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Broken harmonic functions

Benoit Cloitre

October 17, 2014

Abstract

Revisiting our theory of functions of good variation (FGV) we intro-
duce a family of functions allowing us to determine the good variation
index of the Ingham function Φ(x) = x

⌊
1
x

⌋ 1 providing new tauberian
conjectures.

Introduction
With our tauberian approach2 we believe that the difficulty of RH relies on
the fact that it is not totally an arithmetical problem nor totally an analytical
problem. A subtle use of both complex analysis and arithmetic seems needed
to settle the problem. Indeed although our functions of good variation are
discretely defined (see section 1 for the discrete implicit definition) an analytic
conjecture is crucial in order to get information on the good variation index of
the Ingham function. In addition this analytic conjecture contains an important
discrete condition: the Hardy-Littlewood-Ramanujan criteria (HLR criteria)
wich appears to be the corner stone of our strategy. This strategy depends
upon 2 conjectures.

In section 2 we indroduce the so called broken harmonic functions and state
the comparison conjecture between good variation index of these functions.

In section 3 we consider a special case of broken harmonic functions involving√
2 and state a conjecture on the value of its good variation index.
The section 4 described how these 2 conjectures allow us to derive RH is

true.
Finally in section 5 we generalise the Ingham function and discuss the ex-

tension of the method to L−functions.
1The name comes from a tauberian theorem of Ingham which was the starting point of our

study which began 4 years ago. Namely

nan ≥ −C ∧ lim
n→∞

n∑
k=1

akΦ

(
k

n

)
= l⇒

∞∑
k=1

ak = l

Cf.[Kor], theorem 18.2.p.110 or [Ten], corollaire II.7.23.
2Our preliminary study is described in rough unpublished expository papers[Clo1, Clo2,

Clo3].
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This comparison method reveals somewhat a fractal (or multifractal) as-
pect of RH which is hidden behind the complexity of the Mertens function
M(n) =

∑n
k=1 µ(k) or the Liouville function L(n) =

∑n
k=1 λ(k). This fact is

well illustrated by the figure 4 in section 4.

1 Functions of good variation (FGV)

1.1 Implicit discrete definition
Let (an)n≥1 be a real sequence and g : [0, 1]→ R be a bounded and measurable
function. Defining the sums:

• A(n) :=
∑n
k=1 ak

• Ag(n) :=
∑n
k=1 akg

(
k
n

)
we say that g is a FGV of index α(g) ∈ R if we have the 2 following tauberian
conditions:

1. (β < α(g)) ∧ Ag(n) ∼ n−β (n→∞)⇒ limn→∞ nβA(n) exists.

2. (β > α(g)) ∧ Ag(n) ∼ n−β (n→∞)⇒ nβA(n) is unbounded

It is easy to see that FGV exist. For instance polynomials are FGV. More
precisely letting g(x) =

∑m
k=0 ckx

k with m ≥ 1, cm 6= 0 and g(0)g(1) 6= 0 we
can say that g is a FGV of index α(g) = min {<(ρi)} where ρi are the roots of∑m
k=0

ck
k−x (cf. [Clo3] for a sketch of proof).

1.2 Analytic conjecture
We propose an analytic method to determine the good variation index α(g) of
some FGV g. This method doesn’t work for all FGV. For instance the “almost
Dirac” function defined by g(x) = 1 on [0, 1] except at x = 1

2 where we have
g
(

1
2

)
= r ∈]0, 1[ is a FGV of index α (g) = − log(1−r)

log 2 which can be proved only
by arithmetical means (cf. [Clo1] p. 12 and the sketch of proof) .

Before stating this conjecture let us define a function of quasi bounded vari-
ation on ]0, 1], the HLR criteria and the little Mellin transform.

Function of quasi bounded variation

We say that a bounded and measurable function g : ]0, 1] → R is of quasi
bounded variation if we have:

1. ∀x ∈]0, 1] g is of bounded variation on [x, 1] .

2. ∃x0 ∈]0, 1] such that g is monotonic by parts on ]0, x0].
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HLR criteria (for Hardy-Littlewood-Ramanujan)3

We say that a bounded and measurable function g satisfies the HLR criteria if
it is a FGV of index 0 ≤ α(g) ≤ 1 such that for any function f(x) converging
exponentially fast to zero as x→∞ one has

Ag(n) = f(n)⇒ ∀ε > 0 lim
n→∞

a(n)n1−ε = 0

Little Mellin transform

We introduce g? as the little Mellin transform of a bounded and measurable
function g as follows when <z < 0

g?(z) :=

ˆ 1

0

g(t)t−z−1dt

We can now state the analytic conjecture.

Analytic conjecture
Let g be a function of quasi bounded variation ]0, 1] → R satisfying g(1) 6= 0
and limx→0 g(x) 6= 0 which has the following properties:

• g is continuous on the left.

• g satisfies the HLR criteria.

• g? can be extended analytically to the whole complex plane with possibly
some singularities.

• inf {<(ρ) | ρ ∈ C ∧ g?(ρ) = 0} ∈ [0, 1] .

Then g is a FGV of index α(g) = inf {<(ρ) | ρ ∈ C ∧ g?(ρ) = 0}.

Remark
This conjecture is true for polynomials and for continuous functions of bounded
variation which are well approximated by polynomials. Using results from
tauberian theory related to the Mellin convolution ([BGT, Bin]), we think the
conjecture is also true for any function of bounded variation on [0, 1]. For func-
tions of quasi bounded variation on ]0, 1] the HLR criteria seems to play a central
role.

3The name HLR comes from the condition a(n) = O
(
1
n

)
in the first tauberian theorem

of Hardy-Littlewood and from the Ramanujan conjecture related to the behaviour of the
coefficients of Dirichlet series in the Selberg class (this remark will be relevant in 5.5.1.).
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2 Comparison conjecture
At the early stage of our study on FGV we thought that comparing Φ to a
simpler function could shed light on the value of α (Φ). Unfortunately our ideas
were too naive. Essentially we were confronted to the same problem than Turan
with his approach to RH based on the location of zeros of sections of the zeta
function[Bor1]. Indeed approaching the Ingham function by functions with a
finite number of discontinuities [Clo1] led us to the same kind of difficulties.
That’s why we are convinced that functions with infinitely many discontinuities
are needed and recently we came across a useful family of functions.

2.1 Broken harmonic functions
Let a, b be two reals satisfying −1 ≤ a < 1, 0 < a + b ≤ 1 and define xn by
x0 = 1, x1 = b

1−a and for n ≥ 2

xn+1 =
bxn

1− axn

Then we define the broken harmonic function g(a,b) for 0 < x ≤ 1 as follows

xn+1 < x ≤ xn ⇒ g(a,b)(x) =
x

xn

Examples

• g(−1,1) = Φ which has its discontinuities at x = 1
k for k ≥ 2 integer.

• g(−1/2,1)(x) = x
2

⌊
2
x

⌋
.

• For r > 1 we have g(0,1/r)(x) = xrb−
log x
log r c .

As we shall see the functions g(0,1/r) will be very interesting for our purpose. In
the sequel BHF will stand for broken harmonic function.

2.2 Comparison conjecture
BHF deserve attention since they are all built in a same way and their good
variation index seem to follow rules. Hence we elaborated a comparison conjec-
ture between them. The strong form of the conjecture relates all BHF whereas
the weak form is restricted to the Ingham function and to g(0,1/r) when r > 1.

First of all we conjecture that BHF are FGV which can be devided in 2 sets.
The set of BHF which satisfy the HLR crieria and the set of BHF which don’t
satisfy the HLR criteria.
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Strong form of the comparison conjecture

Let a, b, a′, b′ be 4 real values verifying:

• −1 ≤ a < 1, 0 < a+ b ≤ 1, −1 ≤ a′ < 1, 0 < a′ + b′ ≤ 1.

Suppose g(a,b) satisfies the HLR criteria and g(a′,b′) doesn’t satisfy the HLR
crieria. Then we have the following inequality between index of good variation

α
(
g(a,b)

)
≥ α

(
g(a′,b′)

)
Weak form of the comparison conjecture

Let r > 1. If g(0,1/r) doesn’t satisfy the HLR criteria then we have the following
inequality between its index and the index of Φ which satisfies the HLR criteria

α (Φ) ≥ α
(
g(0,1/r)

)
Remark There is a rough heuristic argument supporting the conjecture. Let
us define 2 sequences a and a′ as follows

n∑
k=1

akg(a,b)

(
k

n

)
=

n∑
k=1

a′kg(a′,b′)

(
k

n

)
=

1

2n

then we have according to FGV properties:

•
∑n
k=1 ak � n−α(g(a,b))+ε

•
∑n
k=1 a

′
k � n−α(g(a′,b′))+ε

Now if g(a,b) satisfies the HLR criteria but not g(a′,b′) then we have some chances
to get for N large enough

max

{∣∣∣∣∣
n∑
k=1

ak

∣∣∣∣∣ 1 ≤ n ≤ N

}
< max

{∣∣∣∣∣
n∑
k=1

a′k

∣∣∣∣∣ 1 ≤ n ≤ N

}

because a′n is bigger in absolute value than an.
This would mean α

(
g(a,b)

)
≥ α

(
g(a′,b′)

)
. In section 4 we provide an example

using the Liouville function (fig. 4) where this phenomenom seems true.

3 On the good variation index of g(0,1/
√

2)

It is this function which will show the relevance of the comparison conjecture.
Firstly the analytic conjecture does’nt allow us to determine the good variation
index of g(0,1/

√
2). Indeed we have

g?(0,1/r)(z) =
1− r1−z

(1− z)(1− rz)
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Therefore when g(0,1/r) satisfies the HLR criteria we have simply α
(
g(0,1/r)

)
=

1 which is the case when r ≥ 2 is an integer value (and we believe it is the only
case).

When r isn’t an integer value however g(0,1/r) clearly doesn’t satisfy the HLR
criteria and experiments show that α

(
g(0,1/r)

)
= 0 very often and sometime the

index is not trivial i.e. 0 < α
(
g(0,1/r)

)
< 1.

The simplest case for which the index seems not trivial is r =
√

2 since we
conjecture that we have

α
(
g(0,1/

√
2)

)
=

1

2

Experimental support
Let a(n) be defined by the recursion

Ag(0,1/√2)
(n) =

1

2n

Then we plot A(n)
√
n (fig. 1) where a fractal pattern appears which seems

to stay bounded along the y axis and just after we plot a(n)
√
n (fig. 2) showing

clearly that g(0,1/
√

2) doesn’t satisfy the HLR criteria.

fig.1
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fig.2

Hereafter we compute a(n) defined by Ag(0,1/√2)
(n) = 1

n . We can notice that
local maxima of A(n) in the halfplane y > 0 occur at values of n of form 3.2k.
Therefore we plot A(3.2k)

√
3.2k for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

fig.3
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The graph could converge or stay bounded by a slowly varying function
supporting the conjecture α

(
g(0,1/

√
2)

)
= 1

2 .

Remark
α
(
g(0,1/

√
2)

)
= 1

2 is an interesting conjecture in its own and should be confirmed
by more experiments. In general we think that:

• r ≥ 2 integer yields α
(
g(0,1/r)

)
= 1 (see APPENDIX 2 for some examples).

• r = m1/k for k ≥ 2 fixed integer and m ≥ 2 integer but ot a power of k
yields α

(
g(0,m−1/k)

)
= 1

k (see APPENDIX 3 where we take r = 2
1
3 ).

• If rj is never an integer value for j ≥ 1 integer then α
(
g(0,1/r)

)
= 0 (see

APPENDIX 4 for examples).

Right now we have no clue to show these assertions. However the fractal as-
pect of graphics suggest that a proof could exist. Some diophantin facts like∣∣∣2−N− 1

2 − k
n

∣∣∣ > C(N)
n2 should also play a role.

4 On RH
We have Φ?(z) = ζ(1−z)

1−z and Φ satifies the HLR criteria and the other conditions
of the analytic cojecture. Hence we have thanks to the known location of the
zeros of the zeta function

0 < α (Φ) ≤ 1

2
(1)

next since g(0,1/
√

2) doesn’t satisfy the HLR criteria from section 3 (fig.2) the
comparison conjecture (strong form or weak form) and the conjecture
α
(
g(0,1/

√
2)

)
= 1

2 yield

α (Φ) ≥ α
(
g(0,1/

√
2)

)
=

1

2
(2)

whence from (1) and (2) we get

α (Φ) =
1

2

and ζ(1− z) has no zero in the half-plane <z < 1
2 .
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Exeprimental comparison involving the Liouville function

Comparing things at the limit of the index is interesting. Hence letAg(0,1/√2)(n) =
1√
n
we plot

∑n
k=1(−1)Ω(k) (red) vs

∑n
k=1 ka(k) (blue)

fig.4

Plot of n−1/2
∑n
k=1 ka(k)

fig.5

The plot behaves like a very slowly varying function (of type log(n)ε) and
the fig.4 shows that the red graphic doesn’t come across the minima of the blue
graphic. This would mean

∑n
k=1(−1)Ω(k) � n1/2+ε implying RH is true.
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5 Generalisation

5.1 Generalisation of the Ingham function
Let χ be a caracter and let us define the function gχ on ]0, 1]

gχ(x) = x
∑

1≤k≤1/x

χ(k)

⌊
1

kx

⌋

Then we have

• gχ satisfies the HLR criteria

• g?χ(z) = ζ(1−z)L(1−z,χ)
1−z

Thus we can extend the comparison conjecture providing a broader definition
of BHF.

5.2 General definition of broken harmonic functions
This definition is an extension of the construction in section 2. Let u be a real
sequence satisfying

• 1 = u1 > u2 > u3 > ... > u∞ = 0.

Let gu be the left continuous function defined for n ≥ 1 and any x ∈]0, 1] by

un+1 < x ≤ un ⇒ gu(x) = pnx

where pn > 0 is an increasing real sequence such that uipi � 1 . Then gu is a
BHF.

5.3 Generalisation of the comparison conjecture
If gu is a BHF satisfying the HLR criteria and gu′ is a BHF which doesn’t satisfy
the HLR criteria then we have

α (gu) ≥ α (gu′)

5.4 Application to the generalised Riemann hypothesis
RH is true for L(s, χ).
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Proof

Without loss of generality we take the caracter modulo 4:

• χ = 1, 0,−1, 0, 1, 0,−1, 0, ...

giving L(s, χ) =
∑
n≥0

(−1)n

(2n+1)s the Dirichlet beta function. Let ui = 1
vi

where v
is the increasing sequence of integers which can be written as a sum of 2 squares.
Then keeping the notations in 5.2 and letting pi = vigχ

(
1
vi

)
we get

gχ = gu

which is a BHF. Then from 5.1 and the analytic conjecture we have from the
known location of the zeros of ζ(1− s)L(1− s, χ)

0 < α (gχ) ≤ 1

2
(3)

Next using again α
(
g(0,1/

√
2)

)
= 1

2 and the fact that g(0,1/
√

2) is a BHF
which doesn’t satisfy the HLR criteria we get from the conjecture 5.3

α (gχ) ≥ 1

2
(4)

Finally (3) and (4) yield α (gχ) = 1
2 and ζ(1 − s)L(1 − s, χ) has no zero in

the half-plane <s < 1
2 .

5.5 Remarks
5.5.1 Extension to other L functions

The method in section 5 for Dirichlet L functions can be extended naturally to
other L functions. For instance let us consider the Ramanujan τ function and
the associated automorphic form. It suffices to take the following function

gτ (x) = x
∑

1≤k≤1/x

τk
k11/2

⌊
1

kx

⌋

which is a BHF and we believe that it satisfies the HLR criteria. Indeed
computing 2000 terms of a(n) given by the recursion Agτ (n) = 1

2n it seems that
gτ satisfies the HLR criteria as shown by the graphic below (fig. 6) where we
compare na(n) to ± log n (red)
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fig. 6

It looks like a(n)n stays of order log n thus we would have limn→∞ a(n)n1−ε =
0 for any ε > 0 and gτ would satisfy the HLR criteria.

5.5.2 On the zeta function of Davenport and Heilbronn

It is interesting to see that our method doesn’t work for this function.
We consider ζH(s) =

∑
n≥1

h(n)
ns where h is the 5-periodic sequence [1, ξ,−ξ,−1, 0]

where ξ = −2+
√

10−2
√

5

−1+
√

5
. It is known that ζH satisfies a functional equation like

ζ and has nontrivial zeros off the critical line. Letting

gH(x) = x
∑
k≥1

h(k)

⌊
1

kx

⌋

and computing 10000 terms of a(n) given by the recursion AgH (n) = 1
2n it is

clear that gH doesn’t satisfy the HLR criteria as shown below (fig. 7) where we
have compared na(n) with ±

√
n (red).
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fig. 7

na(n) seems not bounded by a slowly varying function and we wouldn’t
have limn→∞ a(n)n1−ε = 0 for any ε > 0. Therefore gH doesn’t satisfy the
HLR criteria and we can say nothing about the value of α (gH).

The fact that h(n) is not multiplicative and that ζH has no Euler product
is certainly the cause of this phenomenon. Indeed to us the HLR criteria has
something to do with the quasi-multiplicity of an which is a concept that will
be described in more details later.
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APPENDIX 1
Ag(0,1/√7)

(n) = 1
n2 plot of A(n)

√
n

It could be bounded and so α
(
g(0,1/

√
7)

)
= 1

2 .
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APPENDIX 2
Ag

(0,2−1/3)
(n) = 1

2n plot of A(n)n1/3

It seems bounded and α
(
g(0,2−1/3)

)
= 1

3 is probable.

Ag
(0,2−1/3)

(n) = 1
2n plot of a(n)n1/3

g(0,21/3) doesn’t satisfy the HLR criteria.
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APPENDIX 3
Ag(0,1/2)(n) = 1

2n plot of A(n)n

It is clearly bounded with a simple fractal pattern.

Ag(0,1/2)(n) = 1
2n plot of a(n)n

The HLR criteria is satisfied.
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Ag(0,1/5)(n) = 1
2n plot of A(n)n

Ag(0,1/5)(n) = 1
2n plot of a(n)n
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APPENDIX 4
Ag(0,π)

(n) = 1
2n plot of A(n)

It seems bounded and so α
(
g(0,1/π)

)
= 0.

Ag(0,2/3)(n) = 1
2n plot of A(n)

It seems bounded and so α
(
g(0,2/3)

)
= 0.
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