx}. As we cannot have the edge y1y4, this will imply that every vertex
of S \ {xj} will be adjacent to xj to be at rainbow distance at most 2 from each other. Then
we can arrive to a contradiction exactly like the case described in the paragraph above.

This proves the claim. ♦

Claim 2: |C| = 4 is not possible.

Proof of claim 2: Assume that |C| = 4. Then by equation 5 we have,
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|Sy| ≥ 14 − 4 − nx = 10 − nx.

Therefore, as ny ≥ nx, we have ny ≥ 5.
Now we will show that every vertex of Sy disagree with c2 and c3 on y. First note that no

vertex can agree with both c2 and c3 on y as otherwise it must be adjacent to both c0 and c1
which is impossible as ny ≥ 5. So, basically, if the claim is not true, then some vertices of Sy

will agree with c2 on y and the other vertices of Sy will agree with c3 on y.
Also at most three vertices of Sy can agree with c2 (or c3) on y. So, ny ≤ 6. Hence, nx ≥ 4.
Now, three vertices agree on, say, c2, then they will all disagree with c2 on c1 and every

vertex (there are at least four such vertices) of Sx will disagree with those three vertices on c1.
Then, to have rainbow distance at most 2 with the vertices of Sx, the other vertices (there are at
least two such vertices) of Sy should be adjacent to c1 which is not possible as they are already
connected to c3 with rainbow 2-paths with internal vertex c0.

The rest of the proof is similar to the proof Claim 1. Using similar arguments it is possible
to show that the edge c0c1 does not exist, the edge y1y4 does not exist and it is not possible to
have a rainbow 2-path with internal vertex from Sx connecting y1 and y4. ♦

Claim 3: |C| = 3 is not possible.

Proof of claim 3: Assume that |C| = 3. Then by equation 5 we have,

|Sy| ≥ 14 − 3 − nx = 11 − nx.

Therefore, as ny ≥ nx, we have ny ≥ 6.
First note that it is not possible to have the edge c0c1 as this will force some three vertices of

Sy to be connected to vertices of Sx by rainbow 2-paths with internal vertex c0 (or c1) making
{c0, y} (or {c1, y}) a dominating set that contradicts the maximality of D.

For nx ≥ 7, there are at least 4 vertices in Sy that agree with each other on y. We need
to have rainbow distance at most 2 between them. Let those four vertices be yi, yj , yk, yl with
i > j > k > l.

Now assume we have the edge yiyl. Then every vertex of Sx will be adjacent to either yi or
yl. Without loss of generality assume that every vertex of Sx is adjacent to yi. But then {yi, y}
will be a dominating set with at least 4 common neighbors contradicting the maximality of D.
Hence ny ≤ 6. Therefore we must have nx ≥ 4.

For ny = 5, 6, one can show that these cases are not possible without creating a dominating
set that contradicts the maximality of D. If one just tries to have rainbow distance at most 2
between the vertices of S, the proof will follow. The proof of this part is also similar to the ones
done before and, though a bit tedious, is not difficult to check. ♦

Claim 4: |C| = 2 is not possible.

Proof of claim 4: Assume that |C| = 2. Then by equation 5 we have,

|Sy| ≥ 14 − 2 − nx = 12 − nx.

Therefore, as ny ≥ nx, we have ny ≥ 6.
This is actually the easiest of the four claims. The case ny ≥ 7 can be argued as in the

previous proof. For ny = 6, we must have nx ≥ 5. If one just tries to have rainbow distance at
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most 2 between the vertices of S, the proof will follow. The proof of this part is also similar to
the ones done beforeand, though a bit tedious, is not difficult to check. ♦

This completes the proof of the lemma.

So, now we have proved that the value of |C| is at least 6. This is an answer to our question
“how small |C| can be?”. Now we will ask the question “How big |C| can be?” and try to
provide upper bounds for the value of |C|. The following lemma will help us to do so.

Lemma 6.11. If |C| ≥ 6, then the following holds:
(a)We must have |Cαβ | ≤ 3, |Cα

t | ≤ 6, |C| ≤ 12. Moreover, if |Cαβ | = 3, then (G)[Cαβ ] is a
rainbow 2-path.

(b) If |Cα
t | ≥ 5 (respectively 4, 3, 2, 1, 0), then |Sα

t | ≤ 0 (respectively 1, 3, 4, 5, 6).

Proof. (a) If |Cαβ | ≥ 4, then there will be two vertices u, v ∈ Cαβ with d(u, v) > 2 which is a
contradiction. Hence we have the first inequality which implies the other two.

Also if |Cαβ | = 3, then the only way to connect the two non-adjacent vertices u, v of Cαβ is
to connected them with a rainbow 2-path through the other vertex (other than u, v) of Cαβ .

(b) Lemma 6.5(b) implies that if all elements of Cα
t do not belong to the set of four boundary

points of any three consecutive regions (like R,R1, R2 in Lemma 6.6), then |Sα
t | = 0. Hence we

have |Cα
t | ≥ 5 implies |Sα

t | ≤ 0.

By Lemma 6.6, if all the elements of Cα
t belong to the set of four boundary points c1, c2, c1, c2

of three consecutive regions R,R1, R2 (like in Lemma 6.6) and contains both c1, c2, then |Sα
t | ≤ 1.

Also Sα
t ⊆ R by Lemma 6.6. Hence we have,

|Cα
t | ≥ 4 implies |Sα

t | ≤ 1.

Now assume that all the elements of Cα
t belongs to the set of three boundary points c1, c2, c1

of two adjacent regions R,R1 (like in Lemma 6.6) and contains both c1, c2. Then by Lemma 6.5,
v ∈ Sα

t implies v is in R or R1.
Now if both Sα

t ∩R and Sα
t ∩R1 are non-empty, then each vertex of (Sα

t ∩R)∪{c2} disagrees
with each vertex of (Sα

t ∩R1) ∪ {c1} on c1 (by Lemma 6.6).
Hence by Lemma 6.7 we have,

|(Sα
t ∩R) ∪ {c1}|, |(Sα

t ∩R1) ∪ {c2}| ≤ 3.

This clearly implies,

|Sα
t ∩R|, |Sα

t ∩R1| ≤ 2 and |Sα
t | ≤ 4.

Now suppose we have |Sα
t | = 4 and hence also |Sα

t ∩ R|, |Sα
t ∩ R1| = 2. Then St′ = ∅ as the

only way for a vertex of St′ to have rainbow distance at most 2 with every vertex of St is by
being connected by a rainbow 2-path with internal vertex c1, which is impossible as the vertices
of Sα

t ∩R disagree with the vertices Sα
t ∩R1 on c1.

In fact, for the same reason, it is impossible to have rainbow distance at most 2 between all
the vertices of St and t′ unless we have the edge tt′ (that is the edge xy). But then the edge tt′

makes t a vertex that dominates the whole graph contradicting the domination number of the
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graph being 2. Therefore, it is not possible to have |Sα
t | = 4. Hence we have |Sα

t | ≤ 3 in this
case.

Also if one of Sα
t ∩R and Sα

t ∩R1 is empty then we must have |Sα
t | ≤ 3 by Lemma 6.6 and

6.7.
Hence we have

|Cα
t | ≥ 3 implies |Sα

t | ≤ 3.

Let R,R1, R2, c1, c2, c1, c2 be like in Lemma 6.6 and assume Cα
t = {c1, c2}. By Lemma 6.5,

v ∈ Sα
t implies v is in R, R1 or R2 and also that both Sα

t ∩R1 and Sα
t ∩R2 can not be non-empty.

Hence, without loss of generality, assume Sα
t ∩R2 = ∅.

Then by Lemma 6.6, vertices of Sα
t ∩ R1 disagree with vertices of (Sα

t ∩ R) ∪ {c2} on c1.
Hence by Lemma 6.7 we have,

|Sα
t ∩R1|, |(Sα

t ∩R) ∪ {c2}| ≤ 3.

This implies |Sα
t | ≤ 5.

Now if Sα
t ∩R1 = ∅, then we have Sα

t = Sα
t ∩R. Let |Sα

t ∩R| ≥ 6. Now consider the induced
graph (O) = (G)[(S ∩R)∪{c1, c2}]. In this graph the vertices of (Sα

t ∩R)∪{c1, c2} are pairwise
at rainbow distance at most 2. Hence ωrs((O)) ≥ 8. But this is a contradiction as (O) is an
outerplanar graph and every outerplanar graph has a signed relative clique number at most 7
(see Theorem 2.9 for details). Hence,

|Cα
t | ≥ 2 implies |Sα

t | ≤ 5.

Now suppose we have |Sα
t | = 5. Then we must have St′ = ∅ as otherwise it is not possible

to have rainbow distance at most 2 between the vertices of S.
We also do not have the edge xy as it will contradict the domination number of the graph

being 2 (t will dominate the graph). So, by triangulation we have the edges c1c2 and c1c1. So,
each vertex of St must be connected to t′ with a rainbow 2-path with internal vertices from
{c1, c1, c2}. But then it will not be possible to have rainbow distance at most 2 between the five
vertices of St.

Hence,

|Cα
t | ≥ 2 implies |Sα

t | ≤ 4.

In general Sα
t is contained in two distinct adjacent regions by Lemma 6.5. Without loss

of generality assume Sα
t ⊆ R1 ∪ R2. If both Sα

t ∩ R1 and Sα
t ∩ R2 are non-empty, then by

Lemma 6.6 we know that vertices of Sα
t ∩ R1 disagree with vertices of Sα

t ∩ R2 on c1. Hence
|Sα

t ∩R1|, |S
α
t ∩R2| ≤ 3 which implies |Sα

t | ≤ 6.
Now assume only one of the two sets Sα

t ∩ R1 and Sα
t ∩ R2 is non-empty. Without loss of

generality assume Sα
t ∩ R1 6= ∅. If c0, c1 /∈ Cα

t and |Cα
t | = 1, then we have |Sα

t ∩ R1| ≤ 3 by
Lemma 6.6 and 6.7.

Otherwise, in the induced outerplanar graph (O) = (G)[(S ∩ R1) ∪ {c1, c2}] vertices of
Sα
t ∪ (Cα

t ∩ {c1, c2}) are pairwise at rainbow distance at most 2. Therefore

|Sα
t ∪ (Cα

t ∩ {c1, c2})| ≤ χs((O)) ≤ 7
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which implies

|Cα
t | ≥ 1 (respectively 0) implies |Sα

t | ≤ 6 (respectively 7).

Now, when both the equalities hold, we must have St′ = ∅ as otherwise G[Cα
t ∪ St ∪ St′ ]

will contain a signed outerplanar graph with signed chromatic number at least 8, which is not
possible, in order to have all the vertices of S at rainbow distance at most 2.

Now, St′ = ∅ will imply that the edge xy is not there as otherwise t will dominate the whole
graph. Hence, each vertex of St must be connected to t′ by a rainbow 2-path with internal
vertex ci for some i ∈ {0, 1, 2}. But this will force |St| ≤ 5 as otherwise the vertices of St will
no longer be at rainbow distance at most 2 from each other.

Hence,

|Cα
t | ≥ 1 (respectively 0) implies |Sα

t | ≤ 5 (respectively 6).

Hence we are done.

Now we will prove that the value of |C| can be at most 5 which contradicts our previously
proven lower bound of |C|.

Lemma 6.12. We have |C| ≤ 5.

Proof. Without loss of generality we can suppose |Cα
x | ≥ |Cβ

y | ≥ |Cβ
y | ≥ |Cα

x | (the last inequality
is forced). We know that |C| ≤ 12 and |Cα

x | ≤ 6 (Lemma 6.11(a)). So it is enough to show that

|S| ≤ 13 − |C| for all possible values of (|C|, |Cα
x |, |C

β
y |) since it contradicts (4).

For (|C|, |Cα
x |, |C

β
y |) = (12, 6, 6), (11, 6, 6), (10, 6, 6), (10, 6, 5), (10, 5, 5), (9, 5, 5), (8, 4, 4) we

have |S| ≤ 13 − |C| using Lemma 6.11(b).

For (|C|, |Cα
x |, |C

β
y |) = (8, 6, 6), (7, 6, 6), (7, 6, 5),(6, 6, 6), (6, 6, 5), (6, 6, 4), (6, 5, 5) we are

forced to have,

|Cαβ | > 3.

This is a contradiction by Lemma 6.11(a).

So, (|C|, |Cα
x |, |C

β
y |) 6= (12, 6, 6), (11, 6, 6), (10, 6, 6), (10, 6, 5), (10, 5, 5), (9, 5, 5), (8, 4, 4),

(8, 6, 6), (7, 6, 6), (7, 6, 5),(6, 6, 6), (6, 6, 5), (6, 6, 4), (6, 5, 5).

We will be done if we prove that (|C|, |Cα
x |, |C

β
y |) cannot take the other possible values also.

That leaves us checking a lot of cases. We will check just a few cases and observe that the other
cases can be checked using similar logic.

Case 1: Assume (|C|, |Cα
x |, |C

β
y |) = (9, 6, 6).

Then we are forced to have, |Cαβ | = |Cαβ | = |Cαβ | = 3 in order to satisfy the first inequality

of Lemma 6.11(a). So (G)[Cαβ ], (G)[Cαβ ] and (G)[Cαβ ] are rainbow 2-paths by Lemma 6.11(a).

Without loss of generality we can assume Cαβ = {c0, c1, c2} and Cαβ = {c3, c4, c5}. Hence

by Lemma 6.5 we have u ∈ R1 ∪ R2 and v ∈ R4 ∪ R5 for any (u, v) ∈ Sβ
y × Sα

x . Hence by

Lemma 6.5, either Sβ
y or Sα

x is empty. Without loss of generality assume Sβ
y = ∅. Therefore we

have, |S| = |Sx| = |Sα
x | ≤ 3 (by Lemma 6.11(b)). So this case is not possible.
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Case 2: Assume (|C|, |Cα
x |, |C

β
y |) = (7, 6, 4).

So, without loss of generality, we can assume that (G)[Cαβ ] and (G)[Cαβ ] are rainbow 2-paths

and, Cαβ = {c0, c1, c2}, Cαβ = {c3, c4, c5} and Cαβ = {c6}.
By Lemma 6.11 we have |Sx| ≤ 5 and |Sy| ≤ 3 + 1 = 4. So we are done if either Sx = ∅ or

Sy = ∅.

So assume both Sx and Sy are non-empty. First assume that Sβ
y 6= ∅. Then by Lemma 6.5

we have Sβ
y ⊆ R5, S

α
x ⊆ R5 ∪R6 and hence Sβ

y = ∅. By Lemma 6.6, vertices of Sβ
y and vertices

of Sα
x ∩ R5 must disagree with c6 on c5 while disagreeing with each other on c5, which is not

possible. Hence, Sα
x ∩ R5 = ∅. Also |Sα

x ∩ R6| ≤ 3 as they all disagree on c5 with the vertex of

Sβ
y . So |S| ≤ 4 when Sβ

y 6= ∅.

Now assume Sβ
y = ∅ hence Sβ

y 6= ∅. Then by Lemma 6.5 we have Sβ
y ⊆ R1∪R2, S

α
x ⊆ R0∪R1

and hence Sβ
y = ∅. Assume Sβ

y ∩R2 = ∅ as otherwise vertices of Sα
x will be adjacent to both c0

and c1 (to be connected to c6 and vertices of Sβ
y ∩ R2 by a rainbow 2-path) implying |Sα

x | ≤ 1

implying |S| ≤ 5. If Sα
x ∩ R0 6= ∅, then |Sβ

y ∩ R1| = 1, |Sα
y ∩ R1| ≤ 1 and |Sα

y ∩ R0| ≤ 3 by

Lemma 6.6 and hence |S| ≤ 5. If Sα
x ∩ R0 = ∅ then we have |Sβ

y ∩ R1| ≤ 2, |Sα
y ∩ R1| ≤ 3 and

hence |S| ≤ 5. So this case is not possible.

In a similar way one can handle the other cases.

This proves Lemma 6.4 and implies Theorem 6.3(a).

7 Cliques for n-edge-colored graphs

An n-edge-colored graph (G,E1, E2, ..., En) is a graph with a partition of its edges into k disjoint
parts E1, E2, ..., En. The graph G is called the underlying graph of (G,E1, E2, ..., En). For
uv ∈ Ei we say that the edge uv is colored with i for i ∈ {1, 2, ..., n}. When there is no chance of
confusion we can denote an n-edge-colored graph (G,E1, E2, ..., En) by (G). Two incident edges
uv and vw with different colors are together called a rainbow 2-path with terminal vertices u,w
and internal vertex v.

For an n-edge-colored graph (G,E1, E2, ..., En) the set of neighbors of a vertex v is denoted
by N(v) and the degree of a vertex v is denoted by d(v). Also Ni(v) will denote the set of
neighbors of v with which v is adjacent by an edge from Ei for all i ∈ {1, 2, ..., n}.

An n-edge-colored k-coloring [1] of an n-edge-colored graph (G,E1, E2, ..., En) is a mapping
φ from the vertex set V ((G,E1, E2, ..., En)) to the set {1, 2, ...., k} such that,

- (i) φ(u) 6= φ(v) whenever u and v are adjacent and

- (ii) if uv ∈ Ei and wx ∈ Ej for i 6= j where i, j ∈ {1, 2, ..., n}, then φ(u) = φ(w) implies
φ(v) 6= φ(x).

The n-edge-colored chromatic number χn((G,E1, E2, ..., En)) of an n-edge-colored graph
(G, E1, E2, ..., En) is the smallest integer k for which (G,E1, E2, ..., En) has an n-edge-colored k-
coloring. The n-edge-colored chromatic number χn(G) of an undirected graph G is the maximum
of the n-edge-colored chromatic numbers of all the n-edge-colored graphs with underlying graph
G. The n-edge-colored chromatic number χn(F) of a family F of graphs is the maximum of the
n-edge-colored chromatic numbers of the graphs from the family F .

An n-edge-colored clique is an n-edge-colored graph (G,E1, E2, ..., En) for which χn((G,E1, E2,
..., En)) = |V ((G,E1, E2, ..., En))|. The n-edge-colored absolute clique number ωan((G,E1, E2, ...,
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En)) of an n-edge-colored graph (G,E1, E2, ..., En) is the maximum order of an n-edge-colored
clique contained in (G,E1, E2, ..., En) as a subgraph.

Proposition 2.1 can be easily extended for n-edge-colored graphs.

Proposition 7.1. An n-edge-colored graph (G,E1, E2, ..., En) is an n-edge-colored clique if and
only if its each pair of non-adjacent vertices are connected by a rainbow 2-path.

A relative clique of an n-edge-colored graph (G,E1, E2, ..., En) is a set R ⊆ V ((G,E1, ..., En))
of vertices such that any two vertices from R are either adjacent or connected by a rain-
bow 2-path. The relative clique number ωrn((G,E1, E2, ..., En)) of an n-edge-colored graph
(G,E1, E2, ..., En) is the maximum order of an n-edge-colored relative clique of (G,E1, E2, ..., En).

Note that, in particular, 2-edge-colored graphs are nothing but signed graphs while the
notion of coloring, chromatic number, absolute and relative clique number remains consistent
with the restriction.

Also note that an extension of Proposition 2.8 follows directly from the definitions.

Proposition 7.2. For any n-edge-colored graph (G,E1, E2, ..., En) we have

ωan((G,E1, E2, ..., En)) ≤ ωrn((G,E1, E2, ..., En)) ≤ χn((G,E1, E2, ..., En)).

Our objective here is to study n-edge-colored cliques for planar graphs. We want to extend
Theorem 6.3(a) for n-edge-colored graphs. Even though we failed to provide tight bound, we
managed to provide close bounds for n-edge-colored absolute clique number for planar graphs
while providing tight bounds for n-edge-colored relative and absolute clique number for outer-
planar graphs.

Theorem 7.3. For the family O3 of outerplanar graphs we have ωan(O3) = ωrn(O3) = 3n + 1
for n ≥ 2.

Proof. First we will show that ωan(O3) ≥ 3n + 1 by explicitly constructing an n-edge-coloured
outerplanar absolute clique, (H,E1, ..., En), with 3n + 1 vertices as follows:

- the set of vertices V (H) = {x} ∪ {vij |1 ≤ i ≤ n, 1 ≤ j ≤ 3},

- the set of edges E(H) = {xvij , vi1vi2, vi2vi3|1 ≤ i ≤ n, 1 ≤ j ≤ 3},

- the edges vi1vi2 ∈ E1 for all i ∈ {1, 2, ..., n},

- the edges vi2vi3 ∈ E2 for all i ∈ {1, 2, ..., n},

- the edges xvij ∈ Ei for all i ∈ {1, 2, ..., n}.

It is easy to check that the graph (H,E1, ..., En) is indeed an n-edge-coloured outerplanar
absolute clique with 3n + 1 vertices.

Now to prove the upper bound let (G,E1, E2, ..., En) be a minimal (with respect to number
of vertices) n-edge-colored outerplanar graph with relative clique number ωrn(O3). Moreover,
without loss of generality, we can assume that (G) is maximal (that is, we cannot add any more
edges keeping the graph outerplanar). We can assume this because adding more edges will not
affect the relative clique number as it is already equal to ωrn(O3). Let R be a relative clique of
cardinality ωrn(O3) of (G). Let S = V (G) \R.

As (G) is maximal outerplanar d(v) ≥ 2 for all v ∈ V (G). Then, as (G) is outerplanar, there
exists a vertex u0 ∈ V (G) with d(u0) = 2. Fix an outerplanar embedding of (G) with the outer
(facial) cycle having vertices u1, u1, u2, ..., uR of R embedded in a clockwise manner on the cycle.
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Note that if u1 ∈ S then we can delete u1 and connect the neighbors of u1 with an edge (if
they are not already adjacent) to obtain a graph with same relative clique number contradicting
the minimality of (G). Hence u1 ∈ R with neighbors a and b (say).

Then every vertex of R \ {u1, a, b} is connected to u1 through internal vertex a or b. Now
let ui, uj ∈ (R \ {u1, a, b})∩ (Nk(a)∪Nk(b)) be two vertices with i 6= j for some k ∈ {1, 2, ..., n}.
Then it is easy to notice that |i− j| ≤ 2 as otherwise they can be neither adjacent nor connected
by a rainbow 2-path in (G). For the same reason if ui ∈ Nk(a) and uj ∈ Nk(b) for i 6= j then
we must have |i− j| ≤ 2 for any k ∈ {1, 2, ..., n}.

From this we can conclude that |(R \ {u1}) ∩ (Nk(a) ∪Nk(b))| ≤ 3 for any k ∈ {1, 2, ..., n}.
Now as a and b are adjacent a and b are also contained in the set ∪n

i=1(R\{u1})∩(Nk(a)∪Nk(b)).
Hence we have

R ≤ | ∪n
k=1 (R \ {u1}) ∩ (Nk(a) ∪Nk(b))| + |{u1}|

= Σn
k=1|(R \ {u1}) ∩ (Nk(a) ∪Nk(b))| + 1

≤ 3n + 1.

This completes the proof.

Now we will use the above theorem to prove the following result for the class planar graphs.

Theorem 7.4. For the family P3 of planar graphs we have 3n2+n+1 ≤ ωan(P3) ≤ 9n2+2n+2
for n ≥ 3.

Proof. First we will show that ωan(P3) ≥ 3n2 + n + 1 by explicitly constructing an n-edge-
coloured planar absolute clique, (H∗, E1, ..., En), with 3n2 + n + 1 vertices. For this, recall
the example of n-edge-colored outerplanar absolute clique (H,E1, E2, ..., En) from the previous
proof (proof of Theorem 7.3). Now put the adjacencies of (G) in a way so that the following
hold:

- the set of vertices V (H∗) = {x} ∪ {vij |1 ≤ i ≤ n, 1 ≤ j ≤ 3n + 1},

- the induced subgraph (H∗)[{vi1, vi2, ..., vi(3n+1)] of (G) is isomorphic to (H),

- the edges xvij ∈ Ei for all i ∈ {1, 2, ..., n} and for all j ∈ {1, 2, ..., 3n + 1}.

It is easy to check that the graph (G,E1, ..., En) is indeed an n-edge-coloured planar absolute
clique with 3n2 + n + 1 vertices.

Now to prove the upper bound first notice that any n-edge-colored absolute clique has
diameter at most 2. Let (G,E1, E2, ..., En) be an n-edge-colored planar absolute clique. Assume
that (G) is triangulated. As deleting edges do not increase the absolute clique number, it is
enough to prove this result for triangulated (G). Now by Theorem 7.3 we know that (G) is
dominated by at most two vertices.

First assume that (G) is dominated by a single vertex x. Then the graph Ni(x) is an n-
edge-colored relative clique in the induced graph (G)[N(x)] (the graph obtained by deleting x
from (G)) for each i ∈ {1, 2, ..., n}. But the graph (G)[N(x)] is an outerplanar graph. So by
Theorem 7.3 we have |Ni(x)| ≤ 3n + 1. Hence if (G) is dominated by one vertex then
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ωan((G)) ≤ | ∪n
k=1 Ni(x)| + |{x}|

= Σn
i=1|Ni(x)| + 1

≤ 3n2 + n + 1.

Now let (G) is dominated by two vertices x and y. Now we fix some notations to prove the
rest of this result.

- C = N(x) ∩N(y) and Cij = Ni(x) ∩Nj(y) for all i, j ∈ {1, 2, ..., n},

- Sxi
= Ni(x) \ C, Syi = Ni(y) \ C for all i, j ∈ {1, 2, ..., n},

- Sx = N(x) \ C, Sy = N(y) \ C.

Note that, for |C| ≥ 6 we must have |Cij | ≤ 3 for all i, j ∈ {1, 2, ..., n} as otherwise it is not
possible to have pairwise distance at most two between the vertices of Cij keeping the graph
planar. So, we can conclude that

|C| ≤ | ∪n
i,j=1 Cij | = Σn

i=1Σ
n
j=1|Cij | ≤ 3n2.

Now note that the graph obtained by deleting the vertices x and y from (G) is an outer-
planar graph. Moreover, note that Sxi

is a relative clique in that outerplanar graph. Hence by
Theorem 7.3 we have |Sxi

| ≤ 3n + 1. Hence

|Sxi
| ≤ | ∪n

i=1 Sxi
| = Σn

i=1|Sxi
| ≤ 3n2 + n.

Similarly, we have |Sxi
| ≤ 3n2 + n. Hence we can provide an upper bound of the number of

vertices in (G).

|(G)| = |C| + |Sx| + |Sy| + |{x, y}| ≤ 9n2 + 2n + 2.

Hence we are done.

Finally, we would like to make the following conjecture regarding the n-edge-colored absolute
clique number of planar graphs.

Conjecture 7.5. For the family P3 of planar graphs ωan(P3) = 3n2 + n + 1 for n ≥ 2.

We have already shown that the conjecture is true for n = 2 (see Theorem 6.3(a)). We think
that using similar techniques the conjecture can be proved for some smaller values of n and the
bound provided in the above theorem can be improved. However, to prove the conjecture for
all values of n might require a different technique.
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8 Conclusion

In this article we brought together a few different concepts, namely, signed graphs, switchable
signed graphs, oriented graphs, n-edge-colored graphs, rainbow connection (implicitly), while
our focus mainly remained on absolute clique number (introduced in this article) of signed and
switchable signed graphs. We also introduced relative clique and used it as a tool to prove our
main result. We extended our results to n-edge-colored relative and absolute cliques (introduced
in this article).

We propose the following questions and directions for further contributions in this topic:

(1) Let f(n) (or g(n)) be the minimum number of edges in an sclique (or an [s]-clique) of order
n. Is f (or g) a (strictly) increasing function?

(2) Study the absolute and relative clique numbers for different class of graphs.

(3) Is there some interesting class of graphs for which the difference of oriented and signed
chromatic number is not arbitrarily large?

(4) One can make a similar study for (m,n)-mixed graphs [21] (that is, graphs with edges
with m different colors and arcs with n different colors) and generalize our results.

We also made a conjecture on what the absolute clique number for n-edge colored graphs can
be and solved it for n = 2. The case solved in this article is analogous to the conjecture made by
Klostermeyer and MacGillivray [15] regarding oriented cliques which was settled positively [29]
recently.
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[26] J. Nešetřil and A. Raspaud. Colored homomorphisms of colored mixed graphs. Journal of
Combinatorial Theory, Series B, 80(1):147–155, 2000.

[27] P. Ochem, A. Pinlou, and S. Sen. Homomorphisms of signed planar graphs. arXiv preprint
arXiv:1401.3308, 2014.
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