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Abstract

Ordinary Di�erential Equations are widespread tools to model chemical, physical, bio-
logical process but they usually rely on parameters which are of critical importance in
terms of dynamic and need to be estimated directly from the data. Classical statistical
approaches (nonlinear least squares, maximum likelihood estimator) can give unsatis-
factory results because of computational di�culties and ill-posedness of the statistical
problem. New estimation methods that use some nonparametric devices have been
proposed to circumvent these issues. We present a new estimator that shares prop-
erties with Two-Step estimator and Generalized Smoothing (introduced by Ramsay
et al. [34]). We introduce a perturbed model and we use optimal control theory for
constructing a criterion that aims at minimizing the discrepancy with data and the
model. Here, we focus on the case of linear Ordinary Di�erential Equations as our
criterion has a closed-form expression that permits a detailed analysis. Our approach
avoids the use of a nonparametric estimator of the derivative, which is one of the main
cause of inaccuracy in Two-Step estimators. Moreover, we take into account model
discrepancy and our estimator is more robust to model misspeci�cation than classical
methods. The discrepancy with the parametric ODE model correspond to the mini-
mum perturbation (or control) to apply to the initial model. Its qualitative analysis
can be informative for misspeci�cation diagnosis. In the case of well-speci�ed model,
we show the consistency of our estimator and that we reach the parametric

√
n− rate

when regression splines are used in the �rst step.

1 Introduction

We consider a dynamical process de�ned by an Ordinary Di�erential Equation
(ODE) with a known and �xed initial value{

ẋ = f(t, x, θ)
x(0) = x0

(1)
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Such a model is called an Initial Value Problem (IVP). The state x is in Rd
and θ is an unknown parameter, that belongs to a subset Θ of Rp. f is a time-
dependent vector �eld from [0, T ] × Rd × Θ to Rd. This class of dynamical
models are commonly used in physics, engineering, ecology,. . . [13, 30, 12, 17].
Let t 7→ Xθ∗(t) = X∗(t) be the solution to the IVP (1) on [0, T ], for the true
parameter set θ∗.

We want to estimate θ∗ from noisy observations Yi, i = 1, . . . , n of the
trajectory X∗, made at time ti. Estimation can be done by classical estimators
such as Nonlinear Least Squares (NLS), Maximum Likelihood Estimator (MLE)
[27] or Bayesian approaches ([21],[14],[6] and [15] for example). Nevertheless,
the statistical estimation of an ODE model by NLS leads to a di�cult nonlinear
estimation problem. These di�culties were pointed out by Ramsay et al. [34]:
computational complexity comes from repeated ODE integrations required by
the optimization algorithm; moreover, the usual criterion exhibits multiple local
minima . Even though meta-heuristic methods can be proposed to circumvent
the last issue, parameter estimation can be considered as an ill-posedness inverse
problem [11], that needs alternatives to the classic statistical approaches.

Alternative statistical estimators have been developped or adapted to this
particular framework, such as hierarchical Bayesian approaches [21, 33] and
MCMC ([16]), Generalized Smoothing [34, 32, 10, 7] or Two-Step estimators
[4, 5, 28, 18]. Recently variational approaches have also been developed [23].

As other two-step estimators, our method produces a minimum distance
estimator [25] but it shares strong links with Generalized Smoothing approaches.
Two-Step estimators were initiated by [39] and aims at minimizing a discrepancy
measure between a nonparametric estimator X̂ and quantities characterizing
the di�erential models. Usually, a Two-Step method is de�ned by the following
procedure:

1. Construct a nonparametric curve estimator X̂ from the data (ti, Yi)1≤i≤n,

2. Compute a model discrepancy measure R(X̂, θ), such as the weighted L2

distance

R(X̂, θ) =

ˆ T

0

∥∥∥ ˙̂
X(t)− f(t, X̂(t), θ)

∥∥∥2

w(t)dt (2)

3. De�ne the parameter estimator

θ̂TS = arg min
θ∈Θ

R(X̂, θ) (3)

These estimators have a good computational e�ciency vs NLS and they avoid
repeated ODE integration. In practice, the used criteria are also smoother and
easier to optimize than the NLS criterion. Two-step estimators are consistent
in general, but there is a trade-o� with the statistical precision, and some care

in the use of nonparametric estimate
˙̂
X has to be taken in order to keep the

parametric rate [4, 18]. The variance of TS estimator can be higher, but the use
of other criterion, for instance based on a weak formulation of the di�erential
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equation can give competitive alternatives, in particular in high dimensional
parameter space or small sample size, see [5].

In the case of Generalized Smoothing [34], the solution X∗ is approximated
by a basis expansion that solves approximately the ODE model; hence, the
parameter inference is performed by dealing with an imperfect model, as the
collocation approximation of the ODE solution can be seen as a relaxation
of the ODE model constraint, needed for taking into account some uncertainty
about the model. Based on the Generalized Pro�ling approach, Hooker proposed
a criteria that estimates the lack-of-�t through the estimation of a �forcing
function� t 7→ u(t) in the ODE ẋ − f(t, x, θ̃) = u(t), where θ̃ is a previous
estimate obtained by Generalized Pro�ling [5]. The objective of this paper is to
provide a parameter estimate and an approximate solution to the ODE that

• avoids the use a nonparametric estimate of the derivative Ẋ as in two step
estimators,

• incorporates robustness in model speci�cation and controls the quality of
approximation,

• introduces the use of in�nite dimensional optimization tools, exploiting
the di�erential structure of the model.

One interest of the latter point is to avoid the use of series expansion for function
estimation, and avoid some arbitrary practical choices about the basis. More-
over, in�nite dimensional optimization tools give powerful characterization of
the solutions that gives an additional insight in Generalized Smoothing.

Our method provides a consistent parametric estimator when the model is
correct. We show that it is root-n consistent and asymptotically normal. At
the same time, we get a discrepancy measure between the model and the data
under the form of an optimal control u analogous to the forcing function in [19].

In the next section, we introduce the notations and we motivate our approach
by discussing the Generalized Smoothing approach, and the link with Optimal
Control Theory. In section 3, we show that the estimator is consistent under
some regularity assumption about the model. Then in section 4, we show that
we reach the root−n rate using regression splines for X̂. Finally, we show the
interest of our method on a toy model (and we make comparison with Nonlinear
Least Squares and Generalized Smoothing) and we consider also a real data case,
where a linear ODE is used for describing the isomerization reaction of α-Pinene.

2 Model and methodology

We introduce our statistical framework, and we recall the mechanics of the
Generalized Smoothing estimator in the particular context of a linear ODE.
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2.1 The statistical model and a Generalized Smoothing
wrap-up

We observe a �true� trajectory X∗ at n random times 0 = t1 < t2 · · · < tn = T ,
such that we have n observations (Y1, . . . , Yn) de�ned as

Yi = X∗(ti) + εi (4)

where εi is the (random) observation error. We assume that there is a true
parameter θ∗ belonging to a subset Θ of Rp, such that X∗ is the unique solution
of the linear ODE

ẋ(t) = Aθ(t)x(t) + rθ(t) (5)

with initial condition X∗(0) = X∗0 ; where t 7→ Aθ(t) ∈ Rd×d and t 7→ rθ(t) ∈ Rd.
More generally, we denote Xθ the solution of (5) for a given θ, and initial
condition X∗0 . We assume that the initial condition X∗0 is exactly known, and
we want to infer θ∗ from (Y1, . . . , Yn). In the linear case, Duhamel's formula
gives a closed form expression for Xθ for t ∈ [0, T ]

Xθ(t) = Φθ(t, 0)X∗0 +

ˆ T

0

Φθ(t, s)rθ(s)ds

where the matrix-valued function Φθ : (t, s) 7→ Φθ (t, s) is the so-called resolvant
of the ODE. By de�nition, the resolvant is the solution of the homogenous ODE

Φ̇θ(t, s) = Aθ(t)Φθ(t, s)
Φθ(s, s) = Id

The estimation of θ∗ can be done straightforwardly with the Nonlinear Least
Squares (NLS) estimator that minimizes

n∑
i=1

‖Yi −Xθ(ti)‖22 .

In Generalized Smoothing (GS), parameter estimation is regularized by using
an approximate solutions of the ODE (5), as GS takes advantage of the double
interpretation of splines for smoothing data, and for numerical solving of ODE
by collocation.

A basis expansion X̂(t, θ) = β̂(θ)T p(t) is computed for each θ, where β̂(θ) is
obtained by minimizing in β the criterion

Jn(β|θ, λ) =

n∑
i=1

∥∥∥Yi − β̂T p(ti)∥∥∥2

2
+ λ

ˆ T

0

∥∥∥β̂T ṗ(t)− (Aθ(t)β̂T p(t) + rθ(t)
)∥∥∥2

2
dt

(6)
This �rst step is considered as pro�ling along the nuisance parameter β, whereas
the estimation of the parameter of interest is obtained by minimizing the sum
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of squared errors of the proxy X̂(t, θ) by

θ̂GS = arg min
θ

n∑
i=1

∥∥∥Yi − X̂(ti, θ)
∥∥∥2

(7)

Obviously, the estimator depends on the hyperparameter λ, that needs to be se-
lected from the data in practice (some adaptive procedures have been proposed,
see [22]). The essential di�erence with NLS is to replace the exact solution Xθ(·)
by an approximation X̂(·, θ) (that depends also on the data). This means that
GS deals with 2 sources of errors: in addition to the classical statistical error
(variance due to noisy data), there is an approximation error as X̂(·, θ) is a spline
that does not solve exactly the ODE model (5). Indeed, collocation algorithms
compute the coe�cients of a B-spline expansion based on the relationships be-

tween X̂ and its derivative
˙̂
X evaluated on an appropriate grid of time points

0 = s1 < s2 < · · · < sp, [2]. This gives a nonlinear system that is usually solved
with a Newton algorithm, whose roots are the unknown coe�cients of the basis
expansion. The collocation schemes are essentially useful for solving Boundary
Value Problems (instead of the classical Initial Value Problem).

For parameter estimation, the basis expansion is de�ned in a somehow
arbitrary manner and the ODE constraint is not used as an equality con-
straint as it should be the case in a �normal� collocation scheme. Instead,
the ODE equation is transformed into an inequality constraint de�ned on the
interval [0, T ] and the model constraint is never set to 0 because of the trade-o�

with the data-�tting term
∑n
i=1

∥∥∥Yi − β̂T p(ti)∥∥∥2

2
. For this reason, the ODE

model (5) is not solved and it is useful to introduce the discrepancy term

ûθ(t) = β̂T ṗ(t) −
(
Aθ(t)β̂

T p(t) + rθ(t)
)
that corresponds to a model error. In

fact, the proxy X̂(·, θ) satis�es a pertubed ODE ẋ = Aθx+ rθ + ûθ. This forc-
ing function ûθ is an outcome of the optimization process and can be relatively
hard to analyze or understand, as it depends on the basis expansion used and
it depends also on the data via the minimization of Jn(β|θ, λ). Nevertheless,
Hooker et al. have proposed goodness-of-�t tests based on this so-called �em-
pirical forcing function� ûθ, as ûθ are the residuals but at the derivative scale
and not at the state scale [19, 20].

Based on these remarks, we introduce the pertubed linear ODE

ẋ(t) = Aθ(t)x(t) + rθ(t) + u(t) (8)

where the function t 7→ u(t) can be any function in L2. The solution of the
corresponding Initial Value Problem

ẋ(t) = Aθ(t)x(t) + rθ(t) + u(t)
x(0) = X0

is denoted Xθ,u. Instead of using the spline proxy X̂(·, θ) for approximating X∗,
we use the trajectories Xθ,u of the ODE (8) controlled by the function u.
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2.2 The Tracking Estimator

Following the Generalized Smoothing approach, we look for a candidate Xθ,u

that can minimize at the same time the discrepancy with the data and the norm
‖u‖L2 . Moreover, we replace the classical Sum of Squared Errors by a smoothed

version
´ T

0

∥∥∥X̂(t)−Xθ,u(t)
∥∥∥2

2
dt based on a nonparametric proxy X̂. Hence, we

consider the subsequent cost function

C
(
X̂;u, θ, λ

)
=

ˆ T

0

∥∥∥X̂(t)−Xθ,u(t)
∥∥∥2

2
dt+ λ

ˆ T

0

‖u(t)‖22 dt (9)

for a given λ > 0. Moreover, for each θ in Θ, we introduce the in�mum function

S
(
X̂; θ, λ

)
= inf
u∈L2

C
(
X̂;u, θ, λ

)
(10)

obtained by �pro�ling� on the function u. The de�nition of S mimicks the
minimization of Jn(β|θ, λ) but it is more involved as it is de�ned on in�nite
functional space, instead of a �nite dimensional vector space. Finally, our esti-
mator is de�ned by minimizing the same function S i.e

θ̂T = arg min
θ∈Θ

S
(
X̂; θ, λ

)
(11)

whereas the GS estimator minimizes a di�erent criterion
∑n
i=1

∥∥∥Yi − X̂(ti, θ)
∥∥∥2

.

This means that in our methodology, we try to �nd a parameter θ that main-
tain a reasonable trade-o� between model and data, whereas the Generalized
Smoothing Estimator θ̂GS is dedicated to �t the data with the proxy X̂(·, θ),
without considering the size of model error represented by ûθ.

Before going deeper into the interpretation and analysis of our estimator,

we need to show that the criterion S
(
X̂; θ, λ

)
is properly de�ned and that

we can obtain a tractable expression for computations and for the theoretical
analysis of (11). The existence of S is a direct consequence of the so-called
Linear-Quadratic Theory (LQ Theory), which belongs to the broader �eld of
Optimal Control Theory [26, 37, 29, 9]. In our case, we consider the control of
linear ODE with a quadratic cost function that enables to have quite general
and simple results. This is possible because we have replaced the discrete sum
of squared errors by an integral criterion where the original data have been
replaced by a nonparametric proxy X̂. Thanks to that, we can use directly
calculus of variations and optimal control [24, 9]. For completeness, we recall
brie�y in the appendix the main results of LQ Theory.

Theorem and De�nition of S (ζ; θ, λ). Let t 7→ ζ(t) be a function belonging
to H1([0, T ] ,Rd) and Xθ,u be the solution to the controlled ODE (8).
For any θ,λ, there exists a unique optimal control ūθ,λ that minimizes the cost
function

C (ζ;u, θ, λ) =

ˆ T

0

{
‖ζ(t)−Xθ,u(t)‖22 + λ ‖u(t)‖22

}
dt (12)



2 Model and methodology 7

The control ūθ,λ can be computed in a �closed-loop� form as

uθ,λ(t) =
E(t)

λ

(
Xθ,uθ,λ(t)− ζ(t)

)
+
h(t)

λ
(13)

where E and h are solutions of the Final Value Problems{
Ė(t) = Id −Aθ(t)TE(t)− E(t)Aθ(t)− E(t)2

λ

ḣ(t) = =Aθ(t)
Th(t)− E(t)

(
Aθ(t)ζ(t) + rθ(t)− ζ̇(t)

)
=

E(t)h(t)
λ

(14)

and E(T ) = 0, h(T ) = 0. For all t ∈ [0, T ], the matrix E(t) is symetric, and the
ODE de�ning the matrix-valued function t 7→ E(t) is called the Matrix Riccati
Di�erential Equation of the ODE (8).

Finally, the Pro�led Cost S has the closed form

S(ζ; θ, λ) = −
´ T

0

{
2
(
Aθ(t)ζ(t) + rθ(t)− ζ̇(t)

)>
h(t) + ‖h(t)‖2

λ

}
dt (15)

The cost (12) is usually used for solving the so-called �Tracking Problem�
that consists in �nding the optimal control u to apply to the ODE (8) in order
to reach a target trajectory t 7→ ζ(t), see [37] for an excellent introduction.
The estimation problem is then to determine the parameter θ so that the corre-
sponding ODE need a small control u (in L2 norm) in order to be close to the
noisy trajectory t 7→ X̂(t).

Remark 2.1. H1([0, T ] ,Rd) =
{
X ∈ L2([0, T ] ,Rd) | Ẋ ∈ L2([0, T ] ,Rd)

}
is the

classical Sobolev space of L2 (weakly) di�erentiable function, see [3]. The deriva-
tive is de�ned in the weak sense, so it allows us to consider non-parametric
estimator with some (controlled) discontinuities. Of course, every di�erentiable
functions belong to H1 and the weak derivative coincides with the classic one.

Remark 2.2. We insist on the fact that t 7→ E(t), h(t) depends also on θ, λ
and ζ because of their de�nition via equation (14). Nevertheless, we do not
write it systematically for notational brievety. As mentioned in the theorem,
it is possible to compute Xθ,uθ,λ in a �closed-loop� form as we can solve in a
preliminary stage the 2 equations (14) that gives the function E and h for all
t ∈ [0, T ]. Then, we just need to solve the ODE

ẋ(t) = Aθ(t)x(t) + rθ(t) + E(t)
λ (x(t)− ζ(t)) + h(t)

λ
x(0) = X0

Remark 2.3. From equation (15), we see that S depends smoothly in θ and λ,
as in ζ. This was not easy to see from the in�mum de�nition (10), but as the
minimum is reached, and attained for a known function, we can have even more
information than in the Generalized Smoothing approach based on splines.

Remark 2.4. Our pertubated ODE framework permits to consider naturally the
problem of model misspeci�cation, when the true model is

ẋ(t) = Aθ(t)x(t) + rθ(t) + v(t)
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with v ∈ L2([0, T ] ,Rd) is an unknown function. We do not provide any the-
oretical analysis for this kind of model misspeci�cation, but we consider it in
the Experiments section, in order to gain some insight. We will see in a simple
example that our estimator allows us to have more accurate estimation than
classical NLS estimator in that case. Moreover we can propose a proper correc-
tion term to add to the initial model to counteract the misspeci�cation in order
to lower the prediction error.

The next section is dedicated to the derivation of the regularity properties
of S. Thanks to the use of a functional formulation and the associated Linear-
Quadratic theory, we show the smoothness in ζ and θ, and compute directly the
needed derivatives.

3 Consistency of the Tracking estimator

Under reasonable and practical assumptions, we can assert that the tracking
estimator (11) is a consistent estimator of θ∗ when the ODE model (5) is well-
speci�ed, and when we use a consistent nonparametric estimator X̂. In practice,
it is quite common to use a smoothing spline or a kernel smoother in order to
smooth the data and estimates roughly the trajectory X∗. As the tracking
estimator is an M-estimator, we can employ the classical approaches for consis-
tency that relies on the regularity and convergence of the stochastic criterion

S
(
X̂; θ, λ

)
to the asymptotic criterion S (X∗; θ, λ). Hence, we need to show

some regularity in ζ, uniformly in θ. Similarly, in order to compute the rate
of convergence and the variance of the estimator, we will need to check the
smoothness w.r.t θ.

3.1 Regularity properties of S(ζ; θ, λ)

We introduce some necessary assumptions about the ODE model in order to de-
rive the needed regularity as well as the identi�ability property. The conditions
are

C1: θ∗ ∈ Θ a compact subset of Rp

C2: The model is identi�able at θ = θ∗ i.e

∀θ ∈ Θ ; Xθ = Xθ∗ =⇒ θ = θ∗

C3: ∀ (t, θ) ∈ [0 , T ]×Θ, (t, θ) 7−→ Aθ(t) and (t, θ) 7−→ rθ(t) are continuous.

C4: ∀ (t, θ) ∈ [0, T ]×Θ, (t, θ) 7−→ ∂Aθ(t)
∂θ and (t, θ) 7−→ ∂rθ(t)

∂θ are continuous

According to the context, ‖·‖2 denotes the Euclidean norm in Rd (‖X‖2 =√∑d
i=1X

2
i ) or the Frobenius matrix norm (‖A‖2 =

√∑
i,j |ai,j |

2
). We use also

the functional norm in L2
(
[0T ] ,Rd

)
de�ned by ‖f‖L2 =

√´ T
0
‖f(t)‖22 dt. Con-

tinuity and di�erentiability have to be understood w.r.t these previous norms.
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For the computation of S
(
X̂; θ, λ

)
(and S (X∗; θ, λ)), we need some ad-

ditional notations. In particular, we recall that the Riccati equation Ė =

Id=Aθ(t)
>E=EAθ(t)=

E2

λ depends on the model (5) , but it does not depend

on the data X̂, whereas it is the case for h, as we have ḣ(t) = =Aθ(t)
Th(t) −

E(t)
(
Aθ(t)ζ(t) + rθ(t)− ζ̇(t)

)
=

E(t)h(t)
λ . For this reason, we introduce the func-

tions α and β de�ned by αθ(t) =
(
Aθ(t)

T + Eθ(t)
λ

)
βθ(t, ζ) = Eθ(t)

(
Aθ(t)ζ + rθ(t)− ζ̇

)
We denote then ĥθ the solution to the Final Value Problem{

ḣ = −αθ(t)h− βθ(t, X̂)

h(T ) = 0

and h∗ the solution corresponding to case ζ = X∗. More generally, we will
denote t 7→ hθ(t, ζ) for any target trajectory ζ.

We introduce also the matrix-valued function (t, s) 7→ Rθ(t, s) de�ned for all
t, s in [0, T ], as the solution of the Initial Value Problem{

Ṙθ(t, s) = αθ(T − t)R(t, s)
Rθ(s, s) = Id

(16)

and where the time has been reversed in the function αθ. We show in the next
proposition that ∀ζ ∈ H1([0, T ]), θ 7→ S(ζ; θ, λ) is well de�ned, i.e �nite on Θ.

Proposition 3.1. Under conditions 1 and 3 we have:

A = sup
θ∈Θ
‖Aθ‖L2 < +∞

X = sup
θ∈Θ
‖Xθ‖L2 < +∞

Ē = sup
θ∈Θ
‖Eθ‖L2 < +∞

and
∀ζ ∈ H1([0, T ]), h̄ζ = sup

θ∈Θ
‖hθ(., ζ)‖L2 < +∞

Hence, for all ζ in H1([0, T ]), the map θ 7−→ S(ζ; θ, λ) is well de�ned on Θ (i.e
supθ∈Θ ‖S(ζ; θ, λ)‖ < +∞).

Proof. Ā < +∞ exists as (t, θ) 7→ Aθ(t) is a continuous function on the compact
set [0, T ] × Θ. The existence and extension theorem for IVP solution of linear
ODE ensures that ∀θ ∈ Θ, ‖Xθ‖L2 < +∞. Moreover, solutions are continuous
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in (t, θ) if the vector �eld is continuous in (t, θ). By analogy with theorem A.1
in appendix, we know that

Egθ (t) :=

(
Eθ(.) hθ(., ζ)T

hθ(., ζ) αθ(., ζ)

)

with αθ(t, ζ) =
´ T
t

(
2
(
Aθ(s)ζ(s)− ζ̇(s) + rθ(s)

)T
hθ(s, ζ) + 1

λhθ(s, ζ)Thθ(s, ζ)

)
ds

is the ODE solution of the extended Riccati ODE

Ėgθ (t) = W 1 −A1
θ(t)

tEgθ (t)− Egθ (t)A1
θ(t)− 1

λE
g
θ (t)2

Egθ (T ) = 0d+1,d+1

where W1 =

(
Id 0
0 0

)
, A1

θ(t) =

(
Aθ(t) r1

θ(t)
0 0

)
and r1

θ(t) = Aθ(t)ζ(t) +

rθ(t)− ζ̇(t).
Because for all θ ∈ Θ, Aθ ∈ L2

(
[0, T ] ,Rd×d

)
and (Aθζ−ζ̇+rθ) ∈ L2

(
[0, T ] ,Rd

)
thanks to lemma B.1 in appendix, Egθ (t) is bounded and continuous in (t, θ).
Hence hθ, Eθ are bounded on [0, T ]×Θ. We conclude for θ 7→ S(ζ; θ, λ) thanks
to norm inequality.

We complete our analysis by showing that S is continuously di�erentiable
in θ.

Proposition 3.2. Under conditions C1-C3

∀X ∈ H1([0, T ]), θ 7−→ S(X; θ, λ)

is continuous on Θ.
Under conditions C1-C4, S is C1 on Θ.

Proof. Since

S(X; θ, λ) = −
ˆ T

0

(
2
(
Aθ(t)X(t) + rθ(t)− Ẋ(t)

)T
hθ(t,X) +

1

λ
‖hθ(t,X)‖2

)
dt

Condition 3, jointly with proposition 1 and 4 in the supplementary materials
give the continuity of θ 7−→ (t 7−→ Aθ(t)) and (θ,X) 7−→ (t 7−→ hθ(t,X)) on Θ.
This is enough to show the continuity of θ 7−→ S(X; θ, λ) on Θ. Moreover, the
gradient w.r.t θ of S(X; θ, λ) is equal to:

∇θS(X; θ, λ) = −2
´ T

0
∂(Aθ(t).X+rθ(t))

∂θ

T
hθ(t,X)dt

+2
´ T

0
∂hθ(t,X)

∂θ

T (
Aθ(t).X + rθ(t)− Ẋ + 1

λhθ(t,X)
)
dt

In addition to the previous proposition, condition 4 and proposition 7 in sup-

plementary material gives the continuity of (θ,X) 7−→
(
t 7−→ ∂(hθ(t,X))

∂θ

)
on Θ.

This is enough to show the continuous di�erentiability of S(X; θ, λ) on Θ.
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The last regularity properties justi�es the use of classical optimization method
to retrieve the minimum of S.

In the next proposition, we show that the criteria S(X; θ, λ) can be expressed
without using the derivative Ẋ (thanks to the knowledge of the initial condition).
As a consequence, our estimator is less sensible to the nonparametric noise than
classical Two-Step estimators.

Proposition 3.3. Under conditions 1 and 2, ∀X ∈ H1([0, T ]) with X(0) =
X∗0 , S(X; θ, λ) does not depend on Ẋ, i.e it is continuous nonlinear integral of
t 7→ X(t).

Proof. We will show S(X; θ, λ) can be written using only X and not Ẋ. First

of all we will use Lemma (B.3) to get rid of Ẋ in
´ T

0
Ẋ(t)Thθ(t,X)dt, it gives:

´ T
0
Ẋ(t)Thθ(t,X)dt = F1,θ(X) + F2,θ(X) + F3,θ(X)

−X∗T0

´ T
0
Rθ(T, T − s)Eθ(s)rθ(s)ds

− 1
2X
∗T
0 Eθ(0)X∗0

(17)

with


F1,θ(X) = −XT

0

´ T
0
Rθ(T, T − s)X(s)ds

F2,θ(X) =
´ T

0
X(t)T (αθ(t)hθ(t,X)dt+ (Aθ(t)X(t) + rθ(t))) dt

F3,θ(X) = 1
2

´ T
0
X(t)T ˙Eθ(t)X(t)dt

And so we can write S(X; θ, λ) under the form

S(X; θ, λ) = −
´ T

0

(
2 (Aθ(t)X(t) + rθ(t))

T
hθ(t,X) + 1

λhθ(t,X)Thθ(t,X)
)
dt

+F1,θ(X) + F2,θ(X) + F3,θ(X)

−X∗T0

´ T
0
Rθ(T, T − s)Eθ(s)rθ(s)ds

− 1
2X
∗T
0 Eθ(0)X∗0

since from Lemma (B.2) we have the a�ne dependence of hθ(t,X) w.r.t X
through the formula:

hθ(t,X) =

ˆ T

t

Rθ(T−t, T−s)X(s)ds+Eθ(t)X(t)+

ˆ T

t

Rθ(T−t, T−s)Eθ(s)rθ(s)ds

we see S(X; θ, λ) does not depend on Ẋ.

3.2 Consistency

As we have seen previously, conditions 1 and 3 ensure the existence of S(X̂; θ, λ)

and S(X∗; θ, λ) for all θ ∈ Θ. We derive the consistency of θ̂T by showing the

uniform convergence of the criterion S
(
X̂; θ, λ

)
, and by insuring that θ∗ is a
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unique and isolated global minima of S (X∗; θ, λ). Condition 2 is then su�-
cient to show that S (X∗; θ, λ) characterizes well θ∗, as global unique minimum.
Hence, identi�ability and convergence in supremum norm are su�cient to imply
consistency (theorem 5.7 in [38]).

Proposition 3.4. For all X in H1([0, T ]), S(X; θ, λ) ≥ 0 and under conditions
C1 and C2 we have

S(X∗; θ, λ) = 0⇐⇒ θ = θ∗

Proof. If θ = θ∗, then u ≡ 0 is the cost which minimizes

C (X∗;u, θ∗, λ) =

ˆ T

0

‖X∗(t)−Xθ∗,u(t)‖22 dt+ λ

ˆ T

0

‖u(t)‖22 dt

and in that case S(X∗; θ∗, λ) = infu∈L2 C (X∗;u, θ∗, λ) = 0.
Conversely, let θ0 be such that S(X∗; θ0, λ) = 0. By de�nition, this means

that
´ T

0

∥∥X∗(t)−Xθ0,u(t)
∥∥2

2
dt + λ

´ T
0
‖u(t)‖22 dt = 0. A consequence is that

u = 0 a.e and Xθ∗u=0(t) = Xθ0,u=0(t) a.e; by the identi�ability condition we get
that θ0 = θ∗.

Theorem 3.5. Under conditions 1, 2, 3 and if X̂ is consistent in probability
(in L2−norm sense), we have

θ̂T
P→ θ∗

Proof. Using proposition B.4, we have

|S(X; θ, λ)− S(X∗; θ, λ)|
≤ 2

(
Āh̄+K1 +K2

∥∥∥ĥθ∥∥∥
L2

+K3

∥∥∥X̂∥∥∥
L2

)∥∥∥X∗ − X̂∥∥∥
L2

+
(
Ā
∥∥∥X̂∥∥∥

L2
+K4 + 1

λ

(∥∥∥ĥθ∥∥∥
L2

+ h̄
))∥∥∥h∗θ − ĥθ∥∥∥

L2

with
K1 =

√
d ‖X0‖2 R̄+

√
dĀX̄ +

√
d ¯̇EX

K2 =
√
d
(
Ā+ Ē

λ

)
K3 =

√
dĀ+

√
d ¯̇E

K4 =
√
d
(
Ā+ Ē

λ

)
X̄

and
R̄ = supθ∈Θ ‖Rθ(T, T − .)‖L2

¯̇E = supθ∈Θ

∥∥∥Ėθ∥∥∥
L2

by using the same notation as in proposition 3.1. Proposition B.5 permits to

bound
∥∥∥h∗θ − ĥθ∥∥∥

L2
with

∥∥∥X̂ −X∗∥∥∥
L2

as∥∥∥ĥθ − h∗θ∥∥∥
L2
≤ K5

∥∥∥X̂ −X∗∥∥∥
L2

with : K5 =
√
d

(
Tde

√
d
(
A+E

λ

)
T

+ E

)
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We obtain

|S(X; θ, λ)− S(X∗; θ, λ)| ≤
((

2K2 + K5

λ

) ∥∥∥ĥθ∥∥∥
L2

+
(
2K3 +K5Ā

) ∥∥∥X̂∥∥∥
L2

+K7

)∥∥∥X∗ − X̂∥∥∥
L2

with: K7 = 2
(
Āh̄+K1

)
+K5

(
K4 + h̄

λ

)
We can control

∥∥∥X̂∥∥∥
L2
≤
∥∥∥X̂ −X∗∥∥∥

L2
+ ‖X∗‖L2 , which proves that if is X̂ is

consistent, then supθ∈Θ |S(X; θ, λ)− S(X∗; θ, λ)| = oP (1). Application of the
proposition 3.4 gives us the identi�ability criteria. Hence we conclude by using
the theorem 5.7 in [38].

4 Asymptotics of θ̂T

Our objective in this part is to derive the proper rate of convergence of the
Tracking Estimator, as well as its asymptotic distribution. The properties of
the estimator depends on the behavior of the nonparametric estimate X̂ used for
the approximation of X∗. In order to �x ideas, we consider a regression spline,
with a B-Spline decomposition of dimension K (increasing with n). That is we

consider that X̂ is de�ned as

X̂(t) =

K∑
k=1

βkKpkK(t) = βTKpK(t)

where βK is computed by least-squares. It is likely that we could derive the same
kind of results for di�erent estimates, such as Local Polynomial or Smoothing
Splines, as they behave similarly asymptotically, and that we show that the
Tracking Estimate can be approximated by a plug-in estimate of a speci�c linear
functional of X̂. We introduce additional regularity conditions needed for the
asymptotics:

C5: The Hessian ∂2S(X∗;θ,λ)
∂θT ∂θ

is nonsingular at θ = θ∗.

C6: The observations (ti, Yi) are i.i.d with V ar(Yi | ti) = σId with σ < +∞

C7: Observations time ti are uniformely distributed on [0 , T ]

C8: It exists s ≥ 1 such that t 7−→ Aθ∗(t), t 7−→ rθ∗(t) are Cs−1
(
[0 , T ] ,Rd

)
and
√
nK−s −→ 0 and Ks

n −→ 0

Under these additional conditions, we show that θ̂T reaches the parametric
convergence rate, and that it is asymptotically normal. Our strategy consists in
two stages:

Stage 1 (Proposition 4.3) We show that θ̂T − θ∗ behaves asymptotically as the

di�erence Γ(X̂)− Γ(X∗) where Γ is a continuous linear functional,
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Stage 2 (Proposition 4.4) We prove that Γ
(
X̂ −X∗

)
is asymptotically normal

for regression splines, based on the properties of plug-in estimators
computed with series estimators and derived in [31].

Remark 4.1. Condition C5 is a classic feature for M−estimator to ensure local
identi�ability, here:

∂2S(X∗;θ∗,λ)
∂θT ∂θ

= 2
´ T

0
∂(Aθ∗ (t)X∗+rθ∗ (t))

∂θ

T ∂h∗
θ∗ (t)
∂θ +

∂h∗
θ∗ (t)
∂θ

T ∂(Aθ∗ (t)X∗+rθ∗ (t))
∂θ dt

+ 2
λ

´ T
0

∂h∗
θ∗ (t)
∂θ

T ∂h∗
θ∗ (t)
∂θ dt

that is why we only require ∀ (t, θ) ∈ [0 , T ]×Θ, (t, θ) 7−→ Aθ(t) and (t, θ) 7−→
rθ(t) to be C1 and not C2

Remark 4.2. Condition C8 is a classic feature for non-parametric estimator to
ensure optimal convergence rate of X̂ using bias-variance tradeo�.

Proposition 4.3. Under conditions 1-5, we have :

θ̂T − θ∗ = 2
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1 (
Γ(X̂)− Γ(X∗)

)
+ oP (1)

where Γ : C
(
[0 , T ] ,Rd

)
→ Rp is a linear functional de�ned by

Γ(X) =

ˆ T

0

(
∂ (Aθ∗(t).X

∗)

∂θ
+

1

λ

∂hθ∗(t,X∗)

∂θ

)T (ˆ T

t

Rθ∗(T − t, T − s)X(s)ds

)
dt.

(18)
Rθ∗ is de�ned by (16).

Proposition 4.4. Under conditions 1-8 and by de�ning Γ as in proposition
4.3 we have that Γ(X̂)− Γ(X∗) is asymptotically normal and Γ(X̂)− Γ(X∗) =
OP (n−1/2)

To obtain the �nal result, we only have to combine the two previous propo-
sitions:

Theorem 4.5. If X̂ is a regression spline and conditions C1-C8 are satis�ed,
then θ̂T − θ∗ is asymptotically normal and

θ̂T − θ∗ = OP (n−1/2)

Remark 4.6. The asymptotic linear representation given by proposition 4.3 al-
lows us to obtain an expression for the asymptotic variance. This latter is given
by the formula (33) in appendix D as well as a plug-in consistent estimator.

5 Experiments

We use several simple test beds for evaluating the practical e�ciency of the
Tracking Estimator θ̂T , and we compare it with the performance of NLS θ̂NLSand
of Generalized Smoothing θ̂GS . The di�erent models are linear in the states,
and they can be linear and nonlinear w.r.t parameters. We use several sam-
ple size and several variance error for comparing robustness and e�ciency for
varying sample size and noise level.
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5.1 Experimental design

For a given sample size n and noise level σ, we estimate the Mean Square Error
and the mean Absolute Relative Error (ARE)

Eθ*


∣∣∣θ∗ − θ̂∣∣∣
|θ∗|


by Monte Carlo, based on NMC = 100 runs. For each run, we simulate an
ODE solution with a Runge-Kutta algorithm (ode45 in Matlab), and a centered
Gaussian noise (with variance σ) is added, in order to obtain the Yi's.

We compare also the quality of estimation of θ̂T , θ̂GS and θ̂NLS based on
their prediction quality. We compute the Prediction Error

Eθ*,σ
[∥∥Y∗ −Xθ̂

∥∥2

L2

]
(19)

where

• Y ∗ is a new observation drawn from the true model (4),

• Xθ̂ is the solution to the linear ODE (5) with parameter θ̂.

It should be emphasized that parameter estimation and prediction error min-
imization are two di�erent problems, although they are related. Parameter
estimation is required when parameters are directly of interest, for instance for
a deep understanding of the inner dynamics of the system. One put forward
prediction error when the aim is only to quantitatively predict the system state.
Our primary interest is parameter estimation but we also discuss prediction
performance for the three methods.

The nonparametric estimate X̂ required in the �rst step is a spline de�ned
with a uniform knots sequence ξk, k = 1, . . . ,K. For each run and each state
variables, the number of knots is selected by minimizing the GCV criterion, [36].
We discuss in the next section an automated method for selecting adaptively
the hyperparameter λ.

5.2 Selection of λ

The criterion S
(
X̂; θ, λ

)
is based on a balance between data �delity and model

�delity. When λ → 0, we can select any u in order to interpolate X̂. In that

case, θ has almost no in�uence on S
(
X̂; θ, λ

)
value.

When λ → ∞, the optimal perturbation u −→ 0, and we get a NLS-like crite-
rion where the observations Yi's are replaced by the proxy X̂. Because of this
dramatic in�uence, we propose to select λ by minimizing the Sum of Squared
Errors

SSE(λ) =

n∑
i=1

(
Yi −Xθ̂λ

T (ti)
)2

.
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5.3 Gradient computation

For optimization purpose, we need to compute the gradient ∇θS(X; θ, λ) which

involves both ∂ĥθ
∂θ and ∂Eθ

∂θ . These partial derivatives can be obtained by solving
the sensitivity equations, that gives the function values at each time t ∈ [0, T ].
Nevertheless, the size of the ODE to solve grows quickly, as the sensitivity
systems is of size (d2 + d) × p, and it becomes a computational burden for the
optimization process. For this reason, we use the adjoint method to compute
gradient expression [8]. This method exploits the fact that we do not need a

point-wise computation of ∂ĥθ∂θ and ∂Eθ
∂θ but only some integral of the derivatives.

An explanation of this method for gradient and Hessian computation can be
found in [1]. The Riccati ODE can be written in vector form (of sizeD := d2+d)

Q̇θ = F (Qθ, θ, t)
Qθ(T ) = 0

where F is the row formulation of the Riccati ODE vector �eld and the solution
is the vector

Qθ(t) =
(
ĥθ
T
, (Erθ )

T
)T

(t).

Hence, we can compute ∇θS(X; θ, λ) thanks to the formula

∇θS(X; θ, λ) =
´ T

0
{∂g(Qθ(t),θ,t)

∂Q − P (t).∂F∂θ (Qθ(t), θ, t)}dt

with

g(Qθ, θ, t) = −2
(
Aθ(t)X̂(t)− ˙̂

X(t) + rθ(t)
)T

ĥθ −
1

λ
‖ĥθ‖2

and P is the so-called adjoint vector of size D = d2 + d, solution of the adjoint
model

Ṗ (t) = ∂g(Qθ(t),θ,t)
∂Q − P (t).∂F∂Q (Qθ, θ, t)

P (0) = 0

The computational details for ∂g∂θ ,
∂g
∂Q ,

∂F
∂θ ,

∂F
∂Q are left in appendix B. The adjoint

method is more e�cient than the direct sensitivity approach, as we need to solve
an ODE of size D, instead of a system of size D× p, which is valuable when the
number of parameters increases.

5.4 Simple scalar equation

5.4.1 Linear w.r.t parameter

We consider here the basic model linear in parameter

ẋ = ax (20)

with initial condition equal to X∗0 = 1. It is the simplest model we can consider,
here the solution of the Cauchy problem is x(t) = X∗0e

at and we will use this
closed form for the NLS estimator. Here we have tested two di�erent sample
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size n = 50 and n = 20 (observations were uniformly distributed between 0 and
5) and two di�erent noise level σ = 2 and σ = 4. The lambda values tested are
the 40 values uniformly distributed between 10 and 400.

(n, σ) MSE (×10−5) ARE (×10−3) Pred error

(50, 2)

θ̂T 1.19 3.2 4.52

θ̂NLS 1.25 3.5 4.53

θ̂GS 43 22.5 6.06
(50, 4)

θ̂T 3.42 5.3 9.05

θ̂NLS 3.91 6.0 9.07

θ̂GS 230 47.2 11.76
(20, 2)

θ̂T 2.56 4.6 4.58

θ̂NLS 2.92 5.6 4.74

θ̂GS 100 32.7 7.48
(20, 4)

θ̂T 8.82 7.8 9.07

θ̂NLS 9.41 9.3 9.10

θ̂GS 440 66.0 11.80

Tab. 1: Results obtained for the linear model

The obtained results are presented in table 1. In every cases, the Tracking
estimator gives more precise estimation than NLS and GS estimators (both
in term of MSE and ARE), but this improvement is not impressive as MSE
is expressed at scale 10−5 and ARE at scale 10−3. The di�erences are small
among the di�erent estimation methods and estimations are reliable in all cases
(even for the GS approach). This example mainly illustrates tracking approach
is a relevant estimation method and can compete with the most used methods
for simple model.

5.4.2 Nonlinear w.r.t parameters

Well-speci�ed model We consider a following time dependent model

ẋ =
θ1

θ2
2 + t

x. (21)

that is non-linear in parameters. We test two sample sizes n = 50 and n = 20
(observations are uniformly distributed between 0 and 15) and two noise levels
σ = 2 and σ = 4. The true parameter value is θ∗ = (θ∗1 , θ

∗
2) = (1.4, 1) and

the initial condition is equal to X∗0 = 1. The sequence of lambda used is
λv =

{
10k
}
−1≤k≤7

.
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(n, σ) MSE (×10−2) ARE (×10−2) Pred error

(50, 2)

θ̂T 0.18 4.04 7.79

θ̂NLS 0.18 4.06 7.79

θ̂GS 4.88 19.94 46.27
(50, 4)

θ̂T 0.68 8.35 15.57

θ̂NLS 0.68 8.35 15.57

θ̂GS 9.15 30.10 67.53
(20, 2)

θ̂T 0.87 8.93 15.59

θ̂NLS 0.87 8.95 15.59

θ̂GS 11.11 33.43 82.57
(20, 4)

θ̂T 1.30 11.16 15.64

θ̂NLS 1.33 11.22 15.63

θ̂GS 11.23 32.79 62.79

Tab. 2: Results obtained for the non linear model

The results are presented in table 2. The Tracking and NLS estimators have
equivalent performance in the well speci�ed case. The GS approach gives a less
precise estimation but it is still reliable, but the prediction error for GS is much
more important than for the Tracking and NLS estimators. This illustrates
the high sensitivity of ODE model w.r.t parameter and the need of accurate
estimates for prediction, even for simple models.

Misspeci�ed model The data is generated by a pertubed model

ẋ =
θ1

θ2
2 + t

x+ sin(t) (22)

with θ∗1 = 1.4, θ∗2 = 1 and X∗0 = 1. Nevertheless, we still use the model (21)
for the parameter estimation. We use the two sample size n = 100 and n =
50 (observations were uniformly distributed between 0 and 15) and the two
noise levels σ = 2 and σ = 4. We use a sequence of hyperparameter λv ={

10k, 5× 10k
}
−4≤k≤0

.

Moreover, we are interested in the use of the residual control u obtained
along the parametric estimation in order to propose a "corrected" model:

ẋ =
θ1

θ2
2 + t

x+ u (23)

for minimizing the �corrected� prediction error

Eθ*,σ
[∥∥∥Y −Xθ̂,u

∥∥∥2

L2

]
(24)
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When model misspeci�cation is suspected, we can consider two trajectory pre-
dictors Xθ̂,0 and Xθ̂,u for a given λ. From the de�nition of the criterion S,
the corrected trajectory Xθ̂,u is prone to give smaller prediction errors than the
misspeci�ed trajectory Xθ̂,0. This indicates that we should select the hyperpa-
rameter λ in a di�erent way in the case of misspeci�cation, if we want to use
the correction u that depends also on λ. For this reason, we propose to select λ
by minimizing the Corrected Sum of Squared Errors

CSSE(λ) =

n∑
i=1

(
Yi −Xθ̂Tλ ,u

(ti)
)2

.

as a proxy for the prediction errror (24). Finally, we have two tracking estima-

tors θ̂T and θ̂Tc based on two choices of hyperparameter (λ that minimizes SSE
and λc that minimizes CSSE). The estimation of the perturbation (or control
u) is done in two ways:

• for the Tracking estimator θ̂T , it is provided directly by the estimation
process;

• for the NLS estimator θ̂NLS , we propose to estimate the perturbation
based on the nonparametric proxy X̂

u(t) =
˙̂
X(t)− θ̂1

θ̂2

2
+ t

X̂(t).

For the Generalized Smoothing, we do not have to estimate the perturbation u,
as the penalized spline X̂(·, θ̂GS) already contains the model misspeci�cation.

Results are presented in table 3. The two �rst columns gives the parametric
estimation performance in terms of MSE and ARE. The third column gives an
estimation of (19) and the fourth one an estimation of (24).

We can see θ̂T gives more accurate parametric estimation than the NLS
estimator. The use of residual control in Xθ̂,u improves the prediction error
in any case. At the contrary, the correction of the NLS estimate with the
estimated control makes things worst, which can be explained by the use of
the non-parametric estimator of the derivative. The Generalized Smoothing
estimator θ̂GS competes well with others approaches, that can be explained by
the relaxation introduced by the collocation which makes the method robust
in misspeci�cation presence. However, we observe a fast drop in estimation
precision w.r.t noise augmentation and poor performance for prediction purpose.

The corrected estimator θ̂c
T
gives higher precision than θ̂T for small mea-

surement error σ. We also notice the dramatic drop in prediction error by using
the corrected model instead of the initial one. It is due to the fact we e�ectively
take into account an exogeneous perturbation using u for parametric estima-
tion. We simultaneously estimate the parametric part and the nonparametric
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(n, σ) MSE (×10−2) ARE (×10−2) Pred error Corrected Pred error

(100, 2)

θ̂T 4.31 24.16 8.51 8.16

θ̂c
T

2.88 18.52 16.94 8.03

θ̂NLS 4.61 25.11 8.15 8.09

θ̂GS 2.39 14.27 42.36 42.27
(50, 2)

θ̂T 4.35 24.05 8.84 8.20

θ̂c
T

3.31 19.18 20.83 8.21

θ̂NLS 4.62 24.89 8.20 8.27

θ̂GS 4.64 19.87 55.75 55.63
(100, 4)

θ̂T 4.74 24.95 16.14 15.75

θ̂c
T

4.36 21.75 25.23 15.83

θ̂NLS 4.99 25.67 15.76 15.82

θ̂GS 8.08 27.04 70.25 70.09
(50, 4)

θ̂T 4.83 24.77 16.51 15.84

θ̂c
T

6.10 25.67 27.73 16.01

θ̂NLS 5.05 25.49 15.83 16.03

θ̂GS 9.18 29.54 82.82 82.72

Tab. 3: Estimation results for misspeci�ed model

part of the model as it is the case. But we can not propose an adaptive way to
detect when the nonparametric model correction u should be applied, as it is
far beyond the scope of that paper.

Finally, we are also interested in the control u itself, even though we do not
expect it gives us an estimation of the true control u∗(t) = sin(t) (because of
identi�ability issues). Its features can give hints about potential misspeci�cation
presence and qualitative informations about its nature. We plot in �gure 1 the
mean control obtained in the case (n, σ) = (100, 2) in blue and the true control
u∗(t) = sin(t) in green for the sake of comparison. Although, the scale is not the
same, we can see that the estimated control exhibits some features of the u∗,
such as oscillations, with the same approximate period. The pertubation could
be used as an exploratory tool for analyzing and inferring the missing part in
the dynamics.
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Fig. 1: Obtained mean residual control for (n, σ) = (100, 2)

5.5 α−Pinene model

The "α−Pinene model" is a model introduced in [35] for modeling the isomer-
ization of α−Pinene. It is an autonomous linear ODE in R5 with a sparse
structure

Ẋ(t) =


−(θ1 + θ2) 0 0 0 0

θ1 0 0 0 0
θ2 0 −(θ3 + θ4) 0 θ5

0 0 θ3 0 0
0 0 θ4 0 −θ5

X(t) := A(θ)X(t)

It is an Initial Value Problem, with known initial conditionX∗0 = (100, 0, 0, 0, 0) .
This estimation problem is still considered as cumbersome and many estimation
methods fails to converge or converge to bad local solutions because of high
correlation between θ4 and θ5. Before analyzing the real dataset, we perform
a simulation study for evaluating the di�culty of the estimation problem, and
benchmarking the several estimators.

5.5.1 Simulated data

The observation interval is [0, 100] and the true parameter is θ∗ = (5.93,
2.96, 2.05, 27.5, 4)× 10−4. Because of dramatic di�erences in the order of mag-
nitude of the state variables, the noise standard deviation has to be rescaled
componentwise. Here for a given σ value the standard deviation applied to the

state variable Xi is equal to σ
100 ×

1
T

´ T
0
Xi(t)dt,

1
T

´ T
0
Xi(t)dt being the Xi

mean value on the observation interval. For the Tracking estimator, we use a
sequence of hyperparameter λv =

{
10k, 5× 10k

}
0≤k≤5

.
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(n, σ) MSE (×10−4) ARE (×10−2) Pred error

(100, 8)

θ̂T 2.83 1.25 52.72

θ̂NLS 2.75 0.87 51.71

θ̂GS 3.21 1.72 54.18
(50, 8)

θ̂T 2.92 1.35 52.40

θ̂NLS 3.14 1.24 52.20

θ̂GS 7.05 2.97 54.54
(100, 16)

θ̂T 6.08 3.58 103.73

θ̂NLS 14 4.8 103.38

θ̂GS 15.4 4.06 106.88
(50, 16)

θ̂T 11 7.01 103.91

θ̂NLS 26 8.47 103.58

θ̂GS 25.85 5.36 107.91

Tab. 4: Results obtained for α−Pinene

The results are presented in table 4. The Tracking and Generalized Smooth-
ing estimators give more accurate parameter estimation than the Nonlinear
Least Squares. In the last case, GS gives the best performance in terms of
ARE. In this model, the Relative Error is especially relevant to quantify pa-
rameter precision because of important di�erences between the scale of θ4 and
the other parameters. As expected the di�erence in performance mainly comes
from the estimation of the couple (θ4, θ5). This model shows that the NLS is
appropriate for parameter estimation whereas the GS seems to favor the quality
of prediction, showing that estimation and prediction are somehow two compet-
ing objectives. The Tracking estimator realizes a trade-o� between these two
objectives.

5.5.2 Real data analysis

We use the data coming from [13], and presented in table 5. They consist
in simultaneous measures of the 5 components relative concentration at eight
time steps. We compare our results with the previous estimation θ̂b = 10−4 ×
(0.593, 0.296, 0.205, 2.75, 0.4) obtained in [35], which provides a good data �t-
ting. We use the Tracking method for the estimation of the parameter and
of the residual control u. In order to avoid numerical problems, we have di-
vided the observation by 1000 and renormalized the parameters (as the system
is autonomous).

For the non-parametric estimator X̂, we use only two nodes: one at the end
and one at the beginning of the observation interval. We have also impose to
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the non-parametric estimator to start from the known initial condition X∗0 =
(100, 0, 0, 0, 0). For the Tracking estimator, we use λ = 10k, k = 1, 2 · · · , 11
and λ = 5×10k, k = 1, 2, 3, 4 and we select the hyper-parameter that minimizes

the SSE (named λSSE . We call the corresponding estimator θ̂SSE
T
) . The

estimation results are presented in table 6.

Times (min) X1 X2 X3 X4 X5

1230 88.35 7.3 2.3 0.4 1.75

3060 76.4 15.6 4.5 0.7 2.8

4920 65.1 23.1 5.3 1.1 5.8

7800 50.4 32.9 6 1.5 9.3

10680 37.5 42.7 6 1.9 12

15030 25.9 49.1 5.9 2.2 17

22620 14 57.4 5.1 2.6 21

36420 4.5 63.1 3.8 2.9 25.7

Tab. 5: Experimental data for α−pinene model coming from Fuguitt &Hawkins

10−4 θ1 θ2 θ3 θ4 θ5 SSE

θ̂SSE

T
0.589 0.290 0.193 2.301 0.234 23.88

θ̂b 0.593 0.296 0.205 2.75 0.4 19.89

Tab. 6: Parameter estimates

We have obtained λSSE = 100. For λ ≥ 5000, the estimated values are
almost constant and equal to θ = (0.583, 0.295, 0.207, 2.259, 0.238). The �rst
three estimated parameters are close to the estimates given in [35], but θ4 and
θ5 are di�erent; however, we obtain good predicted curves, similar to Rodriguez
et al., see �gure 2.

We can compute the minimal control uSSE corresponding to (θ̂SSE
T
, λSSE),

and we can also compute the minimal control corresponding to θ = θ̂b for a given
value of λ (that is uθ̂b,λ) and compare its norm with uSSE when λ = λSSE . The
controls are represented in �gure 3 where the curves plotted with × represent
the minimal control obtained for θ̂b and the curves plotted with ◦ are the control
obtained with θ̂SSE

T
. Here, the Tracking control is a �ve-dimensional vector,

where each entry ui corresponds to one state variable Xi. The control plotted
in yellow corresponds to X1, the one in black correspond to X2, the one in green
correspond to X3, the one in blue correspond to X4 and the one in red to X5.
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Fig. 2: Reconstructed curve for θ̂TSSE with data in green

As expected, the estimated control uSSE is smaller in L2− norm for θ̂SSE
T

than for θ̂b. Nonetheless according to 3, there is no clear di�erence between
uθ̂b,λ and uSSE except for their component related to X5 (in red on the �gure

3) and which is the state variable exclusively related to the parameters θ4 and
θ5 (the most di�cult parameters to estimate according to [35]. Even though
the two resulting solutions Xθ̂b

and X
θ̂SSE

T are close, the insight given by uθ̂b,λ
and uSSE shows stronger di�erences at the dynamic scale.

6 Conclusion

We have introduced a new estimation method for parameter estimation in lin-
ear ODE based on relaxation of the initial model. Similarly to the Generalized
Smoothing estimator, we end up with a function Xθ,u that is an approximate
solution of the ODE model of interest. The added perturbation u enables to
take into account the noisy observations but also some uncertainty in the model.
Quite remarkably, the trade-o� between model and data discrepancy is formu-
lated and solved by using Optimal Control Theory and this work is one of the
�rst use of this theory for dealing with statistical estimation and optimization in
in�nite dimensional spaces. Moreover, this functional framework and the Ric-
cati theory gives practical algorithms and theoretical insight in the properties
of the estimator that permits a detailed analysis of the statistical properties. In
addition to the parameter estimate, we obtain also directly an estimate of the
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Fig. 3: Estimated control for θ̂b with λ = λSSE and θ̂SSE
T

model discrepancy through the perturbation u that can give hints for analyzing
and discussing the relevancy of a parametric model. More can be done with the
estimated u about model analysis, and complementary analysis about model
testing could be done following the results given in [20].

In the experiments, we show that the Tracking estimator have similar or bet-
ter performances than nonlinear least squares or generalized smoothing, even in
the case of very simple models with closed-form expression. Hence, paradoxi-
cally, the use of perturbed model and of nonparametric estimators can amelio-
rate the statistical e�ciency of standard estimates, even in well-speci�ed cases.
In the case of model misspeci�cation, the di�erences are bigger, as the relaxation
brought by λ gives us a more robust estimation method (comparing to NLS)
which can deal with small model de�nition imperfection. Moreover, the optimal
control obtained for a given parameter estimate allows us to minimize the pre-
diction error by introducing a proper correction term to the initial model. This
control can also be used as a qualitative tool to diagnose model misspeci�cation.

However, we are aware of some limitations of our method: �rst, we as-
sume that the initial condition is known. We can consider X∗0 as an additional
parameter to estimate, and reformulate our approach for doing simultaneous ob-
servations. The second but the main limitation is the linear assumption about
the ODE. Although linear ODEs are common in applications, numerous use-
ful models are nonlinear and thus our methodology cannot be applied directly.
Nevetheless, our work can be extended by using more general results of op-
timal control, such as Pontryagin Maximum Principle that can o�er e�cient
characterization in the general nonlinear case.
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Appendix

A Fundamentals Results of Optimal Control:
Linear-Quadratic Theory

The "theorem and de�nition" in section 2.2 is a particular case of a more general
theorem which ensures existence and uniqueness of optimal control for cost
under the form:

C (t0, u, λ) = zu(T )TQzu(T ) +

ˆ T

t0

zu(t)TW (t)zu(t) + u(t)TU(t)u(t)dt (25)

Theorem A.1. Let A ∈ L2([0, T ] ,Rd×d) and B ∈ L2([0, T ] ,Rd×d) We con-
sider zu the solution of the following ODE:

żu(t) = A(t)zu(t) +B(t)u(t), z(t0) = z0

and we want to minimize the cost (25) de�ned on L2([0, T ] ,Rd), with Q positive,
W ∈ L∞([0, T ] ,Rd×d) positive matrix for all t ∈ [0, T ] and U(t) de�nite positive
matrix for all t ∈ [0, T ] respecting the coercivity condition:

∃α > 0 s.t∀u ∈ L2([0, T ] ,Rd) :

ˆ T

0

u(t)TU(t)u(t)dt ≥ α
ˆ T

0

‖u(t)‖22 dt

It exists a unique optimal trajectory zū associated to the unique optimal control
u(t) = U−1(t)E(t)B(t)zu(t) where E is the matrix solution of the Riccati ODE:

Ė(t) = W (t)−A(t)tE(t)− E(t)A(t)− E(t)B(t)U(t)−1B(t)TE(t)
E(T ) = −Q

and the minimal cost is equal to: C (t0, u, λ) = −zT0 E(t0)z0.
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B Proof & Intermediary results

B.1 θ 7−→ S(X̂; θ, λ) and θ 7−→ S(X∗; θ, λ) properties

Lemma B.1. Let us de�ne E the solution of

Ė(t) = W (t)−A(t)tE(t)− E(t)A(t)− 1
λE(t)2

E(T ) = −Q (26)

with A(t) ∈ L2([0, T ] ,Rd×d) Q bounded,W ∈ L∞([0, T ] ,Rd×d).
Then E is bounded on [0 , T ].

Proof. (This proof is presented in Sontag's book �Mathematical Control Theory�
[37] chapter 7 theorem 30)

By using theorem A.1 and if we de�ne the quadratic cost:

C(t0, u, λ) = xu(T )TQxu(T ) +

ˆ T

t0

xu(t)TW (t)xu(t) + λ ‖u(t)‖22 dt

with xu the ODE solution of

ẋu(t) = A(t)xu(t) + u(t)
xu(t0) = x0

We know that
min
u
C(t0, u, λ) = −xT0 E(t0)x0

Let us reason by contradiction: if E(t)is not bounded then ∃te ∈ [0 , T ] s.t
lim t→te+ ‖E(t)‖2 = +∞.

It implies:

∀α > 0 ∃t0 ∈ ]te , T ] , x0 ∈ Rd with ‖x0‖2 = 1 s.t
∣∣xT0 E(t0)x0

∣∣ ≥ α (27)

We also know it exists a unique optimal trajectory for the LQ problem on
[t0, T ] with x(t0) = x0 and the associated optimal cost is −xT0 Eθ(t0)x0. But by
minimality of this cost it has to be majored by the cost C(t0, 0, λ) i.e the cost
associated to the control u = 0. We can see it exists a constant D > 0 such
C(t0, 0, λ) is majored by D ‖x0‖22 and so:∣∣xT0 Eθ(t0)x0

∣∣ ≤ D
which contradict (27) and �nish the proof.

Lemma B.2. ∀(t, θ) hθ(t, .) is an a�ne function of X and can be written under
the form:

hθ(t,X) = Nθ(t).X

With:

Nθ(t).X :=

ˆ T

t

Rθ(T−t, T−s)X(s)ds+Eθ(t)X(t)+

ˆ T

t

Rθ(T−t, T−s)Eθ(s)rθ(s)ds

with Rθ de�ned by (16).
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Proof. Considering the backward ODE:{
˙hθ,i(t,X) = αθ(T − t)hθ,i(t,X) + βθ(T − t,X)
hθ,i(0, X) = 0

We know thanks to Duhamel formula:

hθ,i(t,X) =

ˆ t

0

Rθ(t, s)β(T − s,X)ds

with Rθ de�ned by 16.
Hence:

hθ(t,X) = hi(T − t,X) =
´ T−t

0
Rθ(T − t, s)β(T − s,X)ds

=
´ T
t
Rθ(T − t, T − s)βθ(s,X)ds

Taking the value of β and using integration by part we have:

hθ(t,X) =
´ T
t

(
Rθ(T − t, T − s)Eθ(s)Aθ(s) + d(Rθ(T−t,T−s)Eθ(s))

ds

)
X(s)ds

+ Eθ(t)X(t) +
´ T
t
Rθ(T − t, T − s)Eθ(s)rθ(s)ds

And using resolvant property we �nally obtain:

d (Rθ(T − t, T − s)Eθ(s))
ds

= Rθ(T − t, T − s) (Ip − Eθ(s)Aθ(s))

So:

hθ(t,X) =

ˆ T

t

Rθ(T−t, T−s)X(s)ds+Eθ(t)X(t)+

ˆ T

t

Rθ(T−t, T−s)Eθ(s)rθ(s)ds

(28)

Lemma B.3. Under conditions 1 and 2, ∀X ∈ H1([0, T ] ,Rd) with X(0) = x∗0
we have

´ T
0
Ẋ(t)Thθ(t,X)dt = F1,θ(X) + F2,θ(X) + F3,θ(X)

− x∗T0
´ T

0
Rθ(T, T − s)Eθ(s)rθ(s)ds

− 1
2x
∗T
0 Eθ(0)x∗0

with:


F1,θ(X) = −x∗T0

´ T
0
Rθ(T, T − s)X(s)ds

F2,θ(X) =
´ T

0
X(t)T (αθ(t)hθ(t,X) +Aθ(t)X + rθ(t)) dt

F3,θ(X) = 1
2

´ T
0
X(t)T ˙Eθ(t)X(t)dt

Proof. Integration by part give us:

´ T
0
Ẋ(t)Thθ(t,X)dt =

[
X(t)Thθ(t,X)

]T
0

+
´ T

0
X(t)T (αθ(t)hθ(t,X) + βθ(t,X)) dt

= −x∗T0 hθ(0, X) +
´ T

0
X(t)T (αθ(t)hθ(t,X) + Eθ(t) (Aθ(t)X + rθ(t))) dt−

´ T
0
X(t)TEθ(t)Ẋ(t)dt
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and

´ T
0
X(t)TEθ(t)Ẋ(t)dt = − 1

2

(
x∗T0 Eθ(0)x∗0 +

´ T
0
X(t)T ˙Eθ(t)X(t)dt

)
Moreover using a�ne nature of h w.r.t X and using the same notation as in

proposition lemma B.2:

x∗T0 hθ(0, X) = x∗T0
´ T

0
Rθ(T, T − s)X(s)ds+ x∗T0 Eθ(0)x∗0

+ x∗T0
´ T

0
Rθ(T, T − s)Eθ(s)rθ(s)ds

Finally we obtain:

´ T
0
Ẋ(t)Thθ(t,X)dt = −x∗T0

´ T
0
Rθ(T, T − s)X(s)ds− 1

2x
∗T
0 Eθ(0)x∗0

+
´ T

0
X(t)T (αθ(t)hθ(t,X)dt+ (Aθ(t)X + rθ(t))) dt

+ 1
2

´ T
0
X(t)T ˙Eθ(t)X(t)dt

− x∗T0
´ T

0
Rθ(T, T − s)Eθ(s)rθ(s)ds

B.2 Consistency Proof

In the following proposition B.4 we show
∣∣∣S(X̂; θ, λ)− S(X∗; θ, λ)

∣∣∣ is controlled
by the distance between X̂ and X∗ and between ĥ and h∗. In proposition B.5

we show
∥∥∥ĥθ − h∗θ∥∥∥

L2
is uniquely controlled by

∥∥∥X̂ −X∗∥∥∥
L2

the same will follow

for |Sλ(θ)− S∗λ(θ)|

Proposition B.4. Under conditions 1 and 3, ∀θ ∈ Θ we have:∣∣∣S(X̂; θ, λ)− S(X∗; θ, λ)
∣∣∣

≤ 2
(
Āh̄+K1 +K2

∥∥∥ĥθ∥∥∥
L2

+K3

∥∥∥X̂∥∥∥
L2

)∥∥∥X∗ − X̂∥∥∥
L2

+
(
Ā
∥∥∥X̂∥∥∥

L2
+K4 + 1

λ

(∥∥∥ĥθ∥∥∥
L2

+ h̄
))∥∥∥h∗θ − ĥθ∥∥∥

L2

With :


K1 =

√
d ‖X0‖2 R̄+ dĒĀX̄ +

√
d ¯̇EX

K2 =
√
d
(
Ā+ Ē

λ

)
K3 = dĒĀ+

√
d ¯̇E

K4 =
√
d
(
Ā+ Ē

λ

)
X̄

and:
R̄ = supθ∈Θ ‖Rθ(T, T − .)‖L2

¯̇E = supθ∈Θ

∥∥∥Ėθ∥∥∥
L2

Proof. For the sake of notation we will consider the homogenous case i.e rθ(t) =
0

By triangular inequality we have:



B Proof & Intermediary results 30

∣∣∣S(X̂; θ, λ)− S(X∗; θ, λ)
∣∣∣

≤ 2
∣∣∣´ T0 (h∗θ(t)TAθ(t)X∗(t)− ĥθ(t)TAθ(t)X̂(t)

)
dt
∣∣∣

+2
∣∣∣´ T0 ( ˙̂

X(t)T ĥθ(t)− Ẋ∗(t)Th∗θ(t)
)
dt
∣∣∣

+ 1
λ

∣∣∣´ T0 (h∗θ(t)Th∗θ(t)− ĥθ(t)T ĥθ(t)) dt∣∣∣
Now we will separatly bound each of the three previous terms:
The �rst one:

∣∣∣´ T0 (h∗θ(t)TAθ(t)X∗(t)− ĥθ(t)TAθ(t)X̂(t)
)
dt
∣∣∣

≤
∣∣∣´ T0 h∗θ(t)

TAθ(t)
(
X∗(t)− X̂(t)

)
dt
∣∣∣+

∣∣∣∣´ T0 (h∗θ(t)− ĥθ(t))T Aθ(t)X̂(t)dt

∣∣∣∣
≤
∥∥h∗Tθ Aθ

∥∥
L2

∥∥∥X∗ − X̂∥∥∥
L2

+
∥∥∥AθX̂∥∥∥

L2

∥∥∥h∗θ − ĥθ∥∥∥
L2

The last inequality has been obtained thanks to Cauchy-Schwarz inequality.
The second one inequality is a bit cumbersome in terms of computation.

For the sake of clarity we left some computational details in lemma B.3 and we
obtain with the same notation:

´ T
0

˙̂
X(t)T ĥθ(t)dt = F1,θ(X̂) + F2,θ(X̂) + F3,θ(X̂)

− x∗T0 Eθ(0)x∗0

and:

´ T
0
Ẋ(t)∗Th∗θ(t)dt = F1,θ(X

∗) + F2,θ(X
∗) + F3,θ(X

∗)
− x∗T0 Eθ(0)x∗0

Hence we can formulate S(X̂; θ, λ) without the derivative form expression

and the last decomposition allows us to bound
∣∣∣´ T0 ( ˙̂

X(t)T ĥθ(t)− Ẋ∗(t)Th∗θ(t)
)
dt
∣∣∣

only with
∥∥∥X̂ −X∗∥∥∥

L2
and

∥∥∥ĥθ − h∗θ∥∥∥
L2

By use of norm inequalities we obtain the following bounds:

∣∣∣F1,θ(X̂)− F1,θ(X
∗)
∣∣∣ ≤ √d ‖X0‖2 R̄

∥∥∥X̂ −X∗∥∥∥
L2∣∣∣F2,θ(X̂)− F2,θ(X

∗)
∣∣∣ ≤ √

d
(
Ā+ Ē

λ

)(∥∥∥X̂ −X∗∥∥∥
L2

∥∥∥ĥθ∥∥∥
L2

+ X̄
∥∥∥ĥθ − h∗θ∥∥∥

L2

)
+
√
dĀ
(∥∥∥X̂∥∥∥

L2
+ X̄

)∥∥∥X̂ −X∗∥∥∥
L2∣∣∣F3,θ(X̂)− F3,θ(X

∗)
∣∣∣ ≤ √d∥∥∥X̂ −X∗∥∥∥

L2

¯̇E
(∥∥∥X̂∥∥∥

L2
+X

)
And we obtain for the second part:

∣∣∣´ T0 ( ˙̂
X(t)T ĥθ(t)− Ẋ(t)∗Th∗θ(t)

)
dt
∣∣∣ ≤ (

K1 +K2

∥∥∥ĥθ∥∥∥
L2

+K3

∥∥∥X̂∥∥∥
L2

)∥∥∥X̂ −X∗∥∥∥
L2

+K4

∥∥∥ĥθ − h∗θ∥∥∥
L2
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With:


K1 =

√
d ‖X0‖2 R̄+

√
dĀX̄ +

√
d ¯̇EX

K2 =
√
d
(
Ā+ Ē

λ

)
K3 =

√
dĀ+

√
d ¯̇E

K4 =
√
d
(
Ā+ Ē

λ

)
X̄

For the third one we have:∣∣∣´ T0 (h∗θ(t)Th∗θ(t)− ĥθ(t)T ĥθ(t)) dt∣∣∣
=
∣∣∣´ T0 (h∗θ(t)T (h∗θ(t)− ĥθ(t))− ĥθ(t)T (ĥθ(t)− h∗θ(t))) dt∣∣∣

≤
(∥∥∥ĥθ∥∥∥

L2
+ ‖h∗θ‖L2

)
‖h∗θ − hθ‖L2

Hence by summing we �nish the proof.

Proposition B.5. Under conditions 1 and 3 ∀θ ∈ Θ we have:∥∥∥ĥθ − h∗θ∥∥∥
L2
≤ K5

∥∥∥X̂ −X∗∥∥∥
L2

with : K5 =
√
d

(
Tde

√
d
(
A+E

λ

)
T

+ E

)
Proof. Thanks lemma B.2 we have the following a�ne dependance of h w.r.t
X:

ĥθ(t)−h∗θ(t) =

ˆ T

t

Rθ(T − t, T − s)
(
X̂(s)−X∗(s)

)
ds+Eθ(t)

(
X̂(t)−X∗(t)

)
Taking the norm gives us:∥∥∥ĥθ(t)− h∗θ(t)∥∥∥

2
≤

∥∥∥´ Tt Rθ(T − t, T − s)
(
X̂(s)−X∗(s)

)
ds
∥∥∥

2

+
∥∥∥Eθ(t)(X̂(t)−X∗(t)

)∥∥∥
2

≤
√
d

(√
Tde

√
d
(
A+E

λ

)
T
∥∥∥X̂ −X∗∥∥∥

L2
+ ‖Eθ(t)‖2

∥∥∥X̂(t)−X∗(t)
∥∥∥

2

)
Using condition C1 and C3 and the upper bound ‖Rθ(T − t, T − s)‖2 ≤

de
√
d
(
A+E

λ

)
T
thanks to proposition 3 in supplementary material.

Finally we obtain:∥∥∥ĥθ − h∗θ∥∥∥
L2
≤
√
d

(
Tde

√
d
(
A+E

λ

)
T

+ ‖Eθ‖L2

)∥∥∥X̂ −X∗∥∥∥
L2

B.3 Asymptotic normality proof

The proof of continuity of some functionals useful for proposition 4.3 are left
in the supplementary materials, as they require cumbersome computations and
they does not provide particular insights in the mechanics of the proofs.
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Proposition B.6. Under conditions 1-5, we have :

θ̂T − θ∗ = 2
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1 (
Γ(X̂)− Γ(X∗)

)
+ oP (1)

where Γ : C
(
[0 , T ] ,Rd

)
→ Rp is a linear functional de�ned by

Γ(X) =

ˆ T

0

(
∂ (Aθ∗(t).X

∗)

∂θ
+

1

λ

∂hθ∗(t,X∗)

∂θ

)T (ˆ T

t

Rθ∗(T − t, T − s)X(s)ds

)
dt.

(29)
Rθ∗ is de�ned by (16).

Proof. For the sake of notational simplicity here θ̂T will be simply denoted θ̂.
The �rst order optimal condition is

∇θS(X̂; θ̂, λ) = 0

Equivalently, we have

ˆ T

0

∂
(
Aθ̂(t).X̂ + rθ̂(t)

)
∂θ

T

hθ̂(t, X̂)+
∂hθ̂(t, X̂)

∂θ

T (
Aθ̂(t).X̂ + rθ̂(t)−

˙̂
X
)

+
1

λ

∂hθ̂(t, X̂)

∂θ

T

hθ̂(t, X̂) = 0

(30)

We use the following decomposition for Aθ̂(t).X̂ −
˙̂
X and hθ̂(t, X̂):

Aθ̂(t).X̂ + rθ̂(t)−
˙̂
X = Aθ̂(t)

(
X̂ −X∗

)
+

∂(Aθ̃(t).X∗+r
θ̃
(t))

∂θ

(
θ̂ − θ∗

)
+
(
Ẋ∗ − ˙̂

X
)

hθ̂(t, X̂) =
∂(hθ̃(t,X̂))

∂θ

(
θ̂ − θ∗

)
+Nθ∗(t).

(
X̂ −X∗

)
with θ̃ being a random point between θ∗ and θ̂ and N de�ned as in lemma B.2.
By replacing in (30), we obtain:

ˆ T

0

H1(t, θ̂, X̂)dt
(
θ̂ − θ∗

)
=

ˆ T

0

H2(t, θ̂, X̂)
(
X̂ −X∗

)
−
∂
(
hθ̂(t, X̂)

)
∂θ

T (
Ẋ∗ − ˙̂

X
)
dt

(31)
with

H1(t, θ̂, X̂) =
∂(Aθ̂(t).X̂+r

θ̂
(t))

∂θ

T
∂h

θ̃
(t,X̂)

∂θ +
∂(hθ̂(t,X̂))

T

∂θ

∂(Aθ̃(t).X∗+r
θ̃
(t))

∂θ + 1
λ

∂(hθ̂(t,X̂))
∂θ

T
∂h

θ̃
(t,X̂)

∂θ

H2(t, θ̂, X̂) =
∂(Aθ̂(t).X̂+r

θ̂
(t))

∂θ

T

Nθ∗(t) +
∂(hθ̂(t,X̂))

T

∂θ Aθ̂(t) + 1
λ

∂(hθ̂(t,X̂))
∂θ

T

Nθ∗(t)

Thanks to propositions in supplementary material, the following functionals
D1 : θ 7−→ (t 7−→ Aθ(t))

D2 : (θ,X) 7−→
(
t 7−→ ∂(Aθ(t).X)

∂θ

)
D3 : (θ,X) 7−→ (t 7−→ hθ(t,X))

D4 : (θ,X) 7−→
(
t 7−→ ∂(hθ(t,X))

∂θ

)



B Proof & Intermediary results 33

are continuous on Θ × L2
(
[0 , T ] ,Rd

)
, and the continuous mapping theorem

implies that t 7−→ H1(t, θ̂, X̂) and t 7−→ H2(t, θ̂, X̂) converge in probability
in the L2 sense to the function t 7−→ H1(t, θ∗, X∗) and t 7−→ H2(t, θ∗, X∗).

So
∥∥∥H1(., θ̂, X̂)

∥∥∥
L2

converges in probability to ‖H1(., θ∗, X∗)‖L2 and so it is

bounded. Finally, we have the convergence in probability of each entry of´ T
0
H1(t, θ̂, X̂)dt to the corresponding entry to

´ T
0
H1(t, θ∗, X∗)dt. Moreover,

condition C5 assumes that the Hessian

ˆ T

0

H1(t, θ∗, X∗)dt =
1

2

∂2S(X∗; θ∗, λ)

∂θT∂θ

is nonsingular at θ = θ∗. Finally, we have

ˆ T

0

H1(t, θ̂, X̂)dt
P−→ 1

2

∂2S(X∗; θ∗, λ)

∂θT∂θ

By an analogous reasoning, the asymptotic behavior of θ̂ − θ∗ is given by

2
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1
(ˆ T

0

H2(t, θ∗, X∗)
(
X̂ −X∗

)
dt− ∂ (hθ∗(t,X∗))

∂θ

T (
Ẋ∗ − ˙̂

X
)
dt

)

and Integration By Part gives

´ T
0

∂hθ∗ (t,X∗)
∂θ

T (
Ẋ∗ − ˙̂

X
)
dt =

[
∂hθ∗ (t,X∗)

∂θ

T (
X∗ − X̂

)]T
0

−
´ T

0
d
dt

(
∂hθ∗ (t,X∗)

∂θ

T
)(

X∗ − X̂
)
dt

But, as ∂h(T,θ∗,X∗)
∂θ = 0 and X̂(0) = x∗0 we have:

´ T
0

(
H2(t, θ∗, X∗) + d

dt

(
∂hθ∗ (t,X∗)

∂θ

T
))

.X(t)dt

=
´ T

0

(
∂(Aθ∗(t).X∗+rθ∗ (t))

∂θ + 1
λ
∂hθ∗ (t,X∗)

∂θ

)T
(hθ∗(t,X)− Eθ∗(t).X(t)) dt

Hence we can write

θ̂ − θ∗ = 2
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1 (
Γ(X̂)− Γ(X∗)

)
+ oP (1)

with

Γ(X) =

ˆ T

0

(
∂ (Aθ∗(t).X

∗)

∂θ
+

1

λ

∂hθ∗(t,X∗)

∂θ

)T (ˆ T

t

Rθ∗(T − t, T − s)X(s)ds

)
dt

where Rθ∗ is de�ned by (16).
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Proposition B.7. Under conditions 1-8 and by de�ning Γ as in proposition
B.6 we have that Γ(X̂)− Γ(X∗) is asymptotically normal and Γ(X̂)− Γ(X∗) =
OP (n−1/2)

Proof. This proposition is a direct consequence of Theorem 9 in [31]. The
conditions to be satis�ed are

1. (Yi, ti) are i.i.d with V ar(Y | t) bounded.

2. E((Y −X∗(t))4 | t) is bounded, and V ar(Y | t) is bounded away from 0.

3. The support of t is a compact interval on which t has a probability density
function bounded away from 0.

4. There is v(t) such that E(v(t)v(t)T ) is �nite and non-singular such that:
D(Γ)(X∗)(X∗) = E(v(t)X∗(t)) and D(Γ)(X∗)(pkK) = E(v(t)pkK(t)) for

all k and K and there is βK with E(‖v(t)− βKpK(t)‖22)→ 0

5. X∗(t) = E(Y | t) is derivable of order s on the support of t.

Requirements 1,2,3 are direct consequences of conditions C6 and C7 (and the
solution is always de�ned on [0, T ]).

For the fourth requirement we will consider the monodimensional case d = 1.
We know that Γ is linear and continuous on L2

(
[0, T ] ,Rd

)
thanks to con-

ditions C1 and C3-4 and hence di�erentiable with: D(Γ)(X∗)(X) = Γ(X) .
By the Riesz-Frechet representation theorem we have: v ∈ L2([0 , T ] ,R) s.t

Γ(X) =
´ T

0
v(t)X(t)dt which verify the three conditions of the forth require-

ment. Starting from the mono-dimensional case, multi-dimensional case can be
made componentwise.

Requirement 5 is a simple consequence of the condition C8.
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C Gradient Computation : Adjoint Method & Sensitivity
equation

C.1 Notation and partial derivative computation

For optimization purpose we need to compute the gradient of S(X̂; θ, λ). For
this we will present two methods: a direct approach using sensitivity equation
and a second one using adjoint method.

C.1.1 Row vector notation for the vector �eld of the general Riccati

equation

We will de�ne the solution of the general Riccati equation in row formulation,
we introduce

Qθ(t) =
(
ĥθ
T
, (Erθ )

T
)T

(t)

with Erθ :=
(
ETθ,1, · · · , ETθ,d

)T
the row formulation of Eθ, Eθ,i beeing the i− th

column of Eθ. It is a D := d2 + d sized function respecting the ODE :

Q̇θ = F (Qθ, θ, t)
Qθ(T ) = 0

by introducing the general vector �eld F :

F (Qθ, θ, t) =

(
G(Qθ, θ, t)
H(Qθ, θ)

)
with G and H de�ned by:

G(Qθ, θ, t) := −
(
Aθ(t)

T + Eθ
λ

)
ĥθ − Eθ

(
Aθ(t)X̂(t)− ˙̂

X(t) + rθ(t)
)

H(j−1)d+i(Qθ, θ) := δi,j − (ATθ,iEj +ATθ,jEθ,i + 1
λE

T
θ,iEθ,j)

and Aθ,i beeing the i− th column of Aθ.
We also introduce:

g(Qθ, θ, t) = −2
(
Aθ(t)X̂(t)− ˙̂

X(t) + rθ(t)
)T

ĥθ −
1

λ
ĥθ
T
ĥθ

In order to write our system under the row form:

S(X̂; θ, λ) :=
´ T

0
g(Qθ(t), θ, t)dt{

Q̇θ = F (Qθ, θ, t)
Qθ(T ) = 0

(32)

For the next subsections we will drop dependence in θ for Aθ, rθ, Eθ, ĥθ
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C.1.2 Partial derivative of Riccati vector �eld

In order to compute sensitivity equation or adjoint model we need to compute
∂g
∂θ (Qθ, θ, t),

∂g
∂Q (Qθ, θ, t),

∂F
∂θ (Qθ, θ, t) and

∂F
∂Q (Qθ, θ, t)

The computation for ∂g
∂θ (Qθ, θ, t),

∂g
∂Q (Qθ, θ, t) is straightforward

∂g

∂θ
(Qθ, θ, t) = −2ĥT

∂
(
A(t)X̂(t)

)
∂θ

+
∂r

∂θ
(t)


∂g

∂Q
(Qθ, θ, t) =

−2

(
A(t)X̂(t)− ˙̂

X(t) + r(t) +
ĥ

λ

)T
, 01,d2


For ∂F

∂θ (h,Er, θ, t) and ∂F
∂Q (Rθ, θ, t) we obtain

∂F
∂θ (Qθ, θ, t) =

(
∂G
∂θ (Qθ, θ, t)
∂H
∂θ (Qθ, θ)

)
∂F
∂Q (Qθ, θ, t) =

(
−
(
A(t)T + E

λ

)
∂Gi
∂Erj

(Qθ, θ, t)

0d2,d
∂H(Qθ,θ)
∂Er

)
with:

∂Gi
∂Er

(k−1)d+h
(Qθ, θ, t) = −δi,h

(
ĥ
λ +A(t)X̂(t)− ˙̂

X(t) + r(t)
)
k

∂G
∂θ (Qθ, θ, t) = −

(
hT ∂Ai(t)∂θ

)
1≤i≤d

− E
(
∂(A(t)X̂(t))

∂θ + ∂r(t)
∂θ

)
We also need to compute H(Qθ, θ) partial derivative w.r.t E

r and θ.
We have:(
∂H(Qθ, θ)

∂Er

)
(j−1)d+i

= −
(

0 Atj 0 Ati 0
)
− 1

λ

(
0 Etj 0 Eti 0

)
Because:

• ∂
∂Er

(
AtjEi +AtiEj

)
=
(

0 Atj 0 Ati 0
)
where Atj is in i−th position

and Ati is in j − th position.

• 1
λ
∂
∂E

(
EtjEi

)
=
(

0 1
λE

t
j 0 0 0

)
+
(

0 0 1
λE

t
i 0 0

)
where Etj

is in i− th position and Eti is in j − th position.

And: (
∂H(Qθ, θ)

∂θ

)
(j−1)d+i

= −Eti
∂Aj
∂θ
− Etj

∂Ai
∂θ

• Because ∂
∂θ

(
AtjEi +AtiEj

)
= Eti

∂Aj
∂θ +Etj

∂Ai
∂θ where ∂Ai

∂θ =
(
∂Ai
∂θ1
· · · ∂Ai∂θp

)
a d× p matrix
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C.2 Gradient computation by sensitivity equation

By Gradient de�nition we have

∇θS(X̂; θ, λ) =

ˆ T

0

∂g(Qθ(t), θ, t)

∂Q

∂Qθ(t)

∂θ
+
∂g(Qθ(t), θ, t)

∂θ
dt

With ∂Qθ(t)
∂θ solution of the sensitivity equation:

d

dt
(
∂Qθ(t)

∂θ
) =

∂F

∂Q
(Qθ(t), θ, t)

∂Qθ(t)

∂θ
+
∂F

∂θ
(Qθ(t), θ, t)

And we know that Qθ(T ) = 0 so ∂Qθ(T )
∂θ = 0, hence we can obtain ∂Qθ(t)

∂θ by
solving the Cauchy problem:

d
dt (

∂Qθ(t)
∂θ ) = ∂F

∂Q (Qθ(t), θ, t)
∂Qθ(t)
∂θ + ∂F

∂θ (Qθ(t), θ, t)
∂Qθ(T )
∂θ = 0

C.3 Gradient computation by adjoint Method

Once again we have

∇θS(X̂; θ, λ) =

ˆ T

0

∂g(Qθ(t), θ, t)

∂Q

∂Qθ(t)

∂θ
+
∂g(Qθ(t), θ, t)

∂θ
dt

With ∂Qθ(t)
∂θ solution of the sensitivity equation:

d

dt
(
∂Qθ(t)

∂θ
) =

∂F

∂Q
(Qθ(t), θ, t)

∂Qθ(t)

∂θ
+
∂F

∂θ
(Qθ(t), θ, t)

If we premultiply the right and left term of the previous ODE by the D−sized
adjoint vector P (t) and then integrate we obtain

ˆ T

0

P (t).
d

dt
(
∂Qθ(t)

∂θ
)dt =

ˆ T

0

P (t).
∂F

∂Q
(Qθ(t), θ, t)

∂Qθ(t)

∂θ
dt+

ˆ T

0

P (t).
∂F

∂θ
(Qθ(t), θ, t)dt

Integration by part gives us

ˆ T

0

P (t).
d

dt
(
∂Qθ(t)

∂θ
)dt = P (T ).

∂Qθ(T )

∂θ
− P (0).

∂Qθ(0)

∂θ
−
ˆ T

0

Ṗ (t).
∂Qθ(t)

∂θ
dt

We already know that ∂Qθ(T )
∂θ = 0 and if we take P (0) = 0 we obtain the

variational relation:

ˆ T

0

(
Ṗ (t) + P (t).

∂F

∂Q
(Qθ(t), θ, t)

)
∂Qθ(t)

∂θ
dt+

ˆ T

0

P (t).
∂F

∂θ
(Qθ(t), θ, t)dt = 0
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and by imposing:

Ṗ (t) + P (t).
∂F

∂Q
(Qθ, θ, t) =

∂g(Qθ(t), θ, t)

∂Q

we deduce that

ˆ T

0

∂g(Qθ(t), θ, t)

∂Q

∂Qθ(t)

∂θ
dt = −

ˆ T

0

P (t).
∂Q

∂θ
(Qθ(t), θ, t)dt

and so

∇θS(X̂; θ, λ) =

ˆ T

0

∂g(Qθ(t), θ, t)

∂θ
− P (t).

∂F

∂θ
(Qθ(t), θ, t)dt

We propose here an alternative for gradient computation, we compute∇θS(X̂; θ, λ)
by considering:

∇θS(X̂; θ, λ) =
´ T

0
∂g(Qθ(t),θ,t)

∂θ − P (t).∂F∂θ (Qθ(t), θ, t)dt

Ṗ (t) = ∂g(Qθ(t),θ,t)
∂Q − P (t).∂F∂Q (Qθ(t), θ, t)

P (0) = 0

The interest here is computational, computing gradient by solving sensitivity
equation drives us to solve aD×pODE system. Here the adjoint system de�ning
P is only of size D.
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D Asymptotic variance expression

We know asymptotically θ̂T − θ∗ behaves as:

2
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1 (
Γ(X̂)− Γ(X∗)

)
with:

1

2

∂2S(X∗; θ∗, λ)

∂θT∂θ
=

∂ (Aθ∗(t).X∗)

∂θ

T
∂hθ∗(t,X∗)

∂θ
+
∂ (hθ∗(t,X∗))

T

∂θ

∂ (Aθ∗(t).X∗)

∂θ
+

1

λ

∂ (hθ∗(t,X∗))

∂θ

T
∂hθ∗(t,X∗)

∂θ

the hessian of the asymptotic criteria at θ = θ∗

and:

Γ(X) =

ˆ T

0

(
∂ (Aθ∗(t).X

∗)

∂θ
+

1

λ

∂hθ∗(t,X∗)

∂θ

)T (ˆ T

t

Rθ∗(T − t, T − s)X(s)ds

)
dt

A linear functional w.r.t to X so asymptotically:

V ar(θ̂T ) = 4
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1

V ar(Γ(X̂))
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1

If X̂ is a b-Splines basis decomposition estimator under the form X̂ =∑K
i=1 β̂iKpiK(t) we can formulate Γ as a linear function w.r.t coe�cients β̂iK :

Γ(X̂) := P (θ∗, X∗)β̂K

with:

Pi(θ,X) =

ˆ T

0

(
∂ (Aθ(t).X)

∂θ
+

1

λ

∂hθ(t,X)

∂θ

)T (ˆ T

t

Rθ(T − t, T − s)piK(s)ds

)
dt

the i−th columns
Finally the asymptotic variance of θ̂T is equal to:

V ar(θ̂T ) = 4
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1

P (θ∗, X∗)V ar(β̂K)P (θ∗, X∗)T
∂2S(X∗; θ∗, λ)

∂θT∂θ

−1

(33)
and we can use the consistent estimator:

̂
V ar(θ̂T ) = 4

∂2S(X̂; θ̂T , λ)

∂θT∂θ

−1

P (θ̂T , , X̂)
̂

V ar(β̂K)P (θ̂T , , X̂)T
∂2S(X̂; θ̂T , λ)

∂θT∂θ

−1
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