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Abstract

Ordinary Di�erential Equations are a simple but powerful framework for modeling

complex systems. Parameter estimation from times series can be done by Nonlinear

Least Squares (or other classical approaches), but this can give unsatisfactory results

because the inverse problem can be ill-posed, even when the di�erential equation is

linear.

Following recent approaches that use approximate solutions of the ODE model,

we propose a new method that converts parameter estimation into an optimal control

problem: our objective is to determine a control and a parameter that are as close

as possible to the data. We derive then a criterion that makes a balance between

discrepancy with data and with the model, and we minimize it by using optimization

in functions spaces: our approach is related to the so-called Deterministic Kalman

Filtering, but di�erent from the usual statistical Kalman �ltering.

We show the root-n consistency and asymptotic normality of the estimators for

the parameter and for the states. Experiments in a toy model and in a real case shows

that our approach is generally more accurate and more reliable than Nonlinear Least

Squares and Generalized Smoothing, even in misspeci�ed cases.

Keywords: Ordinary Di�erential Equation, Optimal Control, Parameter Estimation,

Smoothing, Riccati Equation, M-estimation.

1



1 Introduction 2

1 Introduction

Ordinary Di�erential Equations (ODE) are a widely used class of mathematical

models in biology, physics, engineering, . . . Indeed, it is a relatively simple but

powerful framework for expressing the main mechanisms and interactions of

potentially complex systems. It is often a reference framework in population

dynamics and epidemiology [13], virology [29], or in genetics for describing gene

regulation networks [26, 40]. The model takes the form ẋ = f(t, x, θ), where

f is a vector �eld, x is the state, and θ is a parameter that can be partly

known. The parameter θ is often of high interest, as it represents rates of

changes, phenomenological constants needed for interpretability and analysis of

the system. Typically, θ can be related to the sensitivity of a variable with

respect to other variables.

Hence, the parameter estimation of ODEs from experimental data is a

long-standing statistical subject that have been adressed with many di�erent

tools. Estimation can be done with classical estimators such as Nonlinear

Least Squares (NLS) and Maximum Likelihood Estimator (MLE) [24, 39, 31] or

Bayesian approaches [21, 15, 16, 9]. Nevertheless, the statistical estimation of

an ODE model by NLS leads to a di�cult nonlinear estimation problem. Some

di�culties were pointed out by Ramsay et al. [33] such as computational com-

plexity, due to ODE integration and nonlinear optimization. These di�culties

are in fact reminiscent of intrinsic di�culties in the parameter estimation prob-

lem, that makes it an ill-posed inverse problem, that needs some regularization

[14, 36] .

Alternative statistical estimators have been developped to deal with this par-

ticular framework, such as Generalized Smoothing [33, 32, 12, 10] or Two-Step

estimators [38, 5, 25, 17, 6]. Two-step estimators use a nonparametric estimator

X̂ and aim at minimizing quantities characterizing the di�erential models, such

as the weighted L2 distance
´ T

0

∥∥∥ ˙̂
X(t)− f(t, X̂(t), θ)

∥∥∥2

w(t)dt. These estimators

have a good computational e�ciency as they avoid repeated ODE integration.

In practice, the used criteria are also smoother and easier to optimize than the

NLS criterion. Two-step estimators are consistent in general, but there is a

trade-o� with the statistical precision, and some care in the use of nonparamet-

ric estimate
˙̂
X has to be taken in order to keep a parametric rate [5, 17].

In the case of Generalized Smoothing [33], the solution X∗ is approximated

by a basis expansion that solves approximately the ODE model; hence, the

parameter inference is performed by dealing with an imperfect model. Based on
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the Generalized Pro�ling approach, Hooker proposed a criteria that estimates

the lack-of-�t through the estimation of a �forcing function� t 7→ u(t) in the ODE

ẋ − f(t, x, θ̃) = u(t), where θ̃ is a previous estimate obtained by Generalized

Pro�ling.

In [7], the authors have proposed a two-step estimator for linear models,

that avoids the use of
˙̂
X and introduces a forcing function without the �nite

basis decomposition by using control theory. The principle is to transform

the estimation problem into a control problem: we have to �nd the best (or

smallest) control u such that the ODE is close to the data. The limitations of

the results provided in [7] were the restriction to fully observed system with

known initial condition. The objective of this paper is to provide a similar two-

step estimate that permits the estimation of θ without knowing x0, that deals

with the partially observed case and provides state estimates.

One interest of the approach used is to deal directly with the optimization

in a function space without using of series expansion for function estimation.

Moreover, in�nite dimensional optimization tools give a powerful characteriza-

tion of the solutions, useful in practice. This work can be seen as an extension of

the previous one [7], aiming to use control theory result for parameter inference.

We deal now with the partially observed case with unknown initial condition,

that gives rise to a methodology close to the so-called �Deterministic Kalman

Filter�. Indeed, in that paper, we assume that the system is linear, with a linear

observation function.

Our method provides a consistent parametric estimator when the model is

correct. We show that it is root-n consistent and asymptotically normal. At

the same time, we get a discrepancy measure between the model and the data

under the form of an optimal control u analogous to the forcing function in [19],

and we show that we can estimate the �nal and initial conditions and hence all

the states if needed, in particular the hidden ones.

In the next section, we introduce the notations and we motivate our approach

by discussing the Generalized Smoothing approach, and the link with Optimal

Control Theory. In section 3, we investigate the existence and regularity of our

new criterion; in particular, we derive necessary and su�cient conditions for

de�ning our approach in partially observed case. We show that the estimator is

consistent under some regularity assumption about the model. Then in section

4, we show that we reach the root−n rate using regression splines for Ŷ the

nonparametric estimator of the observed signal. We derive then the consistency

of the state estimator derived. Finally, we show the interest of our method on
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a toy model and in a real model used in chemical engineering, by a comparison

with Nonlinear Least Squares and Generalized Smoothing.

2 Model and methodology

We introduce �rst the statistical ODE model of interest, and the basic notations

for de�ning our estimator. We relate this work to the Generalized Smoothing

estimator and the Tracking estimator.

2.1 Model and Notations

We partially observe a �true� trajectory X∗ at random times 0 = t1 < t2 · · · <
tn = T , such that we have n observations (Y1, . . . , Yn) de�ned as

Yi = CX∗(ti) + εi

where εi is a random noise and C is the observation matrix of size d′ × d.
We assume that there is a true parameter θ∗ belonging to a subset Θ of Rp,

such that X∗ is the unique solution of the linear ODE

ẋ(t) = Aθ(t)x(t) + rθ(t) (1)

with initial condition X∗(0) = x∗0; where t 7→ Aθ(t) ∈ Rd×d and t 7→ rθ(t) ∈ Rd.
More generally, we denote Xθ,x0 the solution of (1) for a given θ, and initial

condition x0. We assume that x∗0 and θ∗ are unknown, and that they must be

estimated from the data (y1, . . . , yn). The parameter θ∗ is the main parameter

of interest, whereas the initial condition is considered as a nuisance parameter,

needed essentially for the computation of candidate trajectories Xθ,x0
.

For linear equations, a central role is played by the solutions of the homoge-

neous ODE

ẋ(t) = Aθ(t)x(t). (2)

Indeed, for each s in [0, T ], we denote t 7→ Φθ (t, s) the solution to the matrix

ODE (2), with initial condition Id at time s (i.e Φθ (s, s) = Id). The function

(t, s) 7→ Φθ (t, s) is a d × d matrix valued function, called the resolvant of the

ODE. It permits to give an explicit dependence of the solutions of (1) in rθ and
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the initial condition x0, thanks to Duhamel's formula:

Xθ,x0(t) = Φθ(t, 0)x0 +

ˆ t

0

Φθ(t, s)rθ(s)ds.

A consistent and classical method for the estimation of θ∗ is Nonlinear Least

Squares (NLS), that minimizes

n∑
i=1

‖Yi − CXθ,x0(ti)‖22 .

A classical alternative is Generalized Smoothing (GS), that uses approximate

solutions of the ODE (1). GS replaces the solutionsXθ,x0
by splines that smooth

data and solve approximately the ODE with a penalty based on the ODE model.

A basis expansion X̂(t, θ) = β̂(θ)T p(t) is computed for each θ, where β̂(θ) is

obtained by minimizing in β the criterion

Jn(β|θ, λ) =

n∑
i=1

∥∥Yi − CβT p(t)∥∥2

2
+ λ

ˆ T

0

∥∥βT ṗ(t)− (Aθ(t)βT p(t) + rθ(t)
)∥∥2

2
dt

(3)

This �rst step is considered as pro�ling along the nuisance parameter β, whereas

the estimation of the parameter of interest is obtained by minimizing the sum

of squared errors of the proxy X̂(t, θ):

θ̂GS = arg min
θ

n∑
i=1

∥∥∥Yi − CX̂(ti, θ)
∥∥∥2

(4)

In practice, the hyperparameter λ needs to be selected from the data with

adaptive procedures, see [11].

The essential di�erence with NLS is the replacement of the exact solution

Xθ,x0
by the approximation X̂(·, θ) (that depends also on the data). This change

induces a new source of error in the estimation of the true trajectory t 7→ X∗(t)

as the functions X̂(·, θ) are splines that do not solve exactly the ODE model

(1). The ODE constraint is relaxed into an inequality constraint de�ned on

the interval [0, T ]. The model constraint is never set to 0 because of the trade-

o� with the data-�tting term
∑n
i=1

∥∥Yi − CβT p(t)∥∥2

2
. For this reason, the ODE

model (1) is not solved and it is useful to introduce the discrepancy term ûθ(t) =

βT ṗ(t) −
(
Aθ(t)β

T p(t) + rθ(t)
)
that corresponds to a model error. In fact, the

proxy X̂(·, θ) satis�es the perturbed ODE ẋ = Aθx + rθ + ûθ. This forcing
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function ûθ is an outcome of the optimization process and can be relatively

hard to analyze or understand, but its analysis provides a good insight into the

relevancy of the model [19, 20].

Based on these remarks, we introduce the perturbed linear ODE

ẋ(t) = Aθ(t)x(t) + rθ(t) + u(t) (5)

where the function t 7→ u(t) can be any function in L2. The solution of the

corresponding Initial Value Problemẋ(t) = Aθ(t)x(t) + rθ(t) + u(t)

x(0) = x0

is denoted Xθ,x0,u. Instead of using the spline proxy X̂(·, θ) for approximating

X∗, we use the trajectories Xθ,x0,u of the ODE (5) controlled by the additional

functional parameter u.

In [7], the same perturbed model is introduced but the cost function is

simpler as the observation matrix C is the identity, and the initial condition

is �xed. In that framework, an M-estimator for θ is proposed, based on the

optimization of the criterion

S̃(Ŷ ;x0, θ, λ) = inf
u∈L2
{‖Ŷ −Xθ,x0,u‖2L2 + ‖u‖2L2}. (6)

The proper de�nition of S̃ and the derivation of its properties were obtained by

using some classical results of Optimal Control Theory. Essentially, the compu-

tation of S̃ corresponds to the classical "tracking problem" that can be solved by

the Linear-Quadratic theory (LQ theory). LQ theory solves the minimization

problem in L2 of the cost function

C(u) = ‖Xθ,x0,u(t)‖2L2 + ‖u(t)‖2L2 +Xθ,x0,u(T )>QXθ,x0,u(T ) (7)

The criteria S̃ used for parameter estimation is associated to the value function

de�ned in Optimal Control as S(t, x) = inf{C(u)|Xθ,x,u(t) = x}. The value

function plays a critical role in the analysis of optimal control problems, typi-

cally for the computation of an optimal policy. Under regularity assumptions,

the value function S is the solution of the Hamilton-Jacobi-Bellman Equation,

which is a �rst order Partial Di�erential Equation [1]. Quite remarkably, for a
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linear ODE with a quadratic cost such as (7), the value function is a quadratic

form in the state x, i.e S(t, x) = −x>E(t)x, where E(t) is the solution of a ma-

trix ODE (the Riccati equation), which makes its computation very tractable

in practice.

LQ theory can be adapted for tracking of an output signal Ŷ = CX∗ + ε

with a perturbed linear ODE, see chapter 7 in [35]. When we do not know the

initial condition, some adaptations are required. Indeed, as the initial condition

can have a strong in�uence on the optimal control and the optimal cost; it

seems much harder to solve the control problem when the initial condition is

not known: the current state x(t) is unknown and all the admissible trajectories

must be considered. Nevertheless, this problem is solved by the Deterministic

Kalman Filter (DKF) by using the fact that the value function S is a quadratic

form on the state.

We show in the next section that the Deterministic Kalman Filtering (DKF)

is well adapted for developing parameter estimation, as it enables to pro�le on

x0, considered as a nuisance parameter. In a two-step approach, it is critical

as we need to control the in�uence of the nonparametric estimate of Ŷ on the

convergence rate. As we use Ŷ (0) as a proxy for Cx∗0, we need to show that

the rate of the two-step estimator is not polluted by the use of nonparametric

estimates of the boundary conditions, and that we keep a parametric rate for θ∗

and x∗0. This property was carefully checked in [5, 6, 25]; in that paper, as we

do not use implicitly or explicitly the derivative of the nonparametric estimate,

the mechanics of the proof are di�erent.

In the next section, we give some details on LQ theory and on the criterion S.

The classical costs in optimal control consist of an integral term plus a penalty

term on the �nal state, such as Xθ,x0,u(T )>QXθ,x0,u(T ). A preliminary time-

reversing transformation is used for introducing properly the initial state in the

cost C, rather than the �nal state. In a second step, we derive the criterion

S, and we give a tractable expression for estimation. Finally, we discuss the

importance of identi�ability and observability in the de�nition on our criterion.

2.2 The Deterministic Kalman Filter and the pro�led cost

Following the Tracking estimator, we look for a candidateXθ,x0,u that minimizes

at the same time the discrepancy with the data and the size of the perturbations
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‖u‖L2 . We consider nearly the same cost as in [7]

C̃
(
Ŷ ;x0, u, θ, λ

)
=

ˆ T

0

∥∥∥Ŷ (t)− CXθ,x0,u(t)
∥∥∥2

2
dt+ λ

ˆ T

0

‖u(t)‖22 dt (8)

for given λ > 0. We can also add a positive quadratic form xT0 Qx0, where Q

is a positive symmetric matrix Q. This additional term permits to introduce

easily some prior knowledge on x0 such that we have a cost de�ned as

C
(
Ŷ ;u, x0, θ, λ

)
= xT0 Qx0 + C̃

(
Ŷ ;x0, u, θ, λ

)
.

Moreover, the matrix Q avoids some technical problems in the de�nition of our

criterion S.

For each θ in Θ, we denote

S
(
Ŷ ; θ, λ

)
= inf

x0

{
inf
u∈L2

C
(
Ŷ ;x0, u, θ, λ

)}
(9)

obtained by �pro�ling� on the function u and then in the initial condition x0.

The function S̃
(
Ŷ ;x0, θ, λ

)
= infu∈L2 C

(
Ŷ ;x0, u, θ, λ

)
is the criterion used in

the case of �xed and known initial conditions. Our approach is rather "natural"

as we simply pro�le the regularized criterion xT0 Qx0 + S̃
(
Ŷ ;x0, θ, λ

)
.

The de�nition of S mimics the minimization of Jn(β|θ, λ) except that GS

uses a discretized solution, de�ned on a B-splines basis. Nevertheless, our esti-

mator possesses two other essential di�erences with Generalized Smoothing. As

it was already mentioned in [7], we de�ne our estimator as the global minimum

of the pro�led cost:

θ̂K = arg min
θ∈Θ

S
(
Ŷ ; θ, λ

)
(10)

whereas the GS estimator minimizes a di�erent criterion
∑n
i=1

∥∥∥Yi − CX̂(ti, θ)
∥∥∥2

.

This means that in our methodology, we try to �nd a parameter θ that main-

tain a reasonable trade-o� between model and data, whereas the Generalized

Smoothing Estimator θ̂GS is dedicated to �t the data with the proxy X̂(·, θ),
without considering the size of model error represented by ūθ. Another impor-

tant di�erence is in the way we deal with the unobserved part of the system.

For simplicity, let us consider that we observe only the �rst k < p components of

X, such that the state vector can be written X =
(
Xobs, Xunobs

)
. For General-

ized Smoothing, both functions Xobs and Xunobs are decomposed in a B-spline

basis, and the corresponding coe�cients βobs and βunobs are obtained by mini-
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mizing Jn
(
βobs, βunobs|θ, λ

)
. Because βunobs does not have to make a trade-o�

between the data and the ODE model, the estimated missing part X̂unobs(·, θ)
is the exact solution to the ODE (5). At the contrary, even in the case of partial

observations, the perturbed solution Xθ,x0,u is used for estimating the missing

states and a perturbation exists for each component. Consequently, the esti-

mated hidden states are not solution of the initial ODE. We think that this

an advantage for state and parameter estimation with respect to Generalized

Smoothing (and NLS) because it avoids to rely too strongly on a uncertain

model during estimation. This uncertainty can be caused by errors in param-

eter estimation, or it can be due model misspeci�cation, such as the presence

of a forcing function u∗. In our experiments, we show that imposing model

uncertainty for the unobserved variables is bene�cial for error prediction.

Before going deeper into the interpretation and analysis of our estimator, we

need to show that the criterion S
(
Ŷ ; θ, λ

)
is properly de�ned and that we can

obtain a tractable expression for computations and for the theoretical analysis

of (10). We use the Deterministic Kalman Filter (DKF) to obtain a closed-form

expression for the minimal cost w.r.t the control u and x0 (9).

The initial aim of the DKF is to propose an estimation of the �nal state

X∗(T ) by making a balance between the information brought by the noisy

signal Ŷ and the ODE model (see [35] for an introduction). We recall the two

steps necessary for the �lter construction, more details are given in appendix:

1. For a given initial condition x0, we �nd the minimum cost thanks the

fundamental theorem in LQ Theory (presented in A.1),

2. We minimize the quadratic form w.r.t the �nal condition.

We give now the main theorem of that section about the existence of the criterion

de�ned in equation (9).

Theorem and De�nition of S (ζ; θ, λ). Let t 7→ ζ(t) be a function belonging

to L∞([0, T ] ,Rd′) and Xθ,x0,u be the solution to the controlled ODE (5).

For any θ in Θ, λ > 0, Q > 0, there exists a unique optimal control ūθ,λ and

initial condition x̂0 that minimizes the cost function

C (ζ;u, x0, θ, λ) = xT0 Qx0 +

ˆ T

0

{
‖ζ(t)− CXθ,x0,u(t)‖22 + λ ‖u(t)‖22

}
dt (11)
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The optimal control ūθ,λ is

ūθ,λ(t) =
1

λ

(
Eθ(t)Xθ,x̂0,ūθ,λ(t) + hθ(t, ζ)

)
(12)

where Eθ and hθ are solutions of the Initial Value ProblemĖθ(t) = CTC −ATθ Eθ − EθAθ − 1
λE

2
θ ,

ḣθ(t, ζ) = −αθ(t)hθ(t, ζ)− βθ(t, ζ)
(13)

with (Eθ(0), hθ(0, ζ)) = (Q, 0). The functions αθ and βθ are de�ned by{
αθ(t) =

(
Aθ(t)

T + Eθ(t)
λ

)
βθ(t, ζ) = CT ζ + Eθrθ

For all t ∈ [0, T ], the matrix Eθ(t) is symmetric, and the ODE de�ning the

matrix-valued function t 7→ Eθ(t) is called the Matrix Riccati Di�erential Equa-

tion of the ODE (5).

Finally, the Pro�led Cost S has the closed form:

S (ζ; θ, λ) =
´ T

0

(
‖ζ(t)‖2 − 2rθ(t)

Thθ(t, ζ)− 1
λ‖hθ(t, ζ)‖2

)
dt

−hθ(T, ζ)TEθ(T )−1hθ(T, ζ).
(14)

and the �nal state is estimated by

Xθ,x̂0,ūθ,λ(T ) = −Eθ(T )−1hθ(T, ζ). (15)

Remark 2.1. The functions t 7→ (E(t), h(t)) are classically called the adjoint

model. They depend also on θ, λ and ζ because of their de�nition via equation

(13). Nevertheless, we do not write it systematically for notational brevity. As

mentioned in the theorem, it is possible to compute Xθ,x̂0,uθ,λ in a �closed-loop�

form as we can solve in a preliminary stage the adjoint model (13) that gives

the function E and h for all t ∈ [0, T ]. Thanks to equation (12), the closed-form

expression of the optimal control ūθ,λ can be plugged into (5). We can compute

Xθ,x̂0,uθ,λ by solving the following Final Value Problem:ẋ(t) =
(
Aθ(t) + E(t)

λ

)
x(t) + rθ(t) + h(t,Ŷ )

λ

x(T ) = −E(T )−1h(T, Ŷ ).
(16)



2 Model and methodology 11

The estimate of x̂0 = Xθ,x̂0,uθ,λ(0) of the initial condition is simply the initial

value of the Backward ODE (16). Then by using Xθ,x̂0,uθ,λ , we can compute

e�ectively the control ūθ thanks to (12).

The existence of the criterion S and the fundamental expression (14) heavily

relies on the nonsingularity of the �nal value of the Riccati solution Eθ(T ). In

particular, the �nal state is estimated by Xθ,x̂0,ūθ,λ(T ) = −Eθ(T )−1hθ(T, ζ),

and it is then critical to identify the assumptions that could prevent Eθ to

be singular. Our "Theorem and De�nition" is legitimate (and proved in the

appendix), because the assumption Q > 0 ensures that Eθ(t) is nonsingular for

all t in [0, T ]. Moreover, the matrix Q can be thought as a kind of prior for

helping the state inference. In our basic de�nition of the cost (2.2), we put

a prior on the norm of the initial condition and our regularization penalizes

"huge" solutions. Nevertheless, we can have a more re�ned prior and use a

preliminary guess µ ∈ Rd. The modi�cation of the criterion is straightforward

by setting

Cµ (ζ;u, x0, θ, λ) = (x0 − µ)TQ(x0 − µ) + ‖ζ(t)− CXθ,x0,u(t)‖2L2 + λ ‖u(t)‖2L2 .

By re-parameterizing the initial conditions with y0 = x0 − µ and exploiting the

relation Xθ,x0−µ,u(t) = Xθ,x0−µ,u(t)−Φθ(t, 0)µ (consequence of the linearity of

the ODE) , we get that

inf
x0

inf
u
Cµ (ζ;x0, u, θ, λ) = S (ζ − CΦθ(·, 0)µ; θ, λ) .

At the opposite, it might be inappropriate in some circumstances to impose

such kind of information for the initial condition. This can be the case if the

number of observations tends to in�nity and Ŷ becomes quite close to the truth.

Another situation is when the initial conditions of the unobserved part are

largely unknown. Hence, we extend our estimator to the case Q = 0, that

corresponds also to our framework for studying the asymptotics of θ̂K . In

order to derive relevant and tractable conditions for ensuring the existence of S,

we need to ensure that only one trajectory, with a unique initial condition (or

�nal condition), is the global minimum of C(ζ;u, x0, θ, λ). The nonsingularity

of Eθ(t) is in fact related to the concept of observability in control theory. In

the next proposition, we will pave the way to the assumptions on C and the

vector �eld Aθ that can guarantee the general existence of our method.

Proposition 2.2. For a given parameter θ ∈ Θ and observation matrix C, the
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properties 1 and 2 are equivalent:

1. The system outputs Y (t) = CΦ(t, 0)x0 satisfy

ˆ T

0

‖CΦθ(t, 0)x0,1 − CΦθ(t, 0)x0,2‖2 dt = 0 =⇒ x0,1 = x0,2 (17)

2. The (�nal) observability matrix Oθ(T ) is nonsingular

Oθ(T ) =

ˆ T

0

Φθ(t, 0)>C>CΦθ(t, 0)dt (18)

If one of the properties is satis�ed, then Eθ(T ) is nonsingular and S is de�ned

for Q ≥ 0.

An important feature of that proposition is that the criterion does not de-

pend on rθ. Moreover, if C is full rank, the matrix Eθ(T ) is always nonsin-

gular for all θ in Θ. The criterion 1 means that for a given θ, any solution

Xθ,x1,0 and Xθ,x2,0 of (1) can be distinguished by their partial observation

Y iθ (t) := CXθ,xi,0(t), i = 1, 2. The matrix C "gives" enough information about

the system so that the observed part is su�cient to uniquely characterize the

whole system's state.

The next section is dedicated to the derivation of the regularity properties

of S. Thanks to the di�erent possible expressions for the criterion S, we can

show the smoothness in ζ and θ, and compute directly the needed derivatives.

3 Consistency of the Deterministic Kalman Filter Estimator

3.1 Properties of the criterion S(Ŷ ; θ, λ)

We have a tractable expression of the cost function S(Ŷ ; θ, λ) for a given θ, but

we still need to derive the properties of θ 7→ S(Ŷ ; θ, λ) and θ → S(Y ∗; θ, λ) on

Θ, and shows some convergence properties. First of all, we need to ensure the

existence of S(Ŷ ; θ, λ); this is the case if the non-parametric estimator Ŷ belongs

to L∞([0, T ] ,Rd′) (more explanations are given in appendix A). We show that

for all Y in L∞([0, T ] ,Rd′), the function θ 7→ S(Y ; θ, λ) is well de�ned and C1

on Θ, under some regularity and identi�ability assumptions, detailed below:

C1: Θ is a compact subset of Rp and θ∗ is in the interior Θ̊,

C2a: Q = 0 and for all θ in Θ, Oθ(T ) is nonsingular,
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C2b: The model is identi�able at (θ∗, x∗0) i.e

∀ (θ, x0) ∈ Θ×X ; CXθ,x0
= CXθ∗,x∗0

=⇒ (θ, x0) = (θ∗, x∗0),

C3: ∀ (t, θ) ∈ [0 , T ]×Θ, (t, θ)→ Aθ(t) and (t, θ)→ rθ(t) are continuous,

C4: ∀ (t, θ) ∈ [0, T ]×Θ, (t, θ) 7−→ ∂Aθ
∂θ and (t, θ) 7−→ ∂rθ

∂θ are continuous.

Condition 2 is about identi�ability condition: condition 2a is needed for the

existence of the criterion S, and is related to the identi�ability of the initial

condition. But C2a is not su�cient, and we need Condition 2b for structural

identi�ability, based on the joint identi�ability at (θ∗, x∗0). We require that

the observed output CXθ∗,x∗0
can be generated on by the couple (θ∗, x∗0). The

identi�ability problem of systems can be di�cult (more than observability). For

linear system, several approaches can be used, such as Laplace Transform [2], or

Power Expansions [30], see [27] for a review. So far, most of existing methods

are poorly used because they rely on (heavy) formal computations, which limit

their interest to low dimensional system. Nonetheless, progress in automatic

formal computation has promoted new methods based on di�erential algebra

and the Ritt's algorithm, that improves identi�ability checking, [22, 8, 23].

According to the context, the norm ‖‖2 will denote the Euclidean norm in Rd,

‖X‖2 =
√∑d

i=1X
2
i or the Frobenius matrix norm ‖A‖2 =

√∑
i,j |ai,j |

2
. We

use the functional norm in L2
(

[0, T ] ,Rd′
)
de�ned by: ‖f‖L2 =

√´ T
0
‖f(t)‖22 dt.

Continuity and di�erentiability have to be understood according to these norms.

Proposition 3.1. Under conditions 1, 2a and 3 we have:

A = sup
θ∈Θ
‖Aθ‖L2 < +∞

r = sup
θ∈Θ
‖rθ‖L2 < +∞

X = sup
θ∈Θ
‖Xθ‖L2 < +∞

Ē = sup
θ∈Θ
‖Eθ‖L2 < +∞

and

∀Y ∈ L∞([0, T ] ,Rd
′
), h̄Y = sup

θ∈Θ
‖hθ(., Y )‖L2 < +∞
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Hence, for all Y in L∞([0, T ] ,Rd′), the map θ 7−→ S(Y ; θ, λ) is well de�ned on

Θ (i.e supθ∈Θ S(Y ; θ, λ) < +∞)

We have shown that for all Y in L∞
(

[0T ] ,Rd′
)
, the maps θ 7→ S(Y ; θ, λ)

is well de�ned and so are θ 7→ S(Ŷ ; θ, λ) and θ 7→ S(Y ∗; θ, λ) as long as the

non-parametric estimator Ŷ are well-de�ned on [0, T ].

Proposition 3.2. Under conditions 1, 2, 3

∀Y ∈ L∞([0, T ] ,Rd
′
), θ 7−→ S(Y ; θ, λ)

is continuous on Θ. Under conditions 1, 2a, 3, 4 it is C1 on Θ.

In proposition 3.1 we have shown that our criteria θ 7−→ S(Y ; θ, λ) is well

de�ned ( i.e 0 ≤ S(Y ; θ, λ) < +∞) and here we have demonstrated (using

regularity assumptions on the model) that our �nite and asymptotic criteria

are continuous or even C1 on Θ. Theses regularity properties justify the use of

classical optimization method to retrieve the minimum of S(Ŷ ; ., λ).

3.2 Consistency

We show the consistency of the parameter estimator θ̂K when the model is well-

speci�ed. As already mentioned, we have de�ned an M -estimator, and we can

proove the consistency (see [37]), by showing

1. the uniform convergence of S(Ŷ ; θ, λ) to S(Y ∗; θ, λ) on Θ,

2. θ∗ is the unique global minimum of the asymptotic criterion S(Y ∗; θ, λ)

on Θ.

The second point is assessed in proposition 3.3, and it is related to the structure

identi�ability of the model provided by condition 2b.

Proposition 3.3. Under conditions 1, 2a, 2b, we have:

S(Y ∗; θ, λ) = 0⇐⇒ θ = θ∗

Point 1 is proved by studying the regularity of the map (ζ, θ) 7→ S(ζ; θ, λ)

and by obtaining appropriate controls of the variations by Ŷ − Y ∗, see Supple-
mentary Materials. Theorem (3.4) can be claimed with some generality on the

nonparametric proxy Ŷ .
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Theorem 3.4. Under conditions 1, 2a, 2b, 3 and if Ŷ is consistent in probability

in L2, then θ̂K
P→ θ∗.

4 Asymptotics of θ̂K

The aim of this section is to derive the rate of convergence and asymptotic law

of θ̂K . For this reason, we need more precise assumptions on Ŷ . The way we

proceed is based on the plug-in properties of nonparametric estimates, when

the functionals of interest are relatively smooth. In the case of series expansion,

these properties are well understood [28, 4]. We focus here on regression splines,

as they are well-used in practice and relatively simple to study, although more

re�ned nonparametric estimators can be used in the same context, such as

Penalized Splines. We assume that Ŷ has a B-Spline expansion

Ŷ (t) =

K∑
k=1

βkKpkK(t) = βTKpK(t)

where βK is computed by linear least-squares, and the dimension K increases

with n. We introduce then additional regularity conditions on the ODE model,

and on the distribution of observations:

C5: ∀ (t, θ) ∈ [0, T ]×Θ, (t, θ) 7−→ ∂2Aθ
∂θT ∂θ

and (t, θ) 7−→ ∂r2θ
∂θT ∂θ

are continuous,

C6:
∂2S(Y ∗;θ∗,λ)

∂θT ∂Y
is nonsingular,

C7: The observations (ti, Yi) are i.i.d with V ar(Yi | ti) = σId′ with σ < +∞,

C8: The observation times ti are uniformly distributed on [0 , T ],

C9: It exists s ≥ 1 such that t 7−→ Aθ∗(t), t 7−→ rθ∗(t) are Cs−1
(
[0 , T ])Rd

)
and
√
nK−s −→ 0, K

4

n −→ 0

C10: The meshsize maxi |τi+1,K+1 − τi,K | −→ 0 whenK −→∞

The proofs of the rate and asymptotic normality are somewhat technical, and

they are relegated in the Supplementary Materials. We obtain a parametric

convergence rate, and the asymptotic normality, by using two facts:

1. θ̂K − θ∗ behaves like the di�erence Γ(Ŷ ) − Γ(Y ∗), where Γ is a linear

functional,
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2. if Γ is smooth enough, Γ(Ŷ − Y ∗) is asymptotically normal in the case of

regression splines.

Conditions C5 and C6 ensures the su�ciency of second order optimality condi-

tions for the criteria S. Conditions C7 to C10 are su�cient for the consistency

of Ŷ , as well as for the consistency and the asymptotic normality of the plug-in

estimators of linear functionals.

Theorem 4.1. If conditions C1-C10 are satis�ed, then θ̂K − θ∗ = OP (n−1/2)

and θ̂ is asymptotically normal.

5 State Estimation

Once the unknown model has been estimated with θ̂K , we focus on the problem

of state estimation. From the de�nition (2.2), the criterion S is built with an

estimation of the state based on the solution of the pertubed ODE Xθ̂,x̂0,ū
. The

estimate of the initial condition x̂0 is derived from a Final Value Problem with

the �nal state Xθ̂,x̂0,ū
(T ) = −

[
Eθ̂(T )

]−1
hθ̂(T, Ŷ ).

The state estimate t 7→ Xθ̂,x̂0,ū
(t) that we have used, is di�erent from the

state estimation classically done when using the Deterministic Kalman Filter.

The classical DKF state estimate is X̂DKF (t) = −
[
Eθ̂(t)

]−1
hθ̂(t, Ŷ|[0,t]), and

it corresponds to the best estimate of X∗(t) computed from the available in-

formation at time t, Ŷ|[0,t] =
{
Ŷ (s), s ∈ [0, t]

}
. Whereas the estimate can

be very bad at the beginning for small t, the quality of X̂DKF (t) improves

as we get more data. A remarkable feature of the �lter t 7→ X̂DKF (t) is

that it can be computed recursively with an Ordinary Di�erential Equation

Ẋ(t) = AθX(t) + rθ(t) + Lθ,λ(t)
(
CX(t)− Ŷ (t)

)
. The matrix Lθ,λ is the con-

tinuous counterpart of the classical Kalman Gain Matrix, derived from the Fil-

tering Riccati Di�erential Equation, see page 313 in [35]. In that recursive form,

the Deterministic Kalman Filter is somehow similar to the Kalman-Bucy Fil-

ter, which is the continuous version of the usual Kalman Filter. Nevertheless,

there is a huge di�erence in the assumptions because the Kalman-Bucy Filter

assumes that X(t) is a Stochastic Di�erential Equation, driven by a Brownian

Motion W (t). This means that the deterministic perturbation u(t) is replaced

by a random pertubation σdW (t). The state estimate is then di�erent from the

one we consider as it can be shown that the �lter is the solution of a stochastic

di�erential equation driven by the stochastic process
(
CX(t)− Ŷ (t)

)
, see for

instance [3]. The state estimate t 7→ Xθ̂,x̂0,ū
(t) is solution of the pertubed ODE,
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with the control ū computed from all the data
{
Ŷ (s), s ∈ [0, T ]

}
: hence, our

state estimation is based on Kalman Smoothing and not on Filtering, as we

have a backward integration step. In the rest of that section, we show that the

estimator Xθ̂,x̂0,ū
(t) is also a consistent estimator of the state X∗(t). In order to

do that, we show �rst that X̂(T ) = −Eθ̂(T )−1hθ̂(T, Ŷ ) is a consistent estimator

of the �nal state.

5.1 Final state estimation

In a way, the consistency of the �nal state estimator is a rather obvious conclu-

sion. The Deterministic Kalman Filter is initially designed for getting the best

possible estimate of the �nal state, starting from any initial condition x0. It is

then normal that we have a good estimator of X∗(T ) when Ŷ is close to Y ∗ and

θ̂K is close to θ∗.

Proposition 5.1. We assume that conditions C1-C4 are satis�ed and that

Ŷ is a consistent estimator of Y ∗. Then, the �nal state estimator X̂(T ) =

−Eθ̂(T )−1hθ̂(T, Ŷ ) converges in probability to X∗(T ).

Proof. We show �rst that the true �nal state value is reached for Y = Y ∗ and

θ = θ∗ i.e X∗(T ) = −Eθ∗(T )−1hθ∗(T, Y
∗). We recall that

S (Y ; θ, λ) = inf
x0∈Rd

(
inf
u∈L2

C(Y ;x0, u, θ, λ)

)
,

and that S (Y ∗; θ∗, λ) = 0. The identi�ability condition 2b implies that the

reconstructed state is the exact one. In our case, the minimum is reached when

the optimal control u is equal to 0, i.e.

ūθ∗,λ(t) =
1

λ
(Eθ∗(t)X

∗(t) + hθ∗(t, Y
∗))

which implies that X∗(T ) = −Eθ∗(T )−1hθ∗(T, Y
∗) (Eθ∗(T ) is nonsingular). We

can decompose the di�erence X̂(T )−X∗(T ):

X̂(T )−X∗(T ) = Eθ∗(T )−1hθ∗(T, Y
∗)− Eθ̂(T )−1hθ̂(T, Ŷ )

= Eθ∗(T )−1
(
hθ∗(T, Y

∗)− hθ̂(T, Ŷ )
)

+
(
Eθ∗(T )−1 − Eθ̂(T )−1

)
hθ̂(T, Ŷ )

The convergence will come from the consistency of hθ̂(T, Ŷ ) and Eθ̂(T )−1:
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∣∣∣X̂(T )−X∗(T )
∣∣∣ ≤ √

d
∥∥Eθ∗(T )−1

∥∥
2

∥∥∥hθ∗(T, Y ∗)− hθ̂(T, Ŷ )
∥∥∥

2

+
√
d
∥∥∥hθ̂(T, Ŷ )

∥∥∥
2

∥∥Eθ∗(T )−1 − Eθ̂(T )−1
∥∥

2

The two right-hand side terms can be controlled easily by the Ŷ −Y ∗ and θ̂−θ∗,
as it is shown in Lemma B.2 and B.3. We end up with the following inequalities:

‖hθ(t, Y )− hθ′ (t, Y ′)‖2 ≤ K6e
L1

Eλ
λ ‖Y − Y ′‖L2

+
(
K7 +K8Eλ

) (
K4 + K5

λ Eλe
L1

Eλ
λ

)
e2L1

Eλ
λ

∥∥∥θ − θ′∥∥∥
+

(
K9e

2L1
Eλ
λ +K10e

L1
Eλ
λ

)
Eλ

∥∥∥θ − θ′∥∥∥∥∥E−1
θ (T )− E−1

θ′ (T )
∥∥

2
≤

(
K12

λ +K11

)
eK13+

K14
λ ‖θ − θ′‖∥∥E−1

θ (T )
∥∥ ≤ K15

λ

‖hθ(T, Y )‖2 ≤
√
Td2 ‖C‖2 e

√
d
(
A+

Eλ
λ

)
T ‖Y ‖L2 +

√
dEλrθ

Under our conditions, we have
(
θ̂, Ŷ

)
−→ (θ∗, Y ∗), which implies that X̂(T )

converges also in probability.

By plug-in principle, we can also derive the asymptotic normality and the

rate of X̂(T ) as described in the next proposition.

Proposition 5.2. Under conditions C1-C10, the �nal state estimator X̂(T ) is

asymptotically normal and

X̂(T )−X∗(T ) = OP (n−1/2)

Proof. We have the following decomposition:

X̂(T )−X∗(T ) = Eθ∗(T )−1hθ∗(T, Y
∗)− Eθ̂(T )−1hθ̂(T, Ŷ )

= Eθ∗(T )−1
(
hθ∗(T, Y

∗)− hθ∗(T, Ŷ )
)

+ Eθ∗(T )−1
(
hθ∗(T, Ŷ )− hθ̂(T, Ŷ )

)
+

(
Eθ∗(T )−1 − Eθ̂(T )−1

)
hθ̂(T, Ŷ )

According to Theorem 7 in [28] Ŷ is a consistent estimator of Y ∗ hence using

proposition 5.1 and continuous mapping theorem we have:

X̂(T )−X∗(T ) = Eθ∗(T )−1
(
hθ∗(T, Y

∗)− hθ∗(T, Ŷ )
)

+ op(1)
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Using the linear representation for hθ∗ we obtain:

Eθ∗(T )−1
(
hθ∗(T, Y

∗)− hθ∗(T, Ŷ )
)

= −Eθ∗(T )−1

ˆ T

0

Rθ∗(T, s)C
T
(
Ŷ (s)− Y ∗(s)

)
ds

We de�ne

H(t, θ).Y = Eθ(T )−1Rθ(T, t)C
TY (t)

the linear form such that

−Eθ∗(T )−1
(
hθ∗(T, Y

∗)− hθ∗(T, Ŷ )
)

=

ˆ T

0

(
H(s, θ∗).Y ∗ −H(s, θ∗).Ŷ

)
ds

As for the normality of θ̂K , we can use theorem 9 in [28] in order the obtain the

asymptotic normality of
´ T

0

(
H(s, θ∗).Y ∗ −H(s, θ∗).Ŷ

)
ds with

√
n−rate.

5.2 Estimation of the states on [0, T ] and in�uence of λ

We can estimate the trajectoryX∗(t) with the smoothed trajectory t 7→ Xθ̂,x̂0,ū
(t)

or with the exact model t 7→ Xθ̂,x̂0,0
, without the perturbation ū. We need then

to have a better understanding of the quality of these two estimates, and in

particular of the relevancy of x̂0, de�ned as the unknown initial condition of the

Final Value Problem (16). We have pro�led the initial condition in the de�ni-

tion of S, in order to separate the estimation of θ∗ from the estimation of the

initial condition. Nevertheless, the estimation of the states is a by-product of

the parameter estimation, and the remaining point in our analysis is to ensure

that x̂0 is really a good estimator for x∗0. This is the case, and we will show more

generally that Xθ̂,x̂0,ū
is a good estimator of the trajectory X∗. Quite remark-

ably, the consistency of Xθ̂,x̂0,ū
is the �rst result that relies on a assumption on

the hyperparameter λ. This is due to the fact that ū is a perturbation computed

for tracking Ŷ , while taking into account the model uncertainty estimated by θ̂

instead of θ∗. The convergence of Ŷ to Y ∗ and the identi�ability conditions 2a

and 2b (plus regularity conditions) are su�cient to ensure the convergence of θ̂

to θ∗, without particular assumptions on λ. This is possible because the true

model Xθ,x0,0 is included into the perturbed model Xθ,x0,u.

If λ is not big enough, the size of the perturbation ‖ū‖2L2 is not highly

constrained in the cost function S, and we can have over�tting: the estimator

CXθ̂,x̂0,ū
can be quite close to Ŷ with a �big� ū that makes Xθ̂,x̂0,ū

far from
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of X∗. This problem can be even more important, if we have errors on θ̂,

because ū will have to compensate the errors in the parameter estimation. In

that case, we cannot guarantee to have a consistent estimate for x0, if we don't

have λ −→ ∞. Indeed, the trajectory Xθ̂,x̂0,ū
is the solution to the pertubed

initial value problemẋ(t) =
{
Aθ̂(t) + 1

λEθ̂,λ(t)
}
x(t) + rθ̂(t) + 1

λh(t, Ŷ )

x(T ) = −Eθ̂,λ(T )−1h(T, Ŷ )
(19)

Because of the convergence of
(
θ̂, Ŷ

)
−→ (θ∗, Y ∗), we can ensure the conver-

gence to the right trajectory if we control λ.

Proposition 5.3. Under conditions C1-C10 and if λn −→∞, then

Xθ̂,x̂0,ū
(t) −→ X∗(t)

for all t ∈ [0, T ]. Moreover,

x̂0 − x∗0 = OP (n−1/2).

Proof. We �rst need to show that for all θ ∈ Θ, and ζ, the functions Eθ,λ and

hθ,λ(·, ζ) are bounded (as they converge) when λ −→∞. As Eθ,λ is solution of

the matrix equation Ė = C>C − A>E − EA− 1
λE

2 that depends smoothly in

λ−1; hence Eθ,λ −→ Eθ,∞ de�ned as the solution of the linear matrix ODE Ė =

C>C−A>E−EA (with E(0) = 0). Moreover, hθ,λ(·, ζ) is solution of the linear

ODE ḣ = −αθ,λh−βθ,λ(·, ζ) with αθ,λ −→ A>θ and βθ,λ(·, ζ) −→ βθ,∞ = C>ζ+

Eθ,∞rθ. As the dependency in λ−1 is smooth, the solution hθ,λ(·, ζ) converges

to hθ,∞, solution of ḣ = −αθ,∞h − βθ,∞(·, ζ). Additionally, the dependency

in (λ, ζ) is smooth on R+ × L2 and hθ,λ(·, ζ) converges to hθ,∞(·, Y ∗) as (λ, ζ)

tends to (∞, Y ∗). This means that if (θ, Y ) converges to (θ∗, Y ∗) as λ −→ ∞,

then Xθ,x0,λ converges to the solution of the �nal value problemẋ(t) = Aθ∗(t)x(t) + rθ∗(t)

x(T ) = Xθ∗,x∗0 ,0
(T )

(20)

as λ−1Eθ,λ and λ−1hθ,λ(t, Y ) tends to zero when λ −→ ∞, and if x(T ) −→
X∗(T ). Because of the uniqueness of the solutions to Initial or Final Value

Problem, we have Xθ,x0,λ −→ X∗ for all t ∈ [0, T ].
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In proposition 5.1, under conditions C1-C8, we have shown that (θ̂Kn , Ŷn) con-

verges in probability to (θ∗, Y ∗) for all λ on Θ×L2. By the continuous mapping

theorem applied to (θ̂Kn , Ŷn, λn), with λn −→∞, we haveXθ̂,x̂0,ūλn
(t) −→ X∗(t)

for all t ∈ [0, T ] in probability. In particular, we obtain the convergence of x̂0

to x∗0.

The asymptotic normality and root-n rate of x̂0 comes from the asymptotic

normality and rates of θ̂ and X̂(T ). If ψθ,λ(t, 0) is the resolvant of the ODE

ẋ(t) =
{
Aθ(t) + 1

λEθ,λ(t)
}
x(t), we have a closed form for the smoother

Xθ̂,x̂0,ūλn
(t) = ψθ̂,λ(t, 0)x̂0 + ψθ̂,λ

ˆ t

0

[
ψθ̂,λ(s, 0)

]−1
{
rθ̂(s) +

1

λ
hθ̂,λn(s, Ŷ )

}
ds

When we evaluate at t = T , we obtain the following formula for the initial

state x̂0 =
[
ψθ̂,λ(T, 0)

]−1

X̂(T )−
´ T

0

[
ψθ̂,λ(s, 0)

]−1 {
rθ̂(s) + 1

λn
hθ̂,λn(s, Ŷ )

}
ds.

Hence, x̂0 is a smooth transformation of
(
θ̂, X̂(T )

)
, and we can conclude by

the parametric delta-method.

5.3 Choice of λ and cross-validation

Our theoretical analysis shows that when n tends to in�nity, we have a family

of good estimates (θ̂Kλn , x̂0,λn), with λn −→ ∞. The remaining question is to

de�ne an appropriate selection procedure for λ, that could be used in practice

with a �nite number of observations (y1, . . . , yn). A straightforward way of

selecting λ is to use a cross-validation selection procedure. Indeed, our criterion

S
(
Ŷ ; θ, λ

)
is based on a balance between data �delity and model �delity, and

a rough analysis shows that when λ −→ 0, we can select any u in order to

interpolate Ŷ and θ has almost no in�uence on S
(
Ŷ ; θ, λ

)
. Whereas when

λ −→ ∞, the optimal perturbation ū −→ 0, and we get a NLS-like criterion

where the observations Yi's are replaced by the proxy Ŷ .

A good hyperparameter λn should give a good estimate of the states X∗(t)

(and of the output Y ∗(t)), even if we are only interested in parameter estimation.

Anyway, if we want to use the minimization of prediction error for selecting λ and

θ̂Kλ , we need to have a good estimate of the initial condition x0 as it is necessary

for computing the predictions. We propose then to select λ by minimizing the

Sum of Squared Errors

SSE(λ) =

n∑
i=1

∥∥∥Yi − CXθ̂λ,x̂0,λ,0
(ti)
∥∥∥2

2
. (21)
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Moreover, this criterion gives a way to reduce the in�uence of the nonparametric

estimate Ŷ , as we use the original noisy data. This is the selection procedure

that we implemented in the experiments part.

6 Experiments

We use two test beds for evaluating the practical e�ciency of the deterministic

Kalman �lter estimator θ̂K ; we compare it with the NLS estimator θ̂NLS and

the estimator obtained by Generalized Smoothing θ̂GS . The two models are

linear in the states, and they can be linear or nonlinear w.r.t parameters. We

use several sample size and several variance error for comparing robustness and

e�ciency.

6.1 Experimental design

For a given sample size n and noise level σ, we estimate the Mean Square Error

and the mean Absolute Relative Error (ARE) Eθ*
[
|θ∗−θ̂|
|θ∗|

]
by Monte Carlo,

based on NMC = 100 runs. For each run, we simulate an ODE solution with a

Runge-Kutta algorithm (ode45 in Matlab), and a centered Gaussian noise (with

variance σ) is added, in order to obtain the Yi's. We compare the accuracy of

the 3 parameters θ̂K ,θ̂GS and θ̂NLS , but we are also interested in their mean

prediction error de�ned as

EP

(
X̂
)

= E(Y1,...,Yn)

[
Eθ*,σ

[∥∥∥Y ∗ − X̂∥∥∥]] (22)

where Y ∗ is a new observation generated with the parameters (θ∗, x∗0, σ), and

X̂ is an estimator of the trajectory, based on one of the three estimates θ̂K

,θ̂GS and θ̂NLS . For the three estimators, the initial condition is estimated

consistently:

NLS: x̂0 is obtained simultaneously with the parameter estimation (as an addi-

tional parameter),

Kalman: x̂0 and λn are selected as described in section 5.3,

Generalized Smoothing: x̂0 is the initial value of the estimated curve correspond-

ing to the estimated parameter θ̂GS , with smoothing parameter λn selected

adaptively as described in [33].
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We insist on the fact that parameter estimation and prediction are two di�erent

statistical tasks, that are evaluated by di�erent criteria. Parameter estimation

is required when the parameter has an interest by itself or when the model has

an explicative purpose, whereas the prediction error is dedicated to estimation

of the state X, in the most e�cient way. Our primary interest is parameter

estimation but we also discuss prediction for the three methods; as we have

seen in section 5, parameter estimation and state estimation are tightly related

in particular for the selection of λ. We will consider two possible estimators for

the state: a parametric estimator Xθ̂,x̂0
and a smoothed (or corrected) estimator

Xθ̂,x̂0,ū
. For the NLS estimator, the parametric and corrected state estimator

are the same, whereas Xθ̂GS ,x̂0
and X̂(·, θ̂GS) are di�erent, as Xθ̂,x̂0

di�ers from

Xθ̂,x̂0,ū
.

The two test beds are partially observed models with one missing state vari-

able. We compare the ability of the di�erent methods to accurately reconstruct

the hidden state. Thus, we compute for each estimator the L2−distance be-

tween the true missing state and the obtained reconstruction after parameter

estimation:

∆
(
X̂unobs

)
= E

[∥∥∥Xunobs
θ∗,x∗0

− X̂unobs
∥∥∥
L2

]
(23)

The nonparametric estimate Ŷ is a regression spline, with a B-spline basis de-

�ned on a uniform knot sequence ξk, k = 1, . . . ,K. For each run and each state

variables, the number of knots is selected by minimizing the GCV criterion,

[34]. For optimizing the criterion S, we use the Matlab function 'fminunc' that

implements a trust region algorithm for which gradient expression is required.

The computation of the gradient of S w.r.t the parameter θ is computation-

ally involved and is based on the sensitivity equations of the ODE model. The

computational details are left in appendix C.

6.2 Toy Examples: Partially Observed ODE in 3 D

We consider the autonomous ODE
ẋ1 = −(k1 + k2)x1

ẋ2 = k1x1

ẋ3 = k2x1

(24)
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where we observe only the variables x2 and x3. Using the notation introduced

in this paper, we have

Aθ =

 −(k1 + k2) 0 0

k1 0 0

k2 0 0


and

C =

(
0 1 0

0 0 1

)
.

With that model, we show that the conditions introduced in the statistical

analysis are workable on some simple models, in particular the conditions for

identi�ability C2a and C2b that needs to be checked. In the case of autonomous

system (i.e when Aθ and rθ do not depend on time), a simple su�cient and

necessary criteria is the so-called Kalman criterion:

Proposition 6.1. In the case of an autonomous model, the matrix Eθ(T ) is

nonsingular if and only if the matrix

KA,C =


C

CAθ
...

CAd−1
θ

 (25)

has a rank equals to d.

The matrix KA,C is usually called the Kalman matrix. In order to de�ne

properly our criterion S, we need to check that condition 2b is also satis�ed

(joint identi�ability of θ and x0). For this model, the analysis is relatively easy

and we can use the characterisation proposed by [30] based on the power series

expansion. As, the Kalman matrix (25) is

 C

CAθ

CA2
θ

 =



0 1 0

0 0 1

k1 0 0

k2 0 0

−k1(k1 + k2) 0 0

−k2(k1 + k2) 0 0


,
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the Kalman condition is full�lled (i.e the matrix rank is 3) if k1 6= 0 or k2 6= 0.

Hence, C2a holds for all relevant cases ( k1 = 0 or k2 = 0 correspond to the case

where x2 and x3 variations are disconnected from x1 which makes the model

useless for explanation or prediction purposes).

For condition C2b, we use the result shown by Pohjanpalo et al. If the

model is ẋ = f(t, x, θ) and the observation function is h(t, θ, x), condition C2b

is satis�ed if the nonlinear system

h(j)(x0, θ, x) = aj(x0) j = 0, 1, . . . (26)

has a unique solution θ. Pohjanpalo et al. showed that for linear autonomous

system, this condition is su�cient and necessary. In our case, the equation (26)

can be written as

CAjθX0 = aj j = 0, 1, . . .

Since the initial condition X0 = (X0,1, X0,2, X0,3) is unknown, we have to con-

sider the extended parameter θ = (k1k2, X
T
0 ). The equations for j = 0

CX0 = aj j = 0, 1, . . .

allow us to identify X0,2 = a0,2 , X0,3 = a0,3. For j = 1, we have{
k1X0,1 = a1,2

k2X0,1 = a1,3

and the solutions are X0,1 =
a1,3
k2

and k1 =
a1,2
a1,3

k2. Finally, we have a unique

solution for k2, if we consider the additional equation (26) for j = 2. In that

case, the system {
−k1(k1 + k2)X0,1 = a2,2

−k2(k1 + k2)X0,1 = a2,3

has a unique solution k2 = − a2,3
a1,2+a1,3

.

Well-speci�ed model (Toy Model 1) We test two sample sizes n = 200 and

n = 100 (observations times are uniformely sampled between t = 0 and t = 100)

and two noise levels σ = 3 and σ = 6. For the computation of the regression

splines Ŷ , we select manually the knots location instead of using the GCV

driven selection (to avoid over�tting). We have placed four equispaced knots

respectively at time t = 0, 33, 66 and 100. The true parameter is θ∗ = (k∗1 , k
∗
2) =
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(0.0593, 0.0296) and the initial condition x∗0 equals (0, 0, 100). For the Kalman

estimator, we select λn by cross-validation among the values λv =
{

10k
}
k∈[5 16]

.

(n, σ) MSE (10−6) ARE (10−2) EP

(
Xθ̂,x̂0

)
∆
(
Xθ̂,x̂0

)
(200, 3)

θ̂NLS 4.20 5.16 43.56 4.18
θ̂K 3.97 4.77 42.79 4.13

θ̂GS 12.87 12.23 46.80 9.28

(200, 6)

θ̂NLS 17.09 9.92 87.76 8.43
θ̂K 16.49 9.43 85.45 8.28

θ̂GS 77.87 23.28 93.69 17.77

(100, 3)

θ̂NLS 8.21 7.43 44.95 6.04
θ̂K 8.78 7.37 43.03 6.15

θ̂GS 22.32 12.60 48.01 9.45

(100, 6)

θ̂NLS 36.89 15.27 90.76 12.24
θ̂K 34.98 14.91 86.19 12.36

θ̂GS 86.74 24.39 94.91 18.63

Tab. 1: Results for the Toy Model 1 ; partially observed.

The results are presented in table 1. The GS estimator is outperformed

by the Kalman and NLS estimators, moreover our approach improves the pa-

rameter estimation accuracy in terms of MSE and ARE in almost every cases

comparing to the NLS and also minimizes prediction error. Regarding the miss-

ing state reconstruction both methods gives similar results.

Misspeci�ed model (Toy Model 2) In our simulation, we give also some in-

sight in the case of misspeci�ed models. Indeed, our perturbed ODE framework

permits to consider naturally the problem of model misspeci�cation, when the

true model is ẋ(t) = Aθ(t)x(t)+rθ(t)+v(t), with v ∈ L2([0, T ] ,Rd) an unknown
function. We do not provide any theoretical analysis for this kind of model mis-

speci�cation. The Kalman estimator gives more accurate estimation than the

NLS estimator in that case, as we consider pertubations of the initial model.

Moreover, the optimal control u obtained along the parameter estimation can

be used as a correction term to add to the initial model to counter-balance

misspeci�cation. This implies potentially a better prediction power. The true

model is nearly the same model as above
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Ẋ = AθX + v(t) (27)

with θ∗ = (k∗1 , k
∗
2) = (0.0593, 0.0296) and x∗0 = (0, 0, 100), but we add a per-

tubation v : [0, T ] 7−→ R3 with entries equal to 0.4 × sin( t5 ). Nevertheless for

parameter estimation, we still use the unperturbed model Ẋ = AθX.

In the case of the Kalman estimator θ̂K , the optimal control u can be used

for correcting the model and for de�ning a new model

Ẋ = Aθ̂X + u. (28)

We are then interested in evaluating the prediction error of Xθ̂,x̂0,u
, de�ned as

EP

(
Xθ̂,x̂0,u

)
. We also estimate the error between the true �rst state value

and the obtained reconstruction with the corrected model. As shown in the

introduction, Generalized Smoothing can also evaluate a correction term for

θ̂GS , de�ned as u(t) =
˙̂
X(t, θ̂GS) − Aθ̂X̂(t, θ̂GS) (where X̂(t, θ̂GS) is the spline

corresponding to the estimated parameter θ̂GS with adaptive λ̂). In the case of

NLS, we cannot compute a correction ū, as the estimated trajectories are exactly

solution of the ODE for θ̂NLS . In the case of Generalized Smoothing, we have

∆
(
X∗1 ;Xθ̂,x̂0

)
≈ ∆

(
X∗1 ;Xθ̂,x̂0,ū

)
because the hidden parts are (almost) exactly

trajectories of the ODE with parameter θ̂GS . The estimates that change is the

Kalman-based one.

(n, σ) MSE (10−5) ARE (10−2) EP

(
Xθ̂,x̂0

)
EP

(
Xθ̂,x̂0,ū

)
∆
(
Xunobs
θ̂,x̂0

)
∆
(
Xunobs
θ̂,x̂0,ū

)
(200, 3)

θ̂NLS 4.14 19.13 52.24 52.24 19.08 19.08
θ̂K 3.66 17.46 47.78 47.75 18.82 18.87

θ̂GS 7.56 27.34 55.13 50.99 22.27 22.26

(200, 6)

θ̂NLS 4.99 18.65 92.95 92.95 19.90 19.90
θ̂K 4.68 18.14 88.30 88.02 20.66 19.79

θ̂GS 13.21 29.66 97.25 94.64 26.09 26.08

(100, 3)

θ̂NLS 4.88 19.56 52.66 52.66 19.48 19.48
θ̂K 4.56 18.53 48.07 47.86 19.76 19.23

θ̂GS 10.04 29.32 56.33 55.06 23.71 23.66

(100, 6)

θ̂NLS 7.96 23.32 96.63 96.63 21.69 21.69
θ̂K 7.59 22.36 89.19 88.65 23.88 21.56

θ̂GS 15.63 32.77 101.41 98.81 26.14 26.15

Tab. 2: Results for Toy Model 2, partially observed model; misspeci�ed case
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The GS parameter estimator is outperformed by the Kalman and the NLS

estimator. Our approach improves the estimation accuracy for θ (lower MSE

and ARE in every cases)on the NLS estimator. This di�erence is bigger than in

the well speci�ed case (Toy Model 1), as we are more robust to the presence of a

perturbation than the NLS. The Kalman estimator gives also better prediction

error in every cases and the correction u slightly improves the prediction errors.

Nevertheless, the NLS estimator provides the smallest ∆
(
X∗1 ;Xθ̂,x̂0

)
among

all estimation methods in every cases but the �rst one. Nonetheless using u

minimizes in most of case the error for X1 estimation for our approach and

allows us to obtain slightly better result than the NLS estimator.

The correction term ū is related (correlated) to the perturbation t 7→ v(t)

as we can in �gure 1, where we plot the mean of each component of u, when

(n, σ) = (200, 3). Even though the scale is not the same (we need to rescale by

10−5 for easing comparisons), the correction ū exhibits some important features

of the true one, such as oscillations with a period close to the period of v. The

analysis of ū is beyond the scope of that paper, but the presence of strong

patterns in u can be used to detect misspeci�cation, in the same way that the

analysis of residuals permits to detect lack of �t in regression models.

6.3 Real case example: Methanation reaction

We consider an ODE model introduced in [18] for describing the dynamics of

carbon monoxide and hydrogen methanation over a supported nickel catalyst by

transient isotopic tracer in a gradientless circulating reactor. This �Methanation

reaction� model is a linear autonomous equation in R4, with a forcing term. A

important di�erence w.r.t the previous is the nonlinearity in parameters as we

have

Aθ =


− V+V ′+FC0

0 /W
βCC0/W+CCOl

0 0 0
V+V ′

βCH20/W
− V+V ′+v5
βCH20/W

0 v5
βCH20/W

V ′

βCCO2/W
0 − V ′+v6

βCCO2/W
v6

βCCO2/W

0 v5
COs

v6
COs

−v5+v6
COs


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Fig. 1: Toy Model 2, (n, σ) = (200, 3): Mean correction ū (red curve); rescaled
true perturbation 10−5 × v (blue curve)

and rθ =
(

FC0
i zCOi

βCC0/W+CCOl
, 0, 0, 0

)>
. The stateX is de�ned asX> =

(
XCO, XH2O, XCO2 , XOs

)
,

and represents the quantity of the chemical species involved in the reaction. A

constant inlet CO �ow rate with constant and known fraction of isotope 18O is

introduced within the reactor; the fraction of 18O present in oxygen atoms for

each component is measured at di�erent timeframe using a mass spectrometer.

In the model, Xj(t) represents the measured fraction of 18O present in oxygen

atoms of the chemical species j at time t. The total amount of oxygen XOs

cannot be measured. Some of the parameter are already known:

• FCOi /FCO0 : inlet/outlet �ow rates of CO (0.59/0.45)

• zCOi : the constant fraction of 18O present in oxygen atoms of the CO

inlet �ow rate (0.132)

• V/V ′: rates of production (0.124/0.01)

• Cj : concentrations of gas phases in the reaction system (j = CO, H20, CO2)

• W total weight of catalyst within system (0.744)

• β volume of dead space (206.1)
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Our aim is to estimate the parameter θ =
(
CCOl, COs, v5, v6

)
.

For simulating the datasets, we use two sample sizes n = 100 and n = 50

(observations are uniformely sampled the time interval [0, 40]), with 2 noise

levels σ = 0.002 and σ = 0.004. The true parameter value is the estimate pro-

vided in [18], i.e θ∗ = (0.1, 11.1, 0.35, 0.008) and with initial condition equals

to x∗0 = (0, 0, 0, 0). For the computation of the Kalman estimator, we select

λ among 1, 5, 20, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. Finally,

the nonparametric estimate Ŷ is a regression splines, with knots selected manu-

ally (instead of GCV selection, because of over�tting): we use three equispaced

knots at times t = 0, 20, 40.

(n, σ) MSE ARE EP

(
Xθ̂,x̂0

)
EP

(
Xθ̂,x̂0,ū

)
∆
(
Xunobs
θ̂,x̂0

)
∆
(
Xunobs
θ̂,x̂0,ū

)
(100, 0.002)

θ̂NLS 17.28 1.09 19.43 19.43 6.15 6.15
θ̂K 3.60 1.06 8.22 1.11 2.16 0.70

θ̂GS 21.54 1.14 19.45 19.45 6.41 6.41

(50, 0.002)

θ̂NLS 57.23 2.19 31.49 31.49 12.62 12.62
θ̂K 21.38 2.05 9.26 3.49 2.58 1.38

θ̂GS 58.05 2.11 44.40 44.39 12.40 12.40

(100, 0.004)

θ̂NLS 50.98 1.55 41.60 41.60 12.00 12.00
θ̂K 26.76 1.44 7.54 2.11 2.50 1.35

θ̂GS 55.61 1.59 33.66 33.66 15.96 15.96

(50, 0.004)

θ̂NLS 80.03 2.25 43.13 43.13 14.75 14.75
θ̂K 35.87 2.16 28.69 3.06 7.79 1.57

θ̂GS 94.30 2.29 44.59 44.59 17.86 17.86

Tab. 3: Methanation Model

The results are presented in table 3, that gathers the statistics about the

parameter estimation accuracy, and the prediction of the complete state, and

in particular the estimation of the hidden variable XOs . The Kalman estima-

tor gives more accurate parameter estimates than Nonlinear Least Squares or

Generalized Smoothing. The dramatic di�erence for the MSE comes from the

estimation of COs that is of greater magnitude than the other parameters, thus

ARE seems more relevant for comparisons. However, the MSE enlighten the dif-

�culty for NLS and GS estimator to correctly estimate COs; moreover, a great

number of outliers for COs estimates have been removed for the NLS estima-

tion before computing ARE and MSE. Additionaly, state estimation improves
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dramatically, as the prediction error EP and missing state reconstruction ∆ of

the Kalman estimator outperforms the two others. This improvement is even

more signi�cative when the correction ū is used.

The di�erence can be partly explained by the nonlinearity in parameters

that makes their estimation more di�cult. We can have estimates that are far

from the true parameter value, but in the case of the Kalman estimator, the

important errors for the parameter are balanced by a more important correction

term ū that ameliorates signi�cantly state estimation and prediction.

7 Discussions

We have considered the statistical problem of parameter and state estimation

of a linear Ordinary Di�erential Equations as an Optimal Control problem. By

doing this, we follow the lines drawn in [33] or in the two-step approaches, that

consist in de�ning a statistical criterion more adapted to ordinary di�erential

equation than the likelihood. A new theory was needed in order to assess the

statistical e�ciency of this new estimator, that heavily relies on the Linear-

Quadratic Theory. Indeed, the linear structure of the model gives a closed-form

for the criterion S which permits to establish the needed regularity properties for

statistical analysis. An important question is to determine the conditions under

which we can apply the same methodology for nonlinear ODEs. It is probably

more involved but the characterization used here is directly generalized by the

Pontryagin's Maximum Principle, that gives also a tractable way to solve the

optimal control problem.

An important feature of our approach is that we can cope with model mis-

speci�cation, and the estimation process gives a way to evaluate the lack-of-�t

thanks to the analysis of the control ū. Thanks to that, we are able to estimate

properly the parameters, but also to do prediction and state estimation. Our

experiments show that we can have better performance than the classical NLS

and Generalized Smoothing and that it is bene�cial to account for possible per-

turbation. A good choice for the trade-o� hyperparameter λ is then necessary,

and our selection methodology is satisfying in practice but needs more insight

to explain its in�uence for the selection of good predictors, in particular for

hidden states. The penalty term ‖u‖L2 is an energy related to the degrees of

freedom of the predictor Xθ,x0,u, but it is not related to the usual criterion of

model complexity for smoothing.

In our analysis, we assume that the observability Oθ(T ) is nonsingular, which
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avoids the use of the quadratic form x0>Qx0 in the criterion. If this regular-

ization term is used, the mechanics of the proof would be the same, but with

Q = Qn that should tend to 0 , as n tends to in�nity. Nevertheless, it can have

consequences on the asymptotics of the estimators, as it corresponds to cases

where the loss of information is too big and needs additional information. Quite

interestingly, our criterion about identi�ability remains tractable, and can be

relatively easy to check in practice.
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Appendix: State and Parameter

Inference for Partially Observed ODE

A Derivation of deterministic Kalman �lter estimator using

Linear-Quadratic Theory

In this section we describe more precisely how the deterministic Kalman Filter

is constructed (see [35] for an introduction), it involves two steps:

1. For a given initial condition x0 we determine the minimum cost expression

thanks to theorem A.1 (subsection A.1).

2. inimal cost is a quadratic form w.r.t �nal condition and hence it exists

an unique �nal condition (and hence a unique initial condition by ODE

solution uniqueness) minimizing this minimal cost (subsection A.2).

A.1 x0 �xed, minimal cost expression

To derive a closed form for the minimal cost for a given x0. For that we de�ne

the reverse time functions:

X̃θ,x0,u(t) = Xθ,x0,u(T=t), Ãθ(t) = −Aθ(T=t)
r̃θ(t) = −rθ(T − t), B̃(t) = −B(T=t), Ỹ (t) = Ŷ (T=t)

(29)

And by denoting

W̃1 =

(
CTC −CT Ỹ
−Ỹ TC Ỹ T Ỹ

)
, Q1 =

(
Q 0

0 0

)
, Zθ,x0,u =

(
X̃θ,x0,u

1

)
(30)

we can rewrite our cost under the form:

C
(
Ŷ ;x0, u, θ, λ

)
= C̃(Ŷ ;Zθ,x0,u(T ), u, θ, λ)

:= Zθ,x0,u(T )TQ1Zθ,x0,u(T ) +
´ T

0
‖Zθ,x0,u(t)‖2

W̃1
dt+ λ

´ T
0
‖u(t)‖22 dt

(31)

The issue here is to minimize (31) in a non-�nite dimensional space but thanks

to results coming from Optimal control and Riccati theory we know that for a

given θ and a given Z(T ) it exists a unique control ū such that

C̃(Ŷ ;Z(T ), ū, θ, λ) = min
u∈L2

C̃(Ŷ ;Z(T ), u, θ, λ)
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It is the main point of the following theorem for a given θ and Z(T ) it ensures

the existence, the uniqueness of this control ū and gives a closed form for both

ū and C̃(Ŷ ;Z(T ), ū, θ, λ).

Theorem A.1. Let A ∈ L2([0, T ] ,Rd×d) and B ∈ L2([0, T ] ,Rd×d) We con-

sider zu the solution of the following ODE:

żu(t) = A(t)zu(t) +B(t)u(t), z(t0) = z0

and the cost:

C(t0, u, U) = zu(T )TQzu(T ) +

ˆ T

t0

zu(t)TW (t)zu(t) + u(t)TU(t)u(t)dt

with Q positive,W ∈ L∞([0, T ] ,Rd×d) positive matrix for all t ∈ [0, T ] and U(t)

de�nite positive matrix for all t ∈ [0, T ] respecting the coercivity condition:

∃α > 0 s.t∀u ∈ L2([0, T ] ,Rd) :

ˆ T

0

u(t)TU(t)u(t)dt ≥ α
ˆ T

0

‖u(t)‖22 dt

For a given t0 we want to minimize the cost C(t0, u, U) on L2([0, T ] ,Rd).
We know it exists an unique control ū, called optimal control, associated to

the trajectory zū, called optimal trajectory, minimizing this cost. Moreover ū is

under the closed-feedback loop form u(t) = U−1(t)E(t)B(t)zu(t) where E is the

matricial solution of the ODE:

Ė(t) = W (t)−A(t)tE(t)− E(t)A(t)− E(t)B(t)U(t)−1B(t)TE(t)

E(T ) = −Q

this ODE its called Ricatti equation associated to LQ problem composed of the

cost C(t0, u, U) and the ODE żu(t) = A(t)zu(t)+B(t)u(t), z(t0) = z0. Moreover

E(t) is symetric and the minimal cost is equal to: C(t0, u, U) = −zT0 E(t0)z0.

By identifying in the last theorem A with

(
Ãθ(t) r̃θ(t)

0 0

)
, Q with Q1, W

with W1 and U with λId we obtain the corresponding minimal cost reached for

the optimal cost u for a given initial condition x0

C̃(Ŷ ;Zθ,x0,u(T ), u, θ, λ) = −X̃θ,x0,u(0)T Ẽθ(0)X̃θ,x0,u(0)=2X̃θ,x0,u(0)T h̃θ(0)=α̃θ(0).

(32)
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with the associated ODE:

˙̃
Eθ(t) = CTC − ÃθẼθ − ẼθÃθ − 1

λ Ẽθ
2
, Ẽθ(T ) = −Q

˙̃
hθ(t) = −CT Ỹ − Ãθ

T
h̃θ − Ẽθ r̃θ − 1

λ Ẽθh̃θ, h̃θ(T ) = 0
˙̃αθ = Ỹ T Ỹ − 2r̃θ

T h̃θ − 1
λ h̃

T
θ h̃θ, α̃θ(T ) = 0

To be able to apply Theorem A.1 we need W1 to belong to L∞([0, T ] ,Rd×d),
that is why we require Ŷ ∈ L∞([0, T ] ,Rd

′

).

A.2 Optimal x0 selection

For a given x0 we have obtained the minimal cost expression w.r.t control. How

can we choose x0 in order to minimize this minimal cost?

We recall that X̃θ,x0,u(0) = Xθ,x0,u(T ) so C̃(Ŷ ;Zθ,x0,u(T ), u, θ, λ) de�ned

by (32) is a quadratic form w.r.t the �nal condition (α̃θ(0) do not depend on

X̃θ,x0,u(0)). Since it makes no di�erence to minimize C̃(Ŷ ;Zθ,x0,u(T ), u, θ, λ)

w.r.t the �nal condition instead of x0 because of unicity of ODE solution we

look for the �nal condition minimizing (32). Hence if Ẽθ(0) is invertible the

minimum is reached for

−Ẽθ(0)−1h̃θ(0) (33)

we denote x̂0 the unique initial condition such thatXθ,x̂0,u(T ) = −Ẽθ(0)−1h̃θ(0).

In that case the minimal cost is equal to:

C̃(Ŷ ;Zθ,x̂0,u(T ), u, θ, λ) = h̃θ(0)T Ẽθ(0)−1h̃θ(0)=α̃θ(0)

and for a given parameter θ we have:

S
(
Ŷ ; θ, λ

)
= minx0∈Rd

(
minu∈L2 C(Ŷ ;x0, u, θ, λ)

)
= h̃θ(0)T Ẽθ(0)−1h̃θ(0)=α̃θ(0)

= h̃θ(0)T Ẽθ(0)−1h̃θ(0) +
´ T

0

(
Ỹ (t)T Ỹ (t)− 2r̃θ(t)

T h̃θ(t)− 1
λ h̃θ(t)

T h̃θ(t)
)
dt

A.3 Minimal cost expression

By posing Eθ(t) = −Ẽθ(T − t), ĥθ(t) = −h̃θ(T − t) we de�ne our estimator as:

θ̂ = arg min
θ∈Θ

S
(
Ŷ ; θ, λ

)
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with the functional criteria:

S (Y ; θ, λ) = −hθ(T, Y )TEθ(T )−1hθ(T, Y )

+
´ T

0

(
Y (t)TY (t)− 2rθ(t)

Thθ(t, Y )− 1
λhθ(t, Y )Thθ(t, Y )

)
dt

(34)

the associated ODE:

Ėθ(t) = CTC −ATθ Eθ − EθAθ − 1
λE

2
θ ,

ḣθ(t, Y ) = −αθ(t)hθ(t, Y )− βθ(t, Y )

(Eθ(0), hθ(0, Y )) = (Q, 0)

(35)

and the functions α and β de�ned by:{
αθ(t) =

(
Aθ(t)

T + Eθ(t)
λ

)
βθ(t, Y ) = CTY + Eθrθ

Hence we have obtained the expression for the optimal control, the minimal cost

and the �nal state value presented in Theorem 2.2.

B State Estimation: Controls of the variations of the

adjoint variables

Lemma B.1. We have ‖Eθ(t)− Eθ′(t)‖2 ≤ K1Eλe
L1

Eλ
λ

∥∥∥θ − θ′∥∥∥ by denoting

Eλ = supt,θ∈[0, T ]×Θ ‖Eθ(t)‖2 and Eλ ≤ K2e
L1
λ

Proof. Thanks to condition 3 ∀θ ∈ Θ t 7−→ Aθ(t) is continuous on [0 , T ] and

∀θ ∈ Θ t 7−→ Eθ(t) is de�ned on [0 , T ] and obviously continuous on the same

interval as an ODE solution.

∀(θ, θ′) ∈ Θ2 we have:

Ėθ(t)− Ėθ′(t) = Aθ′(t)
TEθ′(t)−Aθ(t)TEθ(t)

+ Eθ′(t)Aθ′(t)− Eθ(t)Aθ(t)
+ 1

λ

(
E2
θ′(t)− E2

θ (t)
)

and by integrating between 0 and t, taking the norm gives us:

‖Eθ(t)− Eθ′(t)‖2 ≤
´ t

0

∥∥Aθ′(s)TEθ′(s)−Aθ(s)TEθ(s)∥∥2
ds

+
´ t

0
‖Eθ′(s)Aθ′(s)− Eθ(s)Aθ(s)‖2 ds

+ 1
λ

´ t
0

∥∥E2
θ′(s)− E2

θ (s)
∥∥

2
ds
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and:

´ t
0

∥∥E2
θ (s)− E2

θ′(s)
∥∥

2
ds ≤

√
d
´ t

0
‖Eθ(s)‖2 ‖Eθ(s)− Eθ′(s)‖2 ds

+
√
d
´ t

0
‖Eθ′(s)‖2 ‖Eθ(s)− Eθ′(s)‖2 ds

≤ 2
√
dEλ
´ t

0
‖Eθ(s)− Eθ′(s)‖2 ds

by denoting Eλ = supt,θ∈[0, T ]×Θ ‖Eθ(t)‖2 .

Now we bound the remaining term:

´ t
0

∥∥Aθ(s)TEθ(s)−Aθ′(s)TEθ′(s)∥∥2
ds ≤

√
d
´ t

0
‖Aθ(s)‖2 ‖Eθ(s)− Eθ′(s)‖2 ds

+
√
d
´ t

0
‖Eθ′(s)‖2 ‖Aθ(s)−Aθ′(s)‖2 ds

≤
√
dA
´ t

0
‖Eθ(s)− Eθ′(s)‖2

+
√
dEλ
´ t

0
‖Aθ(s)−Aθ′(s)‖2 d

Using these bounds in the main inequality drive us to the following inequal-

ity:

‖Eθ(t)− Eθ′(t)‖2 ≤ 2
√
d(Eλλ +A)

´ t
0
‖Eθ(s)− Eθ′(s)‖2 ds

+ 2
√
dEλ
´ t

0
‖Aθ(s)−Aθ′(s)‖2 ds

then Gronwall's lemma gives us

‖Eθ(t)− Eθ′(t)‖2 ≤ 2
√
dEλ

ˆ T

0

‖Aθ(s)−Aθ′(s)‖2 dt.e
´ t
0

2
√
d(
Eλ
λ +A)dt

and we obtain thanks to Cauchy-Schwarz inequality:

‖Eθ(t)− Eθ′(t)‖2 ≤ 2
√
dTEλ ‖Aθ −Aθ′‖L2 e

2
√
d(
Eλ
λ +A)T

which gives us the proper results using θ 7−→ Aθ continuity.

The bound for Eλ is obtained by a direct application of Gronwall's lemma:

‖Eθ(t)‖2 ≤ |C|2 +
´ t

0

∥∥Aθ′(s)TEθ′(s) +Aθ(s)
TEθ(s) + 1

λEθ(s)
TEθ(s)

∥∥
2
ds

≤ |C|2 + 2
√
d
´ t

0

(
‖Aθ′(s)‖2 + Eλ

λ

)
‖Eθ′(s)‖2 ds

≤ |C|2 e2
√
d
(
A+

Eλ
λ

)
T

hence

Eλ ≤ |C|2 e2
√
dAT e2

√
d
Eλ
λ
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Lemma B.2. Assuming condition C3 and C4 we know it exists constants Ki

such that:

‖hθ(t, Y )− hθ′ (t, Y ′)‖2 ≤ K6e
L1

Eλ
λ ‖Y − Y ′‖L2

+
(
K7 +K8Eλ

) (
K4 + K5

λ Eλe
L1

Eλ
λ

)
e2L1

Eλ
λ

∥∥∥θ − θ′∥∥∥
+

(
K9e

2L1
Eλ
λ +K10e

L1
Eλ
λ

)
Eλ

∥∥∥θ − θ′∥∥∥
and

‖hθ(t, Y )‖2 ≤
√
Td2 ‖C‖2 e

√
d
(
A+

Eλ
λ

)
T ‖Y ‖L2 +

√
dEλrθ

Proof. We know that hθ(t, Y ) = −
´ t

0
Rθ(t, s)C

TY (s)ds−
´ t

0
Rθ(t, s)Eθ(s)rθ(s)ds

hence ∀ (Y, Y ′) ∈ L∞([0, T ] ,Rd′) we have:

‖hθ(t, Y )− hθ′ (t, Y ′)‖2 ≤
√
d ‖C‖2

´ t
0
‖Rθ(t, s)‖2 ‖Y (s)− Y ′(s)‖2 ds

+
√
d ‖C‖2

´ t
0
‖Rθ(t, s)−Rθ′ (t, s)‖2 ‖Y

′(s)‖2 ds
+ dr

´ t
0
‖Rθ(t, s)−Rθ′(t, s)‖2 ‖Eθ(s)‖2 ds

+ dr
´ t

0
‖Rθ′ (t, s)‖2 ‖Eθ(s)− Eθ′ (s)‖2 ds

+ drθ

∥∥∥θ − θ′∥∥∥
2

´ t
0
‖Rθ′ (t, s)‖2 ‖Eθ′ (s)‖2 ds

Cauchy Schwarz inequality gives us:

‖hθ(t, Y )− hθ′ (t, Y ′)‖2 ≤
√
d ‖C‖2 ‖Rθ(., s)‖L2 ‖Y − Y ′‖L2

+
(√

d ‖C‖2 ‖Y ′‖L2 + d
√
TrEλ

)
‖Rθ(., s)−Rθ′ (., s)‖L2

+ dr ‖Rθ(., s)‖L2 ‖Eθ − Eθ′‖L2

+ d
√
Trθ

∥∥∥θ − θ′∥∥∥
2
‖Rθ(., s)‖L2 Eλ

(36)

We straightforwardly bound ‖Rθ(t, s)‖2 by application of Gronwall's lemma:

‖Rθ(t, s)‖2 ≤
√
d+
√
d
(
A+ E

λ

) ´ t
s
‖Rθ(u, s)‖2 du

≤
√
de
√
d
(
A+E

λ

)
T

:= K3e
L1

Eλ
λ
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Using successively norm inequalities and Gronwall's lemma we obtain:

‖Rθ′ (t, s)−Rθ(t, s)‖2 ≤
√
d ‖αθ(t)− αθ′ (t)‖2 ‖Rθ(t, s)‖2

+
√
d ‖Rθ(t, s)−Rθ′ (t, s)‖2 ‖αθ′ (t)‖2

≤
√
d
(
Aθ

∥∥∥θ − θ′∥∥∥
2

+ 1
λ ‖Eθ(t)− Eθ′ (t)‖2

)
‖Rθ(t, s)‖2

+
√
d ‖Rθ(t, s)−Rθ′ (t, s)‖2

(
A+ Eλ

λ

)
≤

√
d
(
Aθ + 1

λK1Eλe
L1

Eλ
λ

)
K3e

L1
Eλ
λ

∥∥∥θ − θ′∥∥∥
+

√
d
(
A+ Eλ

λ

)
‖Rθ(t, s)−Rθ′ (t, s)‖2

≤
√
de
√
dATK3

(
Aθ + 1

λK1Eλe
L1

Eλ
λ

)
e2L1

Eλ
λ

∥∥∥θ − θ′∥∥∥
:=

(
K4 + K5

λ Eλe
L1

Eλ
λ

)
e2L1

Eλ
λ

∥∥∥θ − θ′∥∥∥
and applying this bound in 36 gives the following inequality:

‖hθ(t, Y )− hθ′ (t, Y ′)‖2 ≤
√
d ‖C‖2K3e

L1
Eλ
λ ‖Y − Y ′‖L2

+
(√

d ‖C‖2 ‖Y ′‖L2 + d
√
TrEλ

)(
K4 + K5

λ Eλe
L1

Eλ
λ

)
e2L1

Eλ
λ

∥∥∥θ − θ′∥∥∥
+ drK3e

L1
Eλ
λ K1Eλe

L1
Eλ
λ

∥∥∥θ − θ′∥∥∥
+ d

√
TrθK3e

L1
Eλ
λ Eλ

∥∥∥θ − θ′∥∥∥
2

≤ K6e
L1

Eλ
λ ‖Y − Y ′‖L2

+
(
K7 +K8Eλ

) (
K4 + K5

λ Eλe
L1

Eλ
λ

)
e2L1

Eλ
λ

∥∥∥θ − θ′∥∥∥
+

(
K9e

2L1
Eλ
λ +K10e

L1
Eλ
λ

)
Eλ

∥∥∥θ − θ′∥∥∥
By a similar computation we obtain:

‖hθ(t, Y )‖2 ≤
√
Td2 ‖C‖2 e

√
d
(
A+

Eλ
λ

)
T ‖Y ‖L2 +

√
dEλrθ

Lemma B.3. Assuming condition C3 and C4 we know it exists constants Ki

such that:
∥∥E−1

θ (T )− E−1
θ′ (T )

∥∥
2
≤
(
K12

λ +K11

)
eK13+

K14
λ ‖θ − θ′‖ and

∥∥E−1
θ (T )

∥∥
2
≤

K15

λ

Proof. We have already shown∀θ ∈ Θ t 7−→ Eθ(t) is de�ned on [0 , T ] and

obviously continuous on the same interval as an ODE solution.

When E−1
θ (t) is de�ned we know it follows the ODE:
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d
dt

(
E−1
θ (t)

)
= −E−1

θ (t)Ėθ(t)E
−1
θ (t)

= −E−1
θ (t)

(
CTC=Aθ(t)

TEθ(t)=Eθ(t)Aθ(t)=
1
λEθ(t)

TEθ(t)
)
E−1
θ (t)

= 1
λ + E−1

θ (t)ATθ (t) +Aθ(t)E
−1
θ (t)− E−1

θ (t)CTCE−1
θ (t)

By hypothesis ∀θ ∈ Θ E−1
θ (T ) is de�ned and by continuity of (θ, t) 7−→ Det (Eθ(t))

using chain rule we know for each θ it exists an interval [T − ε, T ] and a

open ball B% (θ) where (t, θ) 7−→ Eθ(t) is non-singular. Because of θ 7−→
Eθ(T − ε) continuity and di�erentiability it exists a constant K11 such that:∥∥E−1

θ (T − ε)− E−1
θ′ (T − ε)

∥∥
2
≤ K11 ‖θ − θ′‖.

By de�ning E−1
ε,%,θ,λ = sup[T−ε, T ]×B%(θ)

∥∥E−1
θ (t)

∥∥
2
and using successively

norm inequalities and Gronwall's lemma we obtain:∥∥E−1
θ (t)− E−1

θ′ (t)
∥∥

2
≤
´ t
T−ε

∥∥∥E−1
θ (s)ATθ (s) +Aθ(s)E

−1
θ (s)− E−1

θ′
(s)AT

θ′
(s)−Aθ′ (s)E

−1
θ′

(s)
∥∥∥

2
ds

+
´ t
T−ε

∥∥∥E−1
θ′

(s)CTCE−1
θ′

(s)− E−1
θ (s)CTCE−1

θ (s)
∥∥∥

2
ds

+ K11 ‖θ − θ′‖
≤ 2

√
dA
´ t
T−ε

∥∥∥E−1
θ (s)− E−1

θ′
(s)
∥∥∥ ds

+ 2
√
dE−1

θ,λ

´ t
T−ε

∥∥∥Aθ(s)−ATθ′ (s)∥∥∥2
ds

+ 2d
3
2E−1

θ,λ ‖C‖
2
2

´ t
T−ε

∥∥∥E−1
θ′

(s)− E−1
θ (s)

∥∥∥
2
ds

+ K11 ‖θ − θ′‖
≤

(
2
√
dA+ 2d

3
2E−1

ε,%,θ,λ ‖C‖
2
2

) ´ t
T−ε

∥∥∥E−1
θ (s)− E−1

θ′
(s)
∥∥∥ ds

+
(

2
√
dTE−1

ε,%,θ,λAθ +K11

)
‖θ − θ′‖

≤
(

2
√
dTE−1

ε,%,θ,λAθ +K11

)
e

(
2
√
dA+2d

3
2E−1

ε,%,θ,λ‖C‖
2
2

)
T ‖θ − θ′‖

For
∥∥E−1

θ (T )
∥∥

2
we can obtain a uniform bound w.r.t θ using Gronwall's lemma:

∥∥E−1
θ (t)

∥∥
2
≤

´ t
T−ε

∥∥ 1
λ + E−1

θ (s)ATθ (s) +Aθ(s)E
−1
θ (s)− E−1

θ (t)CTCE−1
θ (t)

∥∥
2
ds

≤ 1
λ +
´ t
T−ε

√
d
(

2A+ dE−1
ε,%,θ,λ ‖C‖

2
2

)∥∥E−1
θ (t)

∥∥2

2

≤ 1
λe
√
d
(

2A+dE−1
ε,%,θ,λ‖C‖

2
2

)
T

:= K15

λ

by using this upper bound in the previous inequality we obtain the desired

result.
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C Gradient Computation

For optimization purpose we need to compute the gradient of S(Ŷ ; θ, λ) .

C.1 Notation in row vector for the adjoint ODE vector �eld

We will de�ne the solution of the adjoint ODE in row formulation, we introduce

Qθ(t) =
(
ĥθ
T
, (Erθ )

T
)T

(t)

with Erθ :=
(
ETθ,1, · · · , ETθ,d

)T
the row formulation of Eθ, Eθ,i beeing the i− th

column of Eθ. It is a D := d2 + d sized function respecting the ODE :

Q̇θ = F (Qθ, θ, t)

Qθ(0) =
(

01,d Qr
)T

by introducing Qr :=
(
QT1 , · · · , QTd

)T
the row formulation of Q and the general

vector �eld F :

F (Qθ, θ, t) =

(
G(Qθ, θ, t)

H(Qθ, θ)

)
with G and H de�ned by:

G(Qθ, θ, t) := −
(
Aθ

T + Eθ
λ

)
ĥθ −

(
CTY + Eθrθ

)
H(j−1)d+i(Qθ, θ) := δi,j − (ATθ,iEj +ATθ,jEθ,i + 1

λE
T
θ,iEθ,j)

and Aθ,i beeing the i− th column of Aθ.

For the next subsections we will drop dependence in θ for Aθ, rθ, Eθ, ĥθ

C.2 Gradient computation by sensitivity equation

Straightforward computation gives us :

∇θS(Ŷ ; θ, λ) = −2
´ T

0

(
∂r(t)
∂θ

T
ĥ(t) + ∂ĥ(t)

∂θ

T

r(t) + 1
λ
∂ĥ(t)
∂θ

T

ĥ(t)

)
dt

− ∂ĥ(T )
∂θ

T

E(T )−1ĥ(T )

−
(
ĥ(T )T

∂(E(T )−1
i )

∂θ +
(
E(T )−1

i

)T ∂ĥ(T )
∂θ

)T
1≤i≤d

ĥ(T )
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with:
∂
(
E(T )−1

)
∂θj

= −E(T )−1

(
∂E(T )

∂θj

)
E(T )−1

thus we need to compute ∂Qθ(t),
∂θ solution of the sensitivity equation:

d

dt
(
∂Qθ(t)

∂θ
) =

∂F

∂Q
(Qθ(t), θ, t)

∂Qθ(t)

∂θ
+
∂F

∂θ
(Qθ(t), θ, t)

and we know that Rθ(0) = (0, Qr) so ∂Qθ(0)
∂θ = 0, hence we can obtain ∂Qθ(t)

∂θ

by solving the Cauchy problem:

d
dt (

∂Qθ(t)
∂θ ) = ∂F

∂Q (Qθ(t), θ, t)
∂Qθ(t)
∂θ + ∂F

∂θ (Qθ(t), θ, t)
∂Qθ(0)
∂θ = 0

In order to compute sensitivity equation we need to compute ∂F
∂Q (Qθ, θ, t)

and ∂F
∂θ (Qθ, θ, t), for

∂F
∂Q (Qθ, θ, t) and

∂F
∂θ (Qθ, θ, t) we obtain:

∂F
∂Q (Qθ, θ, t) =

(
−
(
A(t)T + E

λ

)
∂Gi
∂Erj

(Qθ, θ, t)

0d2,d
∂H(Qθ,θ)
∂Er

)
∂F
∂θ (Qθ, θ, t) =

(
∂G
∂θ (Qθ, θ, t)
∂H
∂θ (Er, θ)

)
with:

∂Gi
∂Er

(k−1)d+h
(Qθ, θ, t) = −δi,h

(
r(t) + h

λ

)
k

∂G
∂θ (Qθ, θ, t) = −

(
hT ∂Ai(t)∂θ

)
1≤i≤d

− E ∂r(t)
∂θ

We also need to compute H(Qθ, θ) partial derivative w.r.t Er and θ, we

have:(
∂H(Er, θ)

∂Er

)
(j−1)d+i

= −
(

0 Atj 0 Ati 0
)
− 1

λ

(
0 Etj 0 Eti 0

)
because:

• ∂
∂Er

(
AtjEi +AtiEj

)
=
(

0 Atj 0 Ati 0
)
where Atj is in i−th position

and Ati is in j − th position.

• 1
λ
∂
∂E

(
EtjEi

)
=
(

0 1
λE

t
j 0 0 0

)
+
(

0 0 1
λE

t
i 0 0

)
where Etj

is in i− th position and Eti is in j − th position.

and:
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(
∂H(Qθ, θ)

∂θ

)
(j−1)d+i

= −Eti
∂Aj
∂θ
− Etj

∂Ai
∂θ

because:

• ∂
∂θ

(
AtjEi +AtiEj

)
= Eti

∂Aj
∂θ + Etj

∂Ai
∂θ where ∂Ai

∂θ =
(
∂Ai
∂θ1
· · · ∂Ai∂θp

)
a d × p

matrix
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