
HAL Id: hal-01078178
https://hal.science/hal-01078178

Submitted on 28 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

A Fuzzy System for Concept-Level Sentiment Analysis
Mauro Dragoni, Andrea G. B. Tettamanzi, Célia da Costa Pereira

To cite this version:
Mauro Dragoni, Andrea G. B. Tettamanzi, Célia da Costa Pereira. A Fuzzy System for Concept-Level
Sentiment Analysis. Semantic Web Evaluation Challenge - SemWebEval 2014 at ESWC 2014, May
2014, Anissiras, Crete, Greece. pp.21 - 27, �10.1007/978-3-319-12024-9_2�. �hal-01078178�

https://hal.science/hal-01078178
https://hal.archives-ouvertes.fr


A Fuzzy System For Concept-Level Sentiment Analysis

Mauro Dragoni1, Andrea G.B. Tettamanzi2, and Célia da Costa Pereira2

1 FBK–IRST, Trento, Italy
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Abstract. An emerging field within Sentiment Analysis concerns the investiga-

tion about how sentiment concepts have to be adapted with respect to the different

domains in which they are used. In the context of the Concept-Level Sentiment

Analysis Challenge, we presented a system whose aims are twofold: (i) the imple-

mentation of a learning approach able to model fuzzy functions used for build-

ing the relationships graph representing the appropriateness between sentiment

concepts and different domains (Task 1); and (ii) the development of a semantic

resource based on the connection between an extended version of WordNet, Sen-

ticNet, and ConceptNet, that has been used both for extracting concepts (Task 2)

and for classifying sentences within specific domains (Task 3).

1 Introduction And Related Work

Sentiment Analysis is a kind of text categorization task that aims to classify documents

according to their opinion (polarity) on a given subject [1]. This task has created a

considerable interest due to its wide applications. However, in the classic Sentiment

Analysis the polarity of each term of the document is computed independently of the

domain which the document belongs to. Recently, the idea of adapting term polarities

to different domains emerged [2]. The rationale behind the idea of such investigation is

simple. Let’s consider the following example concerning the adjective “small”:

1. The sideboard is small and it is not able to contain a lot of stuff.

2. The small dimensions of this decoder allow to move it easily.

In the first text, we considered the Furnishings domain and, within it, the polarity

of the adjective “small” is, for sure, “negative” because it highlights an issue of the de-

scribed item. On the other hand, in the second text, where we considered the Electronics

domain, the polarity of such adjective can be considered “positive”.

In the literature, different approaches related to the Multi-Domain Sentiment Anal-

ysis have been proposed. Briefly, two main categories may be identified: (i) the transfer

of learned classifiers across different domains [3] [4], and (ii) the use of propagation of

labels through graph structures [5] [6]. Independently of the kind of approach, works

using concepts rather than terms for representing different sentiments have been pro-

posed.

Unlike the approaches already discussed in the literature, we address the multi-

domain sentiment analysis problem by applying the fuzzy logic theory for modeling

membership functions representing the relationships between concepts and domains.



Moreover, the proposed system exploits the use of semantic background knowledge

for propagating information represented by the learned fuzzy membership functions to

each element of the network. To the best of our knowledge, the proposed approach is

innovative with respect to the state of the art of Multi-Domain Sentiment Analysis.

The paper is structured as follows. Section 2 introduces the background knowledge

and tools used during the development of the system that is described in detail in Sec-

tion 3. Finally, Section 4 provides a description of how the tasks of the challenge have

been addressed and concludes the paper.

2 Preliminaries

The system is implemented on top of background knowledge used for representing the

linguistic connections between “concepts” described in several resources. Below, it is

possible to find the list of such resources and the links where further information about

them may be found.

WordNet3 [7] is one of the most important resources available to researchers in the

field of text analysis, computational linguistics, and many related areas. In the imple-

mented system, WordNet has been used as a starting point for the construction of the

semantic graph used by the system (see Section 3) However, due to some coverage lim-

itations occurring in WordNet, it has been extended by linking further terms coming

from the Roget’s Thesaurus [8].

SenticNet4 [9] is a publicly available resource for opinion mining, which exploits

both Artificial Intelligence and Semantic Web techniques to infer the polarity associated

with common-sense concepts and represent it in a semantic-aware format. In particular,

SenticNet uses dimensionality reduction to calculate the affective valence of a set of

Open Mind concepts and represent it in a machine-accessible and machine-processable

format.

All resources have been connected by exploiting links contained in ConceptNet5 [10]

in order to build a single graph for representing the entire background knowledge ex-

ploitable by the system.

3 System

The main aim of the implemented system is the learning of fuzzy membership func-

tions representing the degree of membership of a concept to a domain in terms of both

sentiment polarity and aboutness. The two pillars on which the system has been built

are: (i) the use of fuzzy logic for modeling the polarity of a concept with respect to a

domain as well as its aboutness, and (ii) the creation of a two-levels graph where the

top level represents the semantic relationships between concepts and the bottom level

contains the links between all concept membership functions and the domains.

3 https://wordnet.princeton.edu/
4 http://sentic.net/
5 http://conceptnet5.media.mit.edu/



Figure 1 shows the conceptualization of the two-levels graph. Relationships be-

tween the concepts of the Level 1 (the Semantic Level) are described by the background

knowledge exploited by the system as described in Section 2. The type of relationships

are the same generally used in linguistic resource: for example, concepts C1 and C3

may be connected through an Is-A relationship rather than the Antonym one. Instead,

each connection of the Level 2 (the Sentiment Level) describes the membership of each

concept in the different domains considered.

The system has been trained by using the Blitzer dataset6 in two steps: first, the

fuzzy membership functions have been initially estimated by analyzing only explicit

information present within the dataset (Section 3.1); then, (ii) explicit information has

been propagated through the Sentiment Level graph by exploiting the connections de-

fined in the Semantic Level.

Fig. 1: The two-layer graph initialized during the Preliminary Learning Phase (a) and

its evolution after the execution of the Information Propagation Phase (b).

3.1 Preliminary Learning Phase

The Preliminary Learning (PL) phase aims at estimating the initial polarity of each

concept with respect to a domain. The estimation of this value is done by analyzing

only explicit information provided by the training set. This phase allows to define the

preliminary fuzzy membership functions between the concepts defined in the Semantic

Level of the graph and the domains that are defined in the Sentiment Level. Such a value

is computed by Equation 1:

polarity∗i (C) =
kiC
T i
C

∈ [−1, 1] ∀i = 1, . . . , n, (1)

where C is the concept taken into account, index i refers to domain Di which the con-

cept belongs to, n is the number of domains available in the training set, kiC is the

6 http://www.cs.jhu.edu/ mdredze/datasets/sentiment/



arithmetic sum of the polarities observed for concept C in the training set restricted to

domain Di, and T i
C is the number of instances of the training set, restricted to domain

Di, in which concept C occurs. The shape of the fuzzy membership function gener-

ated during this phase is a triangle with the top vertex in the coordinates (x, 1), where

x = polarity∗i (C), and with the two bottom vertices in the coordinates (−1, 0) and

(1, 0), respectively. The rationale is that while we have one point (x) in which we have

full confidence, our uncertainty covers the entire space because we do not have any

information concerning the remaining polarity values.

3.2 Information Propagation Phase

The Information Propagation (IP) phase aims at exploiting the explicit information

learned in the PL phase in order to both (i) refine the fuzzy membership function of

the known concepts, as well as (ii) to model such functions for concepts that are not

specified in the training set, but that are semantically related to the specified ones. Fig-

ure 1 presents how the two-levels graph evolves before and after the execution of the

IP phase. After the PL phase only four membership functions are modeled: C1 and C2

for the domain D1, and C1 and C5 for the domain D2 (Figure 1a). However, as we may

observe, in the Semantic Level there are concepts that are semantically related to the

ones that were explicitly defined in the training set, namely C3 and C4; furthermore,

there are also concepts for which a fuzzy membership function has not been modeled

for some domains (i.e. C2 for the domain D2 and C5 for the domain D1).

Such fuzzy membership functions may be inferred by propagating the information

modeled in the PL phase. Similarly, existing fuzzy membership functions are refined by

the influence of the other ones. Let’s consider the polarity between the concept C3 and

the domain D2. The fuzzy membership function representing this polarity is strongly

influenced by the ones representing the polarities of concepts C1 and C5 with respect

to the domain D2.

The propagation of the learned information through the graph is done iteratively

where, in each iteration, the estimated polarity value of the concept x learned during

the PL phase is updated based on the learned values of the adjoining concepts. At each

iteration, the updated values are saved in order to exploit them for the re-shaping of the

fuzzy membership function associating the concept x to the domain i.

The resulting shapes of the inferred fuzzy membership functions will be trapezoids

where the extension of the upper base is proportional to the difference between the

value learned during the PL phase (Vpl) and the value obtained at the end of the IP

phase (Vip), while the support is proportional to both the number of iterations needed

by the concept x to converge to the Vip and the variance with respect to the average of

the values computed after each iteration of the IP phase.

3.3 Polarity Aggregation And Decision Phases

The fuzzy polarities of different concepts, resulting from the IP phase, are finally ag-

gregated by a fuzzy averaging operator obtained by applying the extension principle

(for the technical details see [11]) in order to compute fuzzy polarities for complex en-

tities, like texts, which consist of a number of concepts and thus derive, so to speak,



their polarity from them. When a crisp polarity value is needed, it may be computed

from a fuzzy polarity by applying one of the defuzzification methods proposed in the

literature [11].

Let µC : [−1, 1] → [0, 1] be the fuzzy interval (i.e., a convex fuzzy set) represent-

ing the fuzzy polarity of concept C resulting from the IP phase. Let T be a text (or

any other entity that may be regarded as a combination of concepts) related to concepts

C1, . . . , Cn. The fuzzy polarity of T , µT : [−1, 1] → [0, 1], may be defined as the aver-

age of the fuzzy polarities of concepts C1, . . . , Cn, by applying the extension principle,

as follows, for all x ∈ [−1, 1]:

µT (x) = sup
x= 1

n

∑
n

i=1
xi

min
i=1,...,n

µCi
(xi). (2)

The result of the polarity aggregation phase is a fuzzy polarity, whose membership

function reflects the uncertainty of the available estimate obtained by the system. In this

sense, µT may be regarded as a possibility distribution of the actual polarity of T . Given

x ∈ [−1, 1], the membership degree µT (x) represent the degree to which it is possible

that the polarity of T is x. Here, we are making the assumption that polarity is gradual,

i.e., that a text may be more or less negative or positive.

At some point, if a decision must be made based on the polarity of T , some criterion

has to be adopted, which takes the uncertainty of the estimate into account. As a matter

of fact, a criterion can be defined only with reference to a given application scenario.

For instance, if we can afford any desired number of texts and what we want is to pick

a few of them whose polarity is certain, we can look for T such that either dT < 0 or

aT > 0, i.e., the support of µT lies entirely on the left or on the right of zero, because

in those cases it is certain that polarity is negative (in the former case) or positive (in

the latter). In other scenarios, where what we want is to classify each and every text as

either negative or positive as accurately as possible, we will have to be less picky and

rely on a defuzzification method to transform µT into a crisp polarity value.

4 Challenge Tasks and Conclusion

In this paper, we have presented a fuzzy concept-based sentiment analysis system able

to model fuzzy membership functions representing the polarities and the aboutness of

concepts with respect to a particular domain. The system has been implemented in the

context of the ESWC 2014 Concept-Level Sentiment Analysis Challenge. The Tasks

proposed by the challenge have been addressed as follows.

Elementary Task: the polarity of each text is computed by aggregating the fuzzy

membership functions associated with the extracted concepts. The aggregation opera-

tion is performed by applying the extension principle as described in Section 3.3.

Advanced Task #1 and #2: both aspects and concepts (simple and complex) are

extracted by exploiting the built knowledge base (as explained in Section 2) and, con-

cerning the Advanced Task #1, its polarity is computed by applying the approach used

in the Elementary Task.

Advanced Task #3: similarly to the Elementary Task, the classification of each text is

done by analyzing the associations between concepts and domains (independently from



the polarity); therefore, the domain of each text is extracted by applying the extension

principle of fuzzy sets.

Finally, the system has been preliminarily tested on the full version of the Blitzer

dataset as shown in Table 17. The system has been compared with three different base-

lines representing the most well-known machine learning techniques available today

demonstrating the feasibility of the proposed approach for addressing the multi-domain

sentiment analysis problem.

SVN [12] Naive-Bayes [13] Max-Entropy [13] MDFSA Precision MDFSA Recall

0.8068 0.8227 0.8275 0.8617 0.9987

Table 1: Results obtained on the full version of the Blitzer dataset.
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