Image classification using object detectors
Thibaut Durand, Nicolas Thome, Matthieu Cord, Sandra Avila

To cite this version:
Thibaut Durand, Nicolas Thome, Matthieu Cord, Sandra Avila. Image classification using object
detectors. IEEE International Conference on Image Processing, Sep 2013, Melbourne, Australia.
pp.4340 - 4344, 10.1109/ICIP.2013.6738894 . hal-01078079

HAL Id: hal-01078079
https://hal.science/hal-01078079
Submitted on 27 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ABSTRACT

Image categorization is one of the most competitive topics in computer vision and image processing. In this paper, we propose to use trained object and region detectors to represent the visual content of each image. Compared to similar methods found in the literature, our method encompasses two main areas of novelty: introducing a new spatial pooling formalism and designing a late fusion strategy for combining our representation with state-of-the-art methods based on low-level descriptors, e.g., Fisher Vectors and BossaNova.

Our experiments carried out in the challenging PASCAL VOC 2007 dataset reveal outstanding performances. When combined with low-level representations, we reach more than 67.6% in MAP, outperforming recently reported results in this dataset with a large margin.

Index Terms— Image Categorization, Object/Region Detectors, Spatial pooling, Combination with low-level Representations

1. CONTEXT

Image classification refers to the ability of predicting a semantic concept based on the visual content of the image. This topic is extensively studied due to its large number of applications in areas as diverse as Image Processing, Information Retrieval, Computer Vision, and Artificial Intelligence [1]. This is also a very competitive research area and state-of-the-art methods are currently evolving.

Bag-of-Words (BoW) representations using SIFT as low-level features proved to be the leading strategy in the last decade. Many attempts for improving the initial method [2] imported from text retrieval have been done, and an exhaustive review of the literature is far beyond the scope of the paper. However, we can highlight methods that enrich the BoW representation at the coding step, with sparse coding [3, 4], or with a vectorial representation, as done in Fisher Vectors [5]. It is also possible to improve the pooling step, as proposed with BossaNova [6, 7]. Using a spatially-preserving operator, e.g., Spatial Pyramidal Matching (SPM) [8], also proves to be crucial for reaching good classification performances.

Another strategy for image classification is to use deep networks with biologically inspired model [9, 10]. Recently, deep learning has attracted lots of attention due to the large success of deep convolutional nets in the Large Scale Visual Recognition Challenge 2012 (ILSVRC2012) [11]. Using pixels as input, the network automatically learns useful image representations for the classification task. The results reveal that deep learning significantly outperforms competitors using BoW models with Fisher Vectors. However, although this trend is unquestionable for this large-scale context (1 million training examples), the feasibility of reaching state-of-the-art performances in other complex datasets with fewer training examples, e.g., PASCAL VOC, remains unclear.

Methods using object detectors is another promising direction for building powerful image representations. Nowadays, the abundance of annotated images in Internet offers the opportunity to learn a wide range of object or regions classifiers. An increasing number of pre-trained detectors are even available, making their widespread use appealing. One option is to use the trained detectors using a sliding window strategy to produce detection maps for each concept. These maps then constitute mid-level representations or attributes that can further be processed to produce the final image representation.

Pioneer works in that direction were proposed with Object Bank (OB) [11] and Classemes [12]. With OB [11], several regions and object detectors are used. These detectors are then spatially pooled to produce a compact image representation that is shown to give competitive results in various public datasets (15-Scenes, UCI-sports, MIT-indoor, etc).

2. PROPOSED IMAGE REPRESENTATION

In this paper, we propose a novel method using object detectors to create a discriminative and compact image signature. The whole pipeline of our approach is depicted in Figure 1.

As in Object Bank [11], we use object and region detectors as a first step in our process. However, we also suggest some improvements, both methodological and experimental. Our contribution can be summarized as follows. Firstly, we introduce a new method for spatially pooling response maps for object detectors. We enrich the signature compared to [11] by keeping n maximums, and propose a different method for pooling objects and region maps. We experimentally vali-
date that the proposed improvements favorably impact performances. Secondly, we propose to combine our representation with state-of-the-art BoW-like representations, i.e. [5, 7]. Last but not least, we carried out classification experiments on the challenging PASCAL VOC 2007 dataset. The proposed representation based on OB is by itself very competitive while being extremely compact. When combined to low-level representations, the results are shown to significantly outperform previously reported performances in this dataset.

2.1. Proposed Filter Bank

As in Object Bank (OB [11]), the main idea is using many object detectors as the basic representation of images. The word “object” is used in its very general form: an object can be a car, a person, a cat, sky, water, etc.

We use two well known object detectors: the latent SVM object detectors [13] for most of the blobby objects, and the texture classifier by Hoiem [14] for more texture- and material-based objects / regions. The latent SVM object detector uses a sliding window approach and works like a classifier: it determines whether or not there is an object of interest at the given position and scale of the image. For each scale, we obtain a response map. Then, there is a post-treatment for eliminating repeated detections via non-max suppression. The texture classifier by Hoiem has a functioning similar to the latent SVM object detector. But, there is not post-treatment. It returns a response map for each scale.

2.2. New spatial pooling strategy

The object and region filter banks output a set of region maps. As in [11], we aggregate the response maps in different spatial areas to extract a detection statistics. This pooling step has two interesting features: it helps to gain invariance and provides a compact signature for each image. If we consider N_c detectors and N_r spatial regions, the proposed representation Z concatenates the aggregation operator, denoted as $aggr(r, c)$ for each detector c and regions r, so that:

$$Z = [aggr(r, c)]_{(r,c) \in \{1;N_r\} \times \{1;N_c\}}$$

In our approach, however, the spatial pooling operator $aggr(r, c)$ differ from [11] in two important aspects.

2.2.1. Spatial pooling with n maximums

We propose to define a vectorial pooling operator for object detectors, denoted as $aggr(r, c) = n$-max(r, c). Instead of keeping a scalar value (e.g. single max as done in [11]), we extract a vector of size n by taking the n bounding boxes with the n largest detection scores (after non maxima suppression). Spatial pooling with n maximums permits reduce the dimension while keeping information about the number of objects of class c present in region r.

2.2.2. Different pooling for objects and textures

On the contrary to [11], we propose to use a different pooling policy for objects and textures. In Object Bank [11], max-pooling is used for all detectors $c \in \{1;N_c\}$. Max-pooling
seems to be appropriate for object detectors because we want
detect the presence (or the absence) of an object in an im-
age. However, applying the same strategy for region classi-
fiers characterized by texture is more questionable. Indeed,
texture features are intrinsically lower-level than object de-
tector, so that false positives are supposed to occur more fre-
quently. This is illustrated in Figure 2. Although the sky de-
tector shown in Figure 2b) fits sky areas pretty well, there are
some outliers, e.g. high values appear in the grass area.

Max-pooling exacerbates the impact of false positives
done by texture classifiers, whereas sum-pooling is supposed
to attenuate it. Therefore, we propose to use max-pooling
for object detectors and sum-pooling for region classifiers, so
that our spatial aggregation operator can be written as:

\[
\text{agr}(r, c) = \begin{cases}
\text{sum}(r, c) & \text{if } c \text{ is a textured object} \\
\text{n-max}(r, c) & \text{otherwise}
\end{cases}
\]

If we denote \(N_{\text{obj}}\) and \(N_{\text{text}}\) to be the number of object
and texture detectors, respectively, the final dimension of our
image representation is \(N_{\text{r}} \cdot (n \cdot N_{\text{obj}} + N_{\text{text}})\).

2.3. Combination with low-level representations

In this paper, we also explore the combination between our
signature and low-level representations: BossaNova (BN) [7]
and Fisher Vectors (FV) [5]. We aim at studying the comple-
mentarity of the information stemming from object detectors
and information stemming from low-level representation. We
propose a late fusion strategy: we first learn individual clas-
sifiers on our representation, that we denote as \(f_{\text{ours}}\) and on
BossaNovaFisher, that we denote as \(f_{\text{BNFV}}\). for each image
\(x\), the classification score \(f(x)\) is then computed as a linear
combination between \(f_{\text{ours}}\) and \(f_{\text{BNFV}}\):

\[
f(x) = \alpha \cdot f_{\text{ours}}(x) + (1 - \alpha) \cdot f_{\text{BNFV}}(x) \quad (2)
\]

The weighting coefficient \(\alpha\) represents the relative impor-
tance given to the two representations. It can be fixed heuris-
tically, or learned by cross-validation.

3. EXPERIMENTS

In this section, we first describe our experimental setup and
we then show our results on the PASCAL VOC 2007 dataset.

3.1. Experimental setup

The PASCAL VOC challenge 2007 [15] consists in recogniz-
ing 20 visual object classes in realistic scenes. It contains
two main tasks: classification and detection. We evaluate our
representation for the classification task. The dataset consists
of 9,963 images, splitting into three subsets: train (2,501),
val (2,510) and test (4,952). Our experimental results are ob-
tained on train+val and test sets.

We choose to use 20 latent SVM object detectors which
correspond to 20 object categories of the VOC 2007: aereo-
plane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, din-
ingtable, dog, horse, motorbike, person, pottedplant, sheep,
sofa, train and tvmonitor. We employ the models available
at [13]. We also utilize 6 texture classifiers of Object Bank
[11]: rock-stone, sand, water, sky, grass and building-edifice.
Those object and region filters are applied in each image, re-
sulting in detection maps which are spatially pooled using the
SPM strategy [8]. We use the standard SPM layout of the
VOC 2007, a three-level pyramid (1 \(\times\) 1, 2 \(\times\) 2, 3 \(\times\) 1).

The aggregation method proposed in this paper outputs a vector \(Z\) for each image, as defined in Equation (1). An “one-
versus-all” SVM classifier for each object class is then trained
on the vectors obtained. The classification performance is
evaluated using the Mean Average Precision (MAP) across
all classes. Here, we use the LIBSVM library [16] to train the
classifiers. We apply the C-SVC SVM type, with the constant
value of \(C = 1\). Radial basis function (RBF) kernel matrices
are computed as \(\exp(-\gamma d^2(x, x'))\) with \(d\) being the distance
and \(\gamma\) being set to the inverse of the pairwise mean distances.

To evaluate the complementarity of our signature and
BNFV representation [7], we keep the BNFV parameters
values the same as in [7]. The BossaNova (BN) parameter
values are: 4,096 visual words, 2 bins, \(\lambda_{\text{min}} = 0.4\) and
\(\lambda_{\text{min}} = 2.0\) (range of distances for the histogram computa-
tion), and \(s = 10^{-3}\) (weighted factor); and the Fisher Vector
(FV) is computed with 256 Gaussians. Furthermore, a linear
and a Gauss-\(\ell_2\) kernel matrices are computed for FV and
BN, respectively. The BNFV representation is obtained by
combining the BN and FV kernel matrices. The MAP on
PASCAL VOC 2007 with those parameters is 60.3%.

3.2. Classification results

Our method is an improved version of the OB [11] with re-
spect to the pooling policy: 1) it keeps \(n\) maximums for ob-
jects (Section 2.2.1) and 2) it applies the sum-pooling for the
textured objects (Section 2.2.2). In order to quantify the per-
formance gain brought out by those contributions, we perform
the following experiments.
First, we compute our signature using object detectors only. We then vary the number of maximum n used for the n-max pooling method. Therefore, for $n = 1$ (our baseline, $\sim OB$ [11]), the MAP is 56.7%. For $n = 2$, the MAP is 57.3% (+0.6%). For $n > 2$, however, the performances start to drop.

Next, to validate our assumption that the sum-pooling for textured object is better than the max-pooling, we investigate both pooling strategies with a “texture signature”, which is build with the 6 textured objects only. Thus, for the sum-pooling strategy, the MAP is 23.8%, while for the max-pooling approach is 14.9%. That confirms the relevance of the improvement introduced Section 2.2.2. Moreover, for some categories, its improvement reached up to 22.6% (sum vs max): aeroplane (48.0% vs 25.4%), car (42.7% vs 30.4%) person (61.7% vs 54.9%). Our final image representation consists in concatenating the “texture signature” with the n maximums signature. The results obtained with sum-pooling for textured objects is 59.0% (+2.3%), whereas only 58.0% (+1.3%) with max-pooling. In brief, our representation shows very good performance (59.0%), besides its extremely compact dimension: $(n \times 20 + 6) \times 8$. The detailed results are shown in Table 1.

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP (%)</th>
<th>aeroplane</th>
<th>bicycle</th>
<th>bird</th>
<th>boat</th>
<th>bottle</th>
<th>bus</th>
<th>car</th>
<th>cat</th>
<th>chair</th>
<th>cow</th>
</tr>
</thead>
<tbody>
<tr>
<td>OURS</td>
<td>59.0</td>
<td>64.7</td>
<td>75.6</td>
<td>32.1</td>
<td>62.7</td>
<td>48.2</td>
<td>70.3</td>
<td>83.8</td>
<td>49.3</td>
<td>57.2</td>
<td>48.4</td>
</tr>
<tr>
<td>BNFV</td>
<td>60.3</td>
<td>79.5</td>
<td>65.6</td>
<td>53.6</td>
<td>72.1</td>
<td>32.7</td>
<td>66.0</td>
<td>79.0</td>
<td>59.7</td>
<td>54.5</td>
<td>43.0</td>
</tr>
<tr>
<td>LF = OURS+BNFV</td>
<td>67.6</td>
<td>80.8</td>
<td>78.8</td>
<td>55.4</td>
<td>73.8</td>
<td>52.2</td>
<td>76.6</td>
<td>86.4</td>
<td>64.1</td>
<td>62.1</td>
<td>55.2</td>
</tr>
<tr>
<td>OURS</td>
<td>52.4</td>
<td>34.2</td>
<td>76.9</td>
<td>68.1</td>
<td>64.8</td>
<td>84.5</td>
<td>31.2</td>
<td>45.3</td>
<td>54.6</td>
<td>78.5</td>
<td>55.1</td>
</tr>
<tr>
<td>BNFV</td>
<td>60.0</td>
<td>46.8</td>
<td>78.6</td>
<td>64.8</td>
<td>84.5</td>
<td>31.2</td>
<td>45.3</td>
<td>78.5</td>
<td>55.1</td>
<td>78.5</td>
<td>55.1</td>
</tr>
<tr>
<td>LF = OURS+BNFV</td>
<td>66.6</td>
<td>49.7</td>
<td>83.4</td>
<td>74.7</td>
<td>89.8</td>
<td>37.9</td>
<td>50.7</td>
<td>64.1</td>
<td>80.9</td>
<td>68.9</td>
<td>55.1</td>
</tr>
</tbody>
</table>

Table 1. Image classification MAP (%) on PASCAL VOC 2007 dataset (LF: Late Fusion, OURS: our signature)

Finally, we evaluate the complementarity of BNFV and our signature, with n maximums for objects and sum-pooling for textures. In order to assign equal importance to the both signatures, we choose $\alpha = 0.5$. From the Table 2 we can notice the considerable improvement obtained by late fusion, reaching a MAP of 67.6% (+8.6%/our signature). This corresponds to a remarkable success of the complementariness of BNFV and our signature. Furthermore, we can observe that the combination surpasses the state-of-the-art results (+7.3%/BNFV, +6.4%/FV [17]). We also outperform method that combine object detectors and low-level representations (+1.3%/[18], +1.0%/[19]), but [19] use more external data than us. To the best of our knowledge, these is the best result reported so far on PASCAL VOC 2007.

Table 2. State-of-the-art results (MAP %) on PASCAL VOC 2007 dataset. We outperform best results with the proposed Late Fusion approach.

![Fig. 3. Recall/Precision curve for the bus category](image)

4. CONCLUSION

We present an approach for image classification based on object detectors, where a novel approach for pooling filter maps is proposed. The evaluation on the challenging VOC 2007 dataset show very good results with a very compact image representation. When combined with low-level representations, we outperform state-of-the-art performances. Directions for future works include active learning [20] and a more proper representation learning from the detection maps using deep learning.
5. REFERENCES

