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Syntactic Possibilistic Goal Generation

Célia da Costa Pereira and Andrea G. B. Tettamanzi1

Abstract. We propose syntactic deliberation and goal election al-

gorithms for possibilistic agents which are able to deal with incom-

plete and imprecise information in a dynamic world. We show that

the proposed algorithms are equivalent to their semantic counterparts

already presented in the literature. We show that they lead to an ef-

ficient implementation of a possibilistic BDI model of agency which

integrates goal generation.

1 Introduction

Researchers in the field of AI are growing more and more aware

of the importance of integrating the goal generation process when

representing the agent’s capabilities [12]. Indeed, the idea of fixing

a priori the goals that an agent must achieve is acceptable only for

few domains where all possible goals can be determined in advance.

On the other hand, a suitable framework for representing the agent’s

capabilities should consider the fact that an agent must also choose

which goals to pursue from the collection of goals which have been

generated previously [14, 15, 5].

In most real world situations, information available for an agent is

incomplete. This means that the set of the agent’s beliefs represents

an imprecise description of the real world. Possibility theory [17] is

well-suited for modeling uncertain or vague information by means of

a possibility distribution. In [5], the authors used such a distribution

to propose a semantic representation of beliefs allowing thus to ex-

press that some worlds (interpretations) are more plausible for a BDI

agent than others. As pointed out by Dubois et al. [9], this seman-

tic view of beliefs is also the one developed in the theory of belief

change by Gärdenfors [10]. In that theory, the logical consequences

of the belief base [13] represents the full set of the agent’s beliefs —

its belief set. In this semantic setting, adding new information to a

belief set comes down to some worlds which were previously pos-

sible becoming impossible. This means that the more information is

available, the smaller the set of worlds considered possible by the

agent and the more precise the information held by the agent. It is

important to observe that, while this kind of semantic representation

is well-suited to a theoretical treatment of the matter, it is not at all

adapted to the implementation of an agent framework. This is why,

to use a syntactic possibilistic representation of beliefs, in [6] the

authors propose an equivalent syntactic possibilistic belief-change

operator.

An algorithm for generating the goals of an agent based on the

semantic representation of beliefs and desires was proposed in [5].

However, to the best of our knowledge, no one has yet proposed

an algorithm for goal generation based on the syntactic counterparts

of the possibilistic representations of beliefs and desires. This paper

aims at bridging this gap and at making an efficient implementation
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of the agent’s goal generation and adoption possible. We provide the

syntactic version of the possibilistic deliberation algorithm and of the

goal-election algorithm proposed in [5].

The rest of the paper is organized as follows. Section 2 presents

some basic definitions in possibility theory. Section 3 presents the

representation of graded beliefs both in the syntactic and in the se-

mantic settings. Section 4 presents the components of the possibilis-

tic model. Section 5 presents a syntactic representation of desires

while in Section 6 an algorithm for generating such kind of desires is

proposed. Section 7 presents the two algorithms used for selecting as

goals the maximally justified desires among the maximally possible

desires. Finally, Section 8 concludes the paper.

2 Background

In this section, we present some basic definitions in possibility theory

that will be used throughout the paper.

2.1 Language and Interpretations

We adopt a classical propositional language to develop the theoretical

framework used to represent information manipulated by an agent.

Definition 1 (Language) Let A be a finite set of atomic proposi-

tions and letL be the propositional language such thatA∪{⊤,⊥} ⊆
L, and, ∀φ, ψ ∈ L, ¬φ ∈ L, φ ∧ ψ ∈ L, φ ∨ ψ ∈ L.

Additional connectives can be defined as useful shorthands for

combination of connectives of L, e.g., φ ⊃ ψ ≡ ¬φ ∨ ψ.

We will denote by Ω = {0, 1}A the set of all interpretations onA.

An interpretation ω ∈ Ω is a function ω : A → {0, 1} assigning a

truth value pω to every atomic proposition p ∈ A and, by extension,

a truth value φω to all formulas φ ∈ L; ω |= φ means that φω = 1
(ω is a model of φ); if S ⊆ L is a set of formulas, ω |= S means

ω |= φ for all φ ∈ S; S |= φ means that ∀ω |= S, ω |= φ.

The notation [φ] denotes the set of all models of formula φ ∈ L:

[φ] = {ω ∈ Ω : ω |= φ}. Likewise, if S ⊆ L is a set of formulas,

[S] = {ω ∈ Ω : ∀φ ∈ S, ω |= φ} =
⋂

φ∈S
[φ].

2.2 Possibility Theory

Fuzzy sets [16] are sets whose elements have degrees of membership

in [0, 1]. Possibility theory is a mathematical theory of uncertainty

that relies upon fuzzy set theory, in that the (fuzzy) set of possible

values for a variable of interest is used to describe the uncertainty as

to its precise value. At the semantic level, the membership function

of such set, π, is called a possibility distribution and its range is [0, 1].
By convention, π(ω) = 1 means that it is totally possible for ω to

be the real world, 1 > π(ω) > 0 means that ω is only somehow

possible, while π(ω) = 0 means that ω is certainly not the real world.



A possibility distribution π is said to be normalized if there ex-

ists at least one interpretation ω0 s.t. π(ω0) = 1, i.e., there exists

at least one possible situation which is consistent with the available

knowledge.

Definition 2 (Measures) A possibility distribution π induces a pos-

sibility measure Π, its dual necessity measure N , and a guaranteed

possibility measure ∆. They all apply to a classical set A ⊆ Ω and

are defined as follows:

Π(A) = max
ω∈A

π(ω); (1)

N(A) = 1−Π(Ā) = min
ω∈Ā
{1− π(ω)}; (2)

∆(A) = min
ω∈A

π(ω). (3)

In words, Π(A) expresses to what extent A is consistent with the

available knowledge. Conversely, N(A) expresses to what extent A

is entailed by the available knowledge. The guaranteed possibility

measure [8] estimates to what extent all the values in A are actually

possible according to what is known, i.e., any value in A is at least

possible at degree ∆(A).

3 Syntactic and Semantic Representations

A possibilistic belief base is a finite set of weighted formulas B =
{(φi, αi), i = 1, . . . , n}, where αi is understood as a lower bound of

the degree of necessityN([φi]) (i.e.,N([φi]) ≥ αi). Here,B(φi) =
αi means that the degree to which formula φi belongs to the set B

is αi. Formulas with αi = 0 are not explicitly represented in the

belief base, i.e., only a belief which is somehow believed/accepted by

the agent is explicitly represented. The higher the weight, the more

certain the formula.

From belief base B the degree of belief B(φ) of any arbitrary

formula φ ∈ L may be computed as follows [2]:

B(φ) = max{α : Bα |= φ}, (4)

where Bα = {φ : B(φ) ≥ α}, with α ∈ [0, 1], is called an α-cut of

B. The meaning of Equation 4 is that the degree to which an agent

believes φ is given by the maximal degree α such that φ is entailed

only by the formulas whose degree of membership in the base is at

least α. This is the syntactic representation of graded beliefs [2] that

we will use in this paper.

Alternatively, one may regard a belief as a necessity degree in-

duced by a normalized2 possibility distribution π on the possible

worlds ω ∈ Ω [2]: π : Ω → [0, 1], where π(ω) is the possibility

degree of interpretation ω. In this case, the degree to which a given

formula φ ∈ L is believed can be calculated as B(φ) = N([φ]) =
1−maxω 6|=φ π(ω), where N is the necessity measure induced by π.

This is the semantic representation of graded beliefs proposed in [2]

which has been used in [5].

The syntactic and the semantic representations of graded beliefs

are equivalent [7]. Therefore, they may be used interchangeably as

convenience demands. This means that, given a belief base B such

that, for all α, Bα is consistent, one can construct a possibility dis-

tribution π such that, for all φ ∈ L, N([φ]) = max{α : Bα |= φ},
where Bα is the α-cut of base B. In particular, π may be defined as

follows: for all ω ∈ Ω,

π(ω) = 1−max{α : Bα |= ¬φω}, (5)

2 Normalization of a possibility distribution corresponds to consistency of the
beliefs.

where φω denotes the minterm of ω, i.e., the formula satisfied by ω

only. Notice that π is normalized. Indeed, since, by hypothesis, for

all α, Bα is consistent, there exists an interpretation ω∗ ∈ Ω, such

that, for all α ∈ (0, 1], ω∗ |= Bα; therefore, π(ω∗) = 1, because no

formula φ exists such that ω∗ 6|= φ and B(φ) > 0.

4 A Possibilistic BDI Model

The possibilistic BDI model of agency we adopt is an adaptation of

the one used in [5]. The main difference is that we replace the seman-

tic representation of beliefs and desires with syntactic representations

in the form of a belief base B and a desire base D. Figure 1 provides

a schematic illustration of the model.
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DESIRES

INTENTIONS

B ✲Eq. 4
B

❄

❄

RJ
✲ Syntactic Deliberation

(Algorithm 2)

❄
D ✲Eq. 11

J

✛

✲
Syntactic

Goal Election
(Algorithm 6)

❄
G

∗✛Planner

❄

Actions

Figure 1. A schematic illustration of the proposed BDI model. The
meaning of the symbols is explained in the text.

The agent receives information from the outside world and thus

forms its beliefs. The “program” of the agent consists of a number of

desire-generation rules, contained in a rule-baseRJ . These, together

with the beliefs, determine a set of goals, which are then fed into a

planner module to compute the actions to be performed by the agent.

The internal mental state of the agent is completely described by

a possibilistic belief base B and by a set of desire-generation rules

RJ . The set B of the formulas believed by the agent is computed

from B according to Equation 4.

The set J of the agent’s justified desires is generated dynamically

through a deliberation process which applies the rules in RJ to the

current beliefs and justified desires to produce a desire base D, from

which the fuzzy set of justified desires J is computed according to

Equation 11.

Finally, the agent rationally elects its goals G∗ from the justified

desires J as the most desirable of the possible sets of justified desires,

according to its beliefs. The agent then plans its actions to achieve the

elected goals G∗ by means of a planner module, whose discussion

lies outside of the scope of this paper.

In the following sections, we give technical details about all the

components of the model and about syntactic deliberation and goal

election algorithms. To help the reader, we will use an adaptation of

the running example of [5], which follows.

Example Dr. A. Gent has submitted a paper to ECAI 2014 he has

written with his co-author I. M. Flaky, who has promised to go to

Prague to present it if it is accepted. Dr. Gent knows that, if the paper

is accepted, publishing it (which is his great desire), means to pay the



conference registration (for his co-author or for himself) and then be

ready to go to Prague to present it, in case I. M. is unavailable.

If the paper is accepted (a), Dr. Gent is willing to pay the registra-

tion (r); furthermore, if the paper is accepted and Dr. Flaky turns out

to be unavailable (q), he is willing to go to Prague to present it (p).

Finally, if he knows the paper is accepted and wishes to present it, he

will desire to have a hotel room (h) and a plane ticket reserved (t).

Then, one fine day, Dr. Gent receives the notification of acceptance

of his paper: the source is fully trustworthy—the program chair of

ECAI 2014. However, soon after learning that the paper has been ac-

cepted, Dr. Flaky rushes into Dr. Gent’s office to inform him that he

is no more available to go to Prague; as always, Dr. Gent does not

completely trust what Dr. Flaky tells him, as he is well accustomed

to his changing mind. A few weeks later, rumors get to Dr. Gent’s

ear that all the hotels in Prague are full (f ); although Dr. Gent con-

siders this news as yet unverified, he takes notice of it. Let’s assume

that, combined with his a priori beliefs, like that if the planes are all

booked out (b), he might not succeed in reserving a flight, this yields

Dr. Gent’s beliefs, represented by the following base:

B = {(b ⊃ ¬t, 0.9), (f, 0.2), (q, 0.75),
(a, 1), (f ⊃ ¬h, 1), (p ⊃ (a ∧ r), 1)}.

(6)

5 Representing Desires

We may regard desires as expression of preference for some states of

affairs over some others. Therefore, from a semantic point of view,

such preference may be encoded as an assignment of a qualitative

utility u(ω) ∈ [0, 1] to every world ω ∈ Ω: u(ω) = 0 means that

ω is among the least preferred worlds, u(ω) = 1 means that ω is

among the most preferred worlds, and u(ω) > u(ω′) means that

ω is preferred to ω′. Such qualitative utility u is thus, formally, a

possibility distribution.

Guaranteed possibility measure, ∆, can be used to associate a pref-

erence degree to arbitrary formulas [3]. The set of the agent’s justified

desires, J, a fuzzy set of formulas in the language of choice, is thus

defined based on possibility distribution u, which, unlike π, needs

not be normalized, since desires may very well be inconsistent, as

follows: for all formulas φ ∈ L,

J(φ) = ∆([φ]) = min
ω|=φ

u(ω). (7)

J may be extended to sets of formulas in the following way. Let

S ⊆ L be a set of formulas, then J(S) = minφ∈S J(φ).
The basic mechanism which determines how desires arise, i.e.,

which desires are justified and to which extent, is rule-based and may

be described in terms of desire-generation rules.

Definition 3 (Desire-Generation Rule) A desire-generation rule r

is an expression of the form βr, ψr ⇒
+
D φ,3 where βr, ψr, φ ∈ L.

The unconditional counterpart of this rule is α ⇒+
D φ, with α ∈

(0, 1].

The intended meaning of a conditional desire-generation rule is:

“an agent desires every world in which φ is true at least as much as

it believes βr and desires ψr”. The intended meaning of an uncondi-

tional rule is straightforward: the degree to which the agent desires φ

is α.

Given a desire-generation rule r, we shall denote rhs(r) the for-

mula on the right-hand side of r.

3 Note that the implication used to define a desire-generation rule is not the
material implication.

Example (continued) Dr. Gent’sRJ may be described by the fol-

lowing desire-generation rules:

R1 : a, p ⇒+
D t ∧ h,

R2 : a ∧ q, ⊥ ⇒+
D p,

R3 : a, ⊥ ⇒+
D r.

The degree of activation of a desire-generation rule depends on the

degree to which its left-hand side is satisfied, i.e., the degree to which

βr is believed and ψr is desired.

Definition 4 (Rule Activation) Let r = βr, ψr ⇒
+
D φ be a desire-

generation rule. The degree af activation of r, Deg(r), is given by

Deg(r) = min{B(βr),J(ψr)}.

For an unconditional rule r = αr ⇒
+
D φ, Deg(r) = αr .

A semantic deliberation algorithm was proposed in [5] which,

given a belief base B induced by a possibility distribution π and a

set of desire-generation rules RJ , computes the corresponding pos-

sibility distribution u.

In order to replace such algorithm with a syntactic deliberation

algorithm, the first step is to replace the qualitative utility u with a

desire baseD, which, by analogy with the belief baseB, will be rep-

resented as a fuzzy set of formulas. However, whereas the member-

ship degrees of B are interpreted and treated as necessity degrees,

the membership degrees of formulas of D are to be interpreted as

minimum guaranteed possibilities. In D, each piece of information

[φi, αi] expresses that any world satisfying φi is considered satisfac-

tory for the agent to at least a degree αi.

Let supp(D) = {φ : D(φ) > 0}. One important property that a

desire base should obey, which is a consequence of the membership

degrees representing guaranteed possibilities is that, for all formulas

φ, ψ ∈ supp(D),

if φ |= ψ then D(φ) ≥ D(ψ). (8)

Exactly as a belief baseB induces a corresponding possibility dis-

tribution πB , a desire base D induces a corresponding qualitative

utility uD as follows (cf. Definition 12 in [4]): for all ω ∈ Ω,

uD(ω) = max
φ:ω|=φ

D(φ). (9)

If ω does not satisfy any formula φ in D then ω is not satisfactory

at all for the agent. Formally, if there is no [φi, ai] ∈ D such that

ω |= φi then uD(ω) = 0.

The above definition may be understood as follows: every formula

φ occurring in the desire base may be regarded as the representative

of [φ], the set of its models. It has been proven in [9] that uD , de-

fined as per Equation 9, is the most specific possibility distribution

satisfying D(φ) = ∆([φ]) for all formulas φ ∈ supp(D).
Now, let JD be the (fuzzy) set of justified desires in D. By defini-

tion, the degree of justification of all formulas occurring in the base

must be identical to their degree of membership in the base, i.e., for

all formulas φ,

if D(φ) > 0 then JD(φ) = D(φ).

IfD(φ) = α, it means that minω∈[φ] uD(ω) = α, or, in other terms,

that, ∀ω ∈ [φ], uD(ω) ≥ α. Therefore, we get Equation 9.

The next step is to show how, given a desire base D, the degree

of justification of any arbitrary desire formula ψ may be calculated.

Based on the definition of J, we may write, for all formulas ψ,

JD(ψ) = min
ω|=ψ

uD(ω) = min
ω|=ψ

max
φ:ω|=φ

D(φ). (10)



We now have to eliminate all references to the models ω from the

above formula in order to make it “syntactic”. We do not want ref-

erences to the models because we do not want to be obliged to enu-

merate all the interpretations explicitly in order to compute JD(ψ).
This is indeed the reason why the syntactic view for goal generation

proposed in this paper should lead to a more efficient implementa-

tion than the semantic view already present in the literature. We will

show this assertion later in the paper.

One way to obtain the elimination of all references to the models is

to construct a set of formulasP(D), the “partition” of Ω according to

D, containing all the 2‖supp(D)‖ conjunctions of positive or negated

formulas occurring in D.

Proposition 1 Let supp(D) = {φ1, φ2, . . . , φn} and let P(D) =
{ξ0, ξ1, ξ2, . . . , ξ2n−1} with

ξ0 = ¬φ1 ∧ ¬φ2 ∧ . . . ∧ ¬φn,
ξ1 = φ1 ∧ ¬φ2 ∧ . . . ∧ ¬φn,

...
...

ξ2n−1 = φ1 ∧ φ2 ∧ . . . ∧ φn.

Then, with the convention that max ∅ = 0,

JD(ψ) = min
ξ∈P(D)
ψ∧ξ 6=⊥

max
φ∈supp(D)

ξ|=φ

D(φ) =

= min
i=0,...,2n−1
ψ∧ξi 6=⊥

max
j=1,...,n
ξi|=φj

D(φj).
(11)

Proof: The models of the formulas in P(D) form a partition of Ω:

2n−1
⋃

i=0

[ξi] = Ω, ∀i, j, i 6= j, ξi ∧ ξj = ⊥.

The qualitative utility uD is constant over each [ξi]: for all ω |= ξi,

uD(ω) = max
j=1,...,n
ξi|=φj

D(φj). (12)

Therefore, instead of minimizing over all ω ∈ Ω, it is sufficient to

minimize over all ξi ∈ P(D). Moreover, since we are minimizing

uD(ω) over all models of ψ, we should only consider those ξi such

that [ξi] ∩ [ψ] 6= ∅, i.e., such that ξi ∧ ψ 6= ⊥. ✷

Example (continued) Let’s assume Dr. Gent’s desire base is

D = {(t ∧ h, 0.75), (p, 0.75), (r, 1)}.

We will see later how such base may be derived from the desire-

generation rules. To be able to compute J(ψ) for any arbitrary for-

mula ψ, we may pre-compute P(D) and, for all ξi ∈ P(D), the

corresponding term αi = maxφ∈supp(D)
ξi|=φ

D(φ) in Equation 11:

ξ0 = ¬(t ∧ h) ∧ ¬p ∧ ¬r, α0 = max ∅ = 0,
ξ1 = (t ∧ h) ∧ ¬p ∧ ¬r, α1 = max{0.75} = 0.75,
ξ2 = ¬(t ∧ h) ∧ p ∧ ¬r, α2 = max{0.75} = 0.75,
ξ3 = (t ∧ h) ∧ p ∧ ¬r, α3 = max{0.75, 0.75} = 0.75,
ξ4 = ¬(t ∧ h) ∧ ¬p ∧ r, α4 = max{1} = 1,
ξ5 = (t ∧ h) ∧ ¬p ∧ r, α5 = max{0.75, 1} = 1,
ξ6 = ¬(t ∧ h) ∧ p ∧ r, α6 = max{0.75, 1} = 1,
ξ7 = (t ∧ h) ∧ p ∧ r, α7 = max{0.75, 0.75, 1} = 1.

Now if, for instance, we want to compute J(ψ), we will have to

compute the minimum, for i such that ψ ∧ ξi 6= ⊥, of the αi. There-

fore, we have, for example, J(t) = 0 and J(r) = 1.

Based on Equation 11, computing the degree of justification of for-

mula ψ given the desire base D requires O(n2n) entailment checks,

where n is the size of the desire base. Checking whether a formula

entails another formula is a logical reasoning problem which may be

reduced to the satisfiablility problem, whose computational complex-

ity varies depending on the specific logic considered, but does not

depend on n. For instance, satisfiability in propositional logic (also

known as Boolean satisfiability) is NP-complete [11]; concept satis-

fiability in description logics goes from polynomial to NEXPTIME-

complete [1].

6 Generating Desires

We are now ready to present a syntactic deliberation algorithm,

which calculates the desire base given a set of desire-generation rules

RJ and a belief set B.

We first recall the semantic deliberation algorithm presented in

[5]. Let RωJ = {r ∈ RJ : ω |= rhs(r)} denote the subset of

RJ containing just the rules whose right-hand side would be true in

world ω and Degµ(r) the degree of activation of rule r calculated

using µ as the qualitative utility assignment. Given a mental state

S = 〈π,RJ〉, the following algorithm computes the corresponding

qualitative utility assignment, u.

Algorithm 1 (Semantic Deliberation)

INPUT: π,RJ . OUTPUT: u.

1. i← 0; for all ω ∈ Ω, u0(ω)← 0;

2. i← i+ 1;

3. For all ω ∈ Ω,

ui(ω)←

{

maxr∈Rω
J
Degui−1

(r), ifRωJ 6= ∅,

0, otherwise;

4. if maxω |ui(ω) − ui−1(ω)| > 0, i.e., if a fixpoint has not been

reached yet, go back to Step 2;

5. For all ω ∈ Ω, u(ω) ← ui(ω); u is the qualitative utility assign-

ment corrisponding to mental state S.

Let DegX(r) be the degree of activation of rule r based on the

desire base X . When X = ∅, the degree of justification of all de-

sire formulas is zero. The belief base B does not change during the

deliberation process.

Algorithm 2 (Syntactic Deliberation)

INPUT: B,RJ . OUTPUT: D.

1. i← 0; D0 ← ∅;
2. i← i+ 1;

3. Di ← {(rhs(r),DegDi−1
(r)) : r ∈ RJ};

4. if Di 6= Di−1, i.e., if a fixpoint has not been reached yet, go back

to Step 2;

5. D ← Di and the deliberation has finished.

We now have to prove that this syntactic deliberation algorithm

is equivalent to the semantic deliberation algorithm presented in [5].

The hypothesis is summarized in the following diagram:

RJ
✲

Algorithm 1
u

✲

Algorithm 2
D ✲

Equation 9
uD



Proposition 2 We can prove that uD = u.

Proof: We may proceed by induction: we will consider the sequence

{ui}i=0,1,... of the possibility distributions constructed by Algo-

rithm 1 and the sequence {uDi}i=0,1,..., whose elements uDi are the

possibility distributions induced by the desire bases Di constructed

by Algorithm 2, and we will prove that, if ui−1 = uDi−1 , then

ui = uDi .

Now, ui−1 = uDi−1 means that Degui−1
(r) = DegDi−1

(r) for

all rules r. By Equation 9, for all ω ∈ Ω, we may write

uDi(ω) = maxφ:ω|=φDi(φ)
= maxr∈RJ :ω|=rhs(r) DegDi−1

(r)

= maxr∈Rω
J
Degui−1

(r) = ui(ω).

This proves the induction step. Finally, it is straightforward to verify

that u0 = uD0 , therefore the two sequences will be identical and so

their limits, u and uD , and this concludes the proof. ✷

Example (continued) Let us apply Algorithm 2 to Dr. Gent’s

mental state: we obtain

D0 = ∅,
D1 = {(p, 0.75), (r, 1)},
D2 = {(t ∧ h, 0.75), (p, 0.75), (r, 1)},
D3 = {(t ∧ h, 0.75), (p, 0.75), (r, 1)} = D2.

Therefore,

D = {(t ∧ h, 0.75), (p, 0.75), (r, 1)}. (13)

7 Generating Goals

In [5], the assumption was made that a rational agent would select as

goals the maximally justified desires among the maximally possible

desires. In other words, a rational agent should first restrict attention

only to those desires that it would be most normal (i.e., unsurprising,

likely, . . . ) to expect they might come true and then decide to actively

pursue those, among them, that have the highest qualitative utility.

In order to write a goal election algorithm according to such as-

sumption, we need to define the set of desires possible to a given

degree.

Definition 5 Given γ ∈ (0, 1], Jγ = {φ ∈ supp(J) : Π([φ]) ≥ γ}
is the (classical) subset of supp(J) containing only those desires

whose overall possibility is at least γ. We recall that Π([φ]) = 1 −
B(¬φ).

We now define a goal set for a given level of possibility γ, as the

set of the maximally justified γ-possible desires.

Definition 6 (Goal set) The γ-possible goal set is

Gγ =

{

argmaxS⊆Jγ J(S) if Jγ 6= ∅,
∅ otherwise.

We denote by γ∗ the maximum possibility level such thatGγ 6= ∅.
Then, the goal set elected by a rational agent will be

G
∗ = Gγ∗ , γ

∗ = max
Gγ 6=∅

γ. (14)

Let Img(π) be the level set4 of possibility distribution π and

Img(u) be the level set of qualitative distribution u. Notice that

Img(u) and Img(π) are both finite, independently of Ω being finite,

as proven in [5].

The following two algorithms, adapted from [5], allow an agent to

compute Gγ for a given possibility lower bound γ, and the optimal

goal setG∗, based on a semantic representation of beliefs and desires

as two possibility distributions, π and u. We will call them semantic,

to distinguish them from the two algorithms that we are going to pro-

pose to replace them, which will assume a syntactic representation of

both beliefs and desires.

Algorithm 3 (Semantic Computation of Gγ)

INPUT: π, u. OUTPUT: Gγ .

1. δ ← max Img(u);
2. determine the least specific formula φ such that J(φ) ≥ δ as fol-

lows:

φ←
∨

u(ω)≥δ

φω,

where φω denotes the minterm of ω, i.e., the formula satisfied by

ω only;

3. if Π([φ]) ≥ γ, terminate with Gγ = {φ}; otherwise,

4. δ ← max{α ∈ Img(u) : α < δ}, 0 if no such α exists;

5. if δ > 0, go back to Step 2;

6. terminate with Gγ = ∅.

Algorithm 4 (Semantic Goal Election)

INPUT: π, u. OUTPUT: G∗.

1. γ ← max Img(π) = 1, since π is normalized;

2. compute Gγ by Algorithm 3;

3. if Gγ 6= ∅, terminate with γ∗ = γ, G∗ = Gγ; otherwise,

4. γ ← max{α ∈ Img(π) : α < γ}, 0 if no such α exists;

5. if γ > 0, go back to Step 2;

6. terminate with G∗ = ∅: no goal may be elected.

Proposition 3 The syntactic versions of Algorithms 3 and 4 are Al-

gorithms 5 and 6 given below.

Algorithm 5 (Syntactic Computation of Gγ̄)

INPUT: B, D. OUTPUT: Gγ̄ .

1. δ ← max Img(D);
2. if minψ∈Dδ B(¬ψ) ≤ γ̄, terminate with Gγ̄ = Dδ;

otherwise,

3. δ ← max{α ∈ Img(D) : α < δ}, 0 if no such α exists;

4. if δ > 0, go back to Step 2;

5. terminate with Gγ̄ = ∅.

Algorithm 6 (Syntactic Goal Election)

INPUT: B, D. OUTPUT: G∗.

1. γ̄ ← 0;

2. compute Gγ̄ by Algorithm 5;

3. if Gγ 6= ∅, terminate with γ∗ = 1− γ̄, G∗ = Gγ̄; otherwise,

4. γ̄ ← min{α ∈ Img(B) : α > γ̄}, 1 if no such α exists;

5. if γ̄ < 1, go back to Step 2;

6. terminate with G∗ = ∅: no goal may be elected.

Proof: We begin by observing that Img(u) = Img(D), i.e., the level

set of the desire base is the same as the level set of the corresponding

qualitative utility. Furthermore, since we now have a desire base, we

4 The level set of a possibility distribution π is the set of α ∈ [0, 1] : ∃ω
such that π(ω) = α.



may replace the construction of φ based on the minterms in Step 2 of

Algorithm 3 with a more straightforward

φ←
∨

D(ψ)≥δ

ψ =
∨

ψ∈Dδ

ψ,

that is, the disjunction of all the formulas in the δ-cut of the desire

base. This also suggests that, instead of returning Gγ = {φ}, it is

equivalent, but more intuitive, to returnGγ = Dδ . Finally, instead of

testing the condition Π([φ]) ≥ γ in Step 3, it is equivalent to test the

condition B(¬φ) ≤ 1 − γ. Now, by the DeMorgan laws and by the

properties of necessity,5

B(¬φ) = B

(

∧

ψ∈Dδ

¬ψ

)

= min
ψ∈Dδ

B(¬ψ),

which allows us to avoid constructing φ explicitly and to test directly

the condition minψ∈Dδ B(¬ψ) ≤ 1− γ.

This also suggests that we define γ̄ = 1− γ as the “impossibility

of the goals”, and reformulate the goal election algorithm as a search

for the least impossible set of maximally justified goals. ✷

Since (i) Algorithm 6 iterates over the level set of the belief base

and (ii) Algorithm 5, which is called as a subroutine at each iteration

of Algorithm 6, loops over the level set of the desire base, and (iii)

the most complex task performed at each iteration of Algorithm 5 is

computing the degree of belief of each negated desire formula ψ in

a δ-cut of the desire base, we may conclude that the computational

cost (in number of entailment checks) of syntactic goal election is

O(‖Img(B)‖ · ‖Img(D)‖) · C,

where C is the number of entailment checks needed for computing

B(φ) for an arbitrary formula φ, given the belief base B, which

is done using Equation 4, thus giving C = O(‖Img(B)‖). Fur-

thermore, we may observe that ‖Img(B)‖ ≤ ‖B‖ = m and

‖Img(D)‖ ≤ ‖D‖ = n. Therefore, we may conclude that carrying

out the syntactic goal election requires O(m2n) entailment checks.

The termination of Algorithms 1 and 4 is proved in [5]; the termi-

nation of Algorithms 2 and 6 is a direct consequence of their termi-

nation.

Example (continued) We may now apply Algorithm 6 to elect the

goals of Dr. Gent, given that his belief base is the one given in Equa-

tion 6 and his desire base is the one given in Equation 13; therefore,

Img(B) = {0.2, 0.75, 0.9, 1} and Img(D) = {0.75, 1}.
We begin by calling Algorithm 5 with γ̄ = 0: δ is set to

max Img(D) = 1, and the corresponding δ-cut of D is in fact the

core of D, D1 = {(r, 1)}. Now, B(¬r) = 0 ≤ γ̄; therefore G0 =
{r} and Algorithm 6 terminates immediately with γ∗ = 1− γ̄ = 1,

G∗ = G0 = {r}, i.e., Dr. Gent will elect as his goal just to register

to ECAI 2014.

8 Conclusions

We have proposed a syntactic representation for desires within a pos-

sibilistic BDI model of agency; we have shown its equivalence to the

semantic representation based on a qualitative utility; we have pro-

vided the syntactic equivalent of the deliberation algorithm, which

generates the set of justified desires given a set of desire-generation

5 N(A ∩B) = min{N(A), N(B)}.

rules and a belief base. We have then provided the syntactic equiva-

lent of the goal election algorithm, which generates the goals as the

maximally justified desires among the maximally possible desires.

The cost of computing the degree of justification of a formula and

of electing the goals has been given in terms of the basic operation

of checking whether a formula entails another formula. Even though

the cost of the former task grows exponentially with to the size of the

desire base, in practice it is expected to be feasible, given that the size

of the desire base depends on the number of desire-generation rules

and it is hard to think of applications that would call for a large num-

ber of such rules. On the other hand, goal generation is polynomial in

the size of the belief and desire bases. Compare this to what happens

when using the semantic representation, where 2‖L‖ interpretations

have to be explicitly represented and iterated over to compute the

degree of justification of a formula. In our opinion, a syntactic com-

putation of beliefs, desires, and goals is the only viable alternative to

implement possibilitic agents based on languages whose semantics

involve an infinite number of possible worlds. This is why we be-

lieve the results here presented are a first and important step towards

the practical implementation of a possibilistic BDI framework.
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