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Abstract

This paper generalizes asymptotic properties obtained in the
observation-driven times series models considered by [7] in the sense
that the conditional law of each observation is also permitted to depend
on the parameter. The existence of ergodic solutions and the consis-
tency of the Maximum Likelihood Estimator (MLE) are derived under
easy-to-check conditions. The obtained conditions appear to apply for a
wide class of models. We illustrate our results with specific observation-
driven times series, including the recently introduced NBIN-GARCH
and NM-GARCH models, demonstrating the consistency of the MLE
for these two models.

MSC: Primary: 62F12; Secondary: 60J05.
Keywords: consistency, ergodicity, maximum likelihood, observation-driven
models, time series of counts.

1 Introduction

Observation-driven time series models have been widely used in various dis-
ciplines such as in economics, finance, epidemiology, population dynamics,
etc. These models have been introduced by [4] and later considered by [19],
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[5], [11], [17], [9], [6] and [7]. The celebrated GARCH(1, 1) model, see [2], as
well as most of the models derived from this one, see [3] for a list of some of
them, are typical examples of observation-driven models. Observation-driven
models have the nice feature that the associated (conditional) likelihood and
its derivatives are easy to compute and the prediction is straightforward. The
consistency of the maximum likelihood estimator (in short, MLE) for the
class of these models can be cumbersome, except when it can be derived us-
ing computations specific to the studied model (the GARCH(1,1) case being
one of the most celebrated example). When the observed variable is discrete,
general consistency results have been obtained only recently in [6] or [7] (see
also in [13] for the existence of stationary and ergodic solutions to some
observation-driven time series models). However, the consistency result of
[7] applies to some restricted class of models and does not cover the case
where the distribution of the observations given the hidden variable also de-
pends on an unknown parameter. We now introduce three simple examples,
to which the results of [7] can not be directly applied. The first one is the neg-
ative binomial integer-valued GARCH (NBIN-GARCH) model, which was
first introduced by [20] as a generalization of the Poisson IN-GARCH model.
The NBIN-GARCH model belongs to the class of integer-valued GARCH
models that account for overdispersion (i.e., variability is larger than mean)
and potential heavy tails in the high values. In [20], the author applied this
model to treat the data of counts of poliomyelitis cases in the USA from 1970
to 1983 reported by the Centres for Disease Control, where data overdisper-
sion was detected. The estimation result showed that NBIN-GARCH(1,1)
outperformed among some commonly used models such as Poisson and Dou-
ble Poisson models. The NBIN-GARCH(1, 1) model is formally defined as
follows.

Example 1 (NBIN-GARCH(1, 1) model). Consider the following recursion.
Xpr1 =w+aXy +bYy ,

Yir1|Xokt1, Yor ~ NB (7”7 %) :
where X}, takes values in X = Ry, Y}, takes values in Z4 and § = (w,a,b,r) €
(0,00)* is an unknown parameter. In (1), AN'B(r,p) denotes the negative
binomial distribution with parameters » > 0 and p € (0,1), that is: if Y ~
NB(r,p), then P(Y = k) = %?ﬁ? (1—p)"p” for all k > 0, where I stands for
the Gamma function. Though substantial analysis on this model has been
carried out in the literature, to the best of our knowledge, the consistency
of the MLE has not been treated, see the end of the discussions of Section 6
in [20].

(1)

The second example is the univariate normal mixture GARCH model
(NM-GARCH) proposed by [12] and later considered by [1]. The NM-
GARCH model is another natural extension of GARCH processes, where



the usual Gaussian conditional distribution of the observations given the
hidden volatility variable is replaced by a mixture of Gaussian distributions
given a hidden vector volatility variable. The NM-GARCH model has the
ability of capturing time variation in both conditional skewness and kurto-
sis, while the classical GARCH cannot. In [1], the NM-GARCH(1, 1) model
was applied to examine the data of exchange rates consisting of daily prices
in US dollars of three different currencies (British pound, euro and Japanese
yen) from 2 January 1989 to 31 December 2002. The empirical evidence sug-
gested the best performance of NM(2)-GARCH(1, 1) when compared to the
classical GARCH(1, 1), standardized symmetric and skewed t-GARCH(1,1)
models applied to this same data. The definition of this model is formally
stated as follows.

Example 2 (NM(d)-GARCH(1,1) model). Let d € N\ {0} and consider
the following recursion.

Xpp1 =w+ AXy + Yib

Vier1 | Xoks 1, Yo ~ GO (Xpr1;-) (2)
dGG(X’ ) d e~/ 2w d
I — R
dv (y) Z’W (271'56()1/2 ; X € (Oa OO) , Y € )

(=1

where v is the Lebesgue measure on R, X, = [X; ... Xng]T takes values
in X =R%; v = [y1...74)7 a d-dimensional vector of mixture coefficients
belonging to the d-dimensional simplex

d
sz{veRi:Zw:l}, (3)
/=1

w, b are d-dimensional vector parameters with positive and non-negative
entries, respectively and A is a d X d matrix parameter with non-negative
entries. Here we have §# = (y,w,A,b). Note that G? depends on 6 only
through the mixture coefficients ~q,...,7v4. If d = 1, we obtain the usual
conditionally Gaussian GARCH(1,1) process. In such a case, since v = v, =
1, GY no longer depends on 6. Up to our knowledge, the usual consistency
proof of the MLE for the GARCH cannot be directly adapted to this model.

Finally, we consider the following new example, where a threshold is
added to the usual INGARCH model in the conditional distribution.

Example 3 (Threshold INGARCH model). Consider the following recur-
sion.
X1 =w+aXy +bYy

(4)
Yir1| X041, Yoo ~ P (X1 AT)



where X}, takes values in X = (0,00), Y} takes values in Z; and 0 =
(w,a,b,7) € (0,00)* is an unknown parameter. Comparing with the usual
INGARCH model, a threshold 7 has been added in the conditional observa-
tion distribution. This corresponds to the practical case where the hidden
variable has an influence on the observation up to this threshold.

For a well-specified model, a classical approach to establish the consis-
tency of the MLE generally involves two main steps: first the maximum
likelihood estimator (MLE) converges to the maximizing set O, of a limit
criterion, and second the maximizing set indeed reduces to the true param-
eter 60, which is usually referred to as solving the identifiability problem. In
this paper, we are interested in solving the problem involved in the first step,
that is, the convergence of MLE. We extend the convergence result of MLE
obtained in [7], which is valid for a restricted class of models, to a larger
class of models in which the three examples introduced above are embed-
ded. More precisely, we show the convergence of MLE in observation-driven
models where the probability distributions of observations explicitly depend
on the unknown parameters. Moreover, we provide very simple conditions
that are easy to check, as shown by the three illustrating examples.

The paper is organized as follows. Specific definitions and notation are
introduced in Section 2. Then, Section 3 contains the main contribution of
the paper, that is, sufficient conditions for the existence of ergodic solu-
tions and for the consistency of the MLE. These results are then applied in
Section 4 to the three examples introduced above. Numerical experiments
for the NBIN-GARCH(1, 1) model are given in Section 5. Finally, Section 6
provides the proofs of the main results, mainly inspired from [7].

2 Definitions and notation

Consider a bivariate stochastic process {(Xg, Yx) : k € Z1} on X x Y, where
(X,d) is a complete and separable metric space endowed with the associated
Borel o-field X and (Y, )) is a Borel space. Let (0, A), the set of parameters,
be a compact metric space, {G? : # € ©} be a family of probability kernels
on X x Y and {(z,y) — ¢Z(x) : 6 € O} be a family of measurable functions
from (XxY,X®Y) to (X, X). The observation-driven time series model can
be formally defined as follows.

Definition 1. A time series {Y; : k € Zi} valued in Y is said to be
distributed according to an observation-driven model with parameter § € ©
if there is a bivariate Markov chain {(Xy,Yx) : k € Z4+} on X x Y whose
transition kernel K satisfies

K’((x,y); d2'dy’) = dy9(»)(da’) G°(a';dy) , (5)

where 0, denotes the Dirac mass at point a. Moreover, we will say that the
observation-driven time series model is dominated by some o-finite measure



von (Y,)) if for all # € X, the probability kernel G?(x; ) is dominated by v.

In this case we denote by ¢%(z;-) its Radon-Nikodym derivative, ¢°(x;y) =
dG® (z;-)
dv

ESECR

(y), and we always assume that for all (z,y) € X x Y and for all

¢’ (z;y) > 0.

A dominated parametric observation-driven model is thus characterized
by the collection {(g%,4?) : 6§ € ©}. The class of observation-driven time
series models is a particular case of partially-observed Markov chains since
only Yi’s are observed, whereas Xj’s are hidden variables. Note that our
notation for observation-driven models is slightly different from that of [7]
where their sequence {Y;} corresponds to our sequence {Yj_1}. Note also
that the process {X} : k > 1} by itself is a Markov chain with transition
kernel defined by

RO A) = /1A(¢g(;¢)) GOlz:dy), z€X, AcX. (6)

However, observation-driven time series models do not belong to the class of
hidden Markov models. This can be seen in the following recursive relation,
which holds for all £ > 0,

X1 =¥y, (X) o

Vi1 | Fi ~ G (Xig1:)
where F, = 0 (Xyp, Xp11,Yr : £ < k,0 € Z,) and which can be represented
graphically as below.

om0 X — X1 -0 Xpgo ---»

| 0 A
w/la@/ |

| Y1 Yigo

Figure 1: Graphical representation of the observation-driven model.

The most popular example is the GARCH(1,1) process, where G%(z;-)
is a centered (say Gaussian) distribution with variance x and 1/)2(:6) is an
affine function of z and %2. One can readily check that Examples 1 and 2
are other instances of dominated observation-driven models.

The inference about model parameter is carried out by relying on the
conditional likelihood of the observations (Y1,...,Y;) given X; = z for an
arbitrary x € X. The corresponding conditional density function with respect
to v®" is, under parameter 6, for all x € X,



Yiin — ng <1/19<y1:k71>(90);yk) ; (8)

k=1

where, for any vector y1., = (1, - -, yp) € YP, 37 (y1 .p) 1s the X — X function
obtained as the successive composition of wyl, zpr, ..., and ngp,

7/}0 <y1:p> = ¢ %p 1 0 %1 ’ (9)

with the convention ¢?(ys)(z) = z for s > t. Then, the corresponding
(conditional) Maximum Likelihood Estimator (MLE) 6, ,, of the parameter
0, is defined by

0, n € argmax L 2(Y1m) (10)
0cO®

where

LY . (Y1n) = lzlng < (Y1:6— 1>($);yk> : (11)

In this contribution, we study the convergence of éxn as n — oo for some
well-chosen value of x under the assumption that the model is well specified
and the observations are in a steady state. This means that we assume
that the observations {Yj : k € Z,} are distributed according to P’ with
0, € ©, where, for all § € ©, P denotes the stationary distribution of the
observation-driven time series corresponding to the parameter 6. However
whether such a distribution is well defined is not always obvious. We will
use the following ergodicity assumption.

(A-1) For all § € ©, the transition kernel K of the complete chain admits a
unique stationary distribution 7% on X x VY.

With this assumption, we can now define P?. The following notation and
definitions will be used throughout the paper.

Definition 2. For any probability distribution g on X x Y, we denote by
P? the distribution of the Markov chain {(Xj,Y%), k > 0} with kernel K*
and initial probability mesure y. Under Assumption (A-1), we denote by 7¢
and 7Tg the marginal distributions of 7? on X and Y, respectively and by P?
and P? the probability distributions defined respectively as follows.

a) P? denotes the extension of P, on the whole line (X x Y)Z.
b) P? is the corresponding projection on the component Y%,

The probability distributions PY and PY are more formally defined by
setting, for all m € Z and B € Y®(m+23),



P <Y’”+Z* X B) — P (xZ X (Ym+Z* X B)) =P, (xm+Zi X B) . (12)
or equivalently, using the canonical functions Y, k € Z,

P (Yii1:00 € B) =P (Yii1:00 € B) = PY (Yot 1.00 € B) . (13)

s

Here and in what follows, we abusively use the same notation Y3 both for the
canonical projection defined on Y and for the one defined on (X x Y)%+. We
also use the symbols E and E? to denote the expectations corresponding to
P? and P?, respectively.

3 Main results

3.1 Preliminaries

In this section, we follow the same lines as in [7] to derive the convergence of
the MLE éwn for a general class of observation-driven models. The approach
is to establish that, as the number of observations n — oo, there exists a
(Y2, Y®2) — (R, B(R)) measurable function p?(-|-) such that the normalized
log-likelihood L%n (Y1.) defined in (11), for some appropriate value of x, can
be approximated by

n
n Y g’ (VilYook1) -
k=1

To define p?(-|-), we set, for all y_oo.1 € YZ=, whenever the following limit
is well defined,

0 lim ¢° <¢9<y_m:0>(x); yl) if the limit exists,
p (yl ‘y—oo:O) = q Mmoo .
00 otherwise.

By (A-1), the process Y is ergodic under P and provided that
EG* |:1I1+ pe(Yl‘Y—oo:O)] <00,
it follows that

111320 Lg,n(YMJ = E% [lnpe(YﬂY,oo:o)} , PPas.

In this paper we show that with probability tending to one, the MLE éxn
eventually lies in a neighborhood of the set

0, = argmax E% {lnpe(YﬂY,OO;o)] , (15)
0cO



which only depends on #,. In this contribution, we provide easy-to-check
sufficient conditions implying
lim A(éx,n,@*) =0, ]f”@*—a.s., (16)
n—oo
but, for the sake of brevity, we do not precisely determine the set ©,. Many
approaches have been proposed to investigate this problem, which is often
referred to as the identifiability problem. In particular cases, one can prove
that ©, = {6}, in which case the strong consistency of the MLE follows
from (16). We will mention a general result which precises how the set O,
is related to the true parameter 6, in Remark 3. For the moment, let us
mention that we have

0, € O, (17)
provided that the following assumption holds:

(B-1) For all 6,6, € ©, we have

(i) 1f 0 # 0., y — p?(y|Y_cc:0) is a density function P%-as.
(ii) Under P%*, the function y — p* (y|Y_oo:0) is the conditional density
function of Y7 given Y_ ...

Indeed, (17) follows by writing for all § € ©,

pG* (Yl‘Y—oo:O)

E% |Inp?* (Y1|Y_oo.0) — Inp? (V1Y _o0)| = E?* |1

o [= O (V1Y _0e0)
— [0 [EG* [mp(l—_oo-o N ” 7
pe(Ylly—oo:O) 000

which is nonnegative under (B-1) since it is the expectation of a conditional
Kullback-Leibler divergence.

3.2 Convergence of the MLE

In this part, we always assume that (A-1) holds. The following is a list of
additional assumptions on which our convergence result relies.

(A-2) There exists a function V' : X — R such that, forall @ € ©, 7¢(V) < oo.

Remark 1. Assumption (A-2) is usually obtained as a byproduct of the
proof of Assumption (A-1), see Section 3.3. It is here stated as an assumption
for convenience.

The following set of conditions can readily be checked on ¢? and 1°.
(B-2) For all y €Y, the function (6,z) — ¢°(2;%) is continuous on © x X.

(B-3) For all y €Y, the function (6, x) — 1/)3(:5) is continuous on © x X.

8



The function V appearing in (B-4)(viii) below is the same one as in Assump-
tion (A-2). Moreover, in this condition and throughout the paper we write
f <V for a real-valued function f and a nonnegative function V' defined
on the same space X, whenever there exists a positive constant ¢ such that

|f(z)] < cV(z) for all z € X.

(B-4) There existzy € X, aclosedset X; C X, o € (011), C > 0 and measurable
functions ¢ : X; =+ Ry, H : Ry — R4 and ¢ : Y — Ry such that the
following assertions hold.

(i) Forall € ® and (z,y) € X x Y, ¢g(x) € X;.
(i) sup  ¢’(z;y) < 0.
(0,2,y)€eO©x X1 xY
(iii) Forall§ € ©, n € Z;, x € X, and y1., € Y",

4 (¥ () @0) 0 (1) (@)) < " B(@) . (18)

(iv) 4 is locally bounded.
(v) Forall#e®andy €, 1/_)(1#3(3:1)) < o(y).
(vi) Forall € © and (z,2',y) € X1 x X1 XY,

0
g ('I; y) ' / C (d(z1,z)vd(z1,2")) 7
In < H(d(z,z")) e b L , 19

(vii) H(u) = O(u) as u — 0.
(viii) If C =0, then, for all 8 € ©,

G'Int o<V, (20)
otherwise, for all 0 € ©,

G%

N
<

. (21)

Let us now state our main result as follows.

Theorem 3. Assume that (A-1), (A-2), (B-2), (B-3) and (B-4) hold. Then,
letting 1 € X as in (B-4), the function p’(-|-) defined by (14) with x = x
satisfies (B-1) and the convergence (16) of the MLE holds with the set ©,
defined by (15).

For convenience, the proof is postponed to Section 6.1.

Remark 2. As noticed in [7], the techniques used to prove Theorem 3 also
apply in the misspecified case, where Y is not distributed according to P%*.
We do not pursue in this direction in this contribution.



The consistency of the MLE then follows from Theorem 3 by the follow-
ing remark.

Remark 3. In many specific cases, one can show that ©, defined by (15)
is the singleton {6,}. However this task appears to be quite difficult in
some cases such as Example 3. Instead one can use [8, Section 4.2], where
it is shown that the assumptions of Theorem 3 imply that ©, is exactly
the set of parameters 6 such that P? = P%. Thus we can conclude that
the MLE converges to the equivalence class of the true parameter. This
type of consistency has been introduced by [14] in the context of hidden
Markov models in order to disentangle the proof of the consistency from the
problem of identifiability. Recall that the model is identifiable if and only
if the equivalent classes {# : P’ = P} reduce to singletons {6,} for all
0, € O.

3.3 Ergodicity

In this section, the observation-driven model is studied to prove the condi-
tion (A-1). Since this is a “for all @ (...)” condition, to save space and alleviate
the notational burden, we will drop the superscript @ from, for example, G,
RY and v and respectively write G, R and 1, instead.

Ergodicity of Markov chains are usually studied using -irreducibility.
This approach is well known to be quite efficient when dealing with fully
dominated models, see [15]. It is not at all the same picture for observation-
driven models, where other tools need to be invoked, see [10, 7]. Since the
ergodicity is studied for a given parameter 6, the ergodicity results of [7]
directly apply, even though observation-driven models are restricted to the
case where g does not depend on the unknown parameter 6 in this reference.
Our main contribution here is to focus on an easy-to-check list of assump-
tions yielding the ergodicity conditions (A-1) and (A-2). We also provide a
lemma (Lemma 5) which gives the construction of the instrumental func-
tions « and ¢ used in the list of assumptions.

(A-3) The measurable space (X, d) is a locally compact, complete and separable
metric space and its associated o-field X is the Borel o-field.

(A-4) There exist (A, 3) € (0,1) x Ry and a measurable function V' : X — R
such that RV < AV + 3 and {V < M} is compact for any M > 0.

(A-5) The Markov kernel R is weak Feller, that is, for any continuous and
bounded function f defined on X, Rf is continuous and bounded on
X.

(A-6) The Markov kernel R has a reachable point, that is, there exists zp € X
such that, for any z € X and any neighborhood N of zg, R™(z;N) > 0
for at least one positive integer m.

10



(A-7) We have d(¥y(2), ¥y ("))

sup
(z,2’y)EXZXY d(z,2')
x#x’

<1

(A-8) There exist a measurable function a from X2 to [0, 1], a measurable func-
tion ¢ : X2 — X and a measurable function W : X2 — [1, 00) such that
the following assertions hold.

(i) For all (z,2') € X> andy €Y,
min {g(z;y), 9(z";9)} > olw,2")g (6(z,2");y) - (22)

(ii) For all x € X, W (z,-) is finitely bounded in a neighborhood of z,
that is, there exists 7, > 0 such that sup W (x,2) < oo.
z'eB(x,vx)

(iii) For all (z,2') € X2, 1 — a(x,2') < d(z, 2 )W (x,2).

(iv) sup(/Y Wwy(:c),wy(as’))G<¢<x,x’>;dy>—W(a:,x’>) < oo

where the sup is taken over all (z,2') € X2,

We can now state the main ergodicity result.

Theorem 4. Conditions (A-3), (A-4), (A-5), (A-6), (A-7) and (A-8) imply
that K admits a unique stationary distribution m on X x Y. Moreover mV <
oo for every V : X — Ry such that V < V.

The proof of Theorem 4 is postponed to Section 6.2 for convenience.

The first conclusion of Theorem 4 can directly be applied for all 8 € ©
to check (A-1). The second conclusion can be used to check (A-2). In doing
so, one must take care of the fact that although V may depend on #, V does
not.

Assumptions (A-4), (A-5) and (A-6) have to be checked directly on the
Markov kernel R defined by (6). To this end it can be useful to define, for
any given x € X, the distribution

Px = Pé,@G(x;-) (23)

on (X x Y)Z+, where P, is defined for any distribution 4 on X x Y as in
Definition 2. Then the first component process { X, k € Z} associated to
P, is a Markov chain with Markov kernel R and initial distribution &,.

We now provide a general framework for constructing a and ¢ that
appear in (A-8).

Lemma 5. Suppose that X = C° for some measurable space (S,8) and
C C R. Thus for all x € X, we write x = (x4)ses, where x5 € C for all
s € S. Suppose moreover that for all x = (x5)ses € X, we can express the
conditional density g(x;-) as a mizture of densities of the form j(xs)h(xs;-)

11



over s € S. This means that for all t € C, y — j(t)h(t;y) is a density with
respect to v and there exists a probability measure p on (S,S) such that

o(asy) = /S J(eh(zeyu(ds), yeY. (24)

We moreover assume that h takes non-negative values and that one of the
two following assumptions holds.

(F-1) For all y €Y, the function h(-;y) : t — h(t;y) is non-decreasing.
(F-2) For all y €'Y, the function h(-;y) : t — h(t;y) is non-increasing.

For all (z,2') € X2, denoting x A 2’ := (min{zs,7.})ses and z V 2’ =
(max{xs, 25})ses, we define a(z,z") and ¢(x,2’) as

/
a(z, ') = ;1’61£ ng X ;; and ¢(z,2') =z Az’ under (F-1);
a(z,2') = inf ‘7( M) and ¢(x,2’)=x Va2  under (F-2).
’ ses | j(zs V 2h) ’

Then o and ¢ defined above satisfy (A-8)(i).

Proof. We only prove this result under Condition (F-1). The proof is similar
under (F-2).
Since for all t € C, y — j(t)h(t;y) is a density with respect to v, we have

i) = (/ h(t; ?/)V(dy)>_1 >0.

Thus j is non-increasing on C. Clearly, the defined « takes values on [0, 1]
and ¢ defines a function from X2 to X. For all (z,2') € X? and y € Y, we
have

g(z:y) = / (@) h(as: y)u(ds)
j(zs V ah)h(zs A2l y)u(ds)

x \/x .
mz o) J zs AN x)h(zs A xl;y)p(ds)

[t { i Xz ; }j(:ﬂs A &) h(zs A s y)u(ds)

= a(z,2)g(p(z, 2);y) -
By symmetry of o and ¢, we get (22) and thus (A-8)(i) holds. O

V

v
\\\
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4 Examples

Let us now apply these results to prove the convergence of MLE of Exam-
ples 1, 2 and 3.

4.1 NBIN-GARCH model

Example 1 is a specific case of Definition 1 where v is the counting measure
onY =N,

1/13(.%’) =w+azx+by, (25)
. Ty+n) 1 " x \Y
o (@iy) = y!T'(r) <1 + x) <1 + :U> ’ (26)

with 6 = (w, a,b,7) in a compact subset © of (0,00)* and X = (0, 00).

In [20, Theorem 1], the equation satisfied by the mean of the observations
ur = E[Y%] is derived and is shown to admit a constant solution if and only
if

rb+a<l. (27)

This clearly implies that this condition is necessary to have a stationary
solution {Y%} with finite mean. However it does not imply the existence of
such a solution. In fact, the following result shows that (27) is indeed a
necessary and sufficient condition to have a stationary solution {Y3} with
finite mean. It also shows that all the assumptions of Theorem 3 hold, which,
with Remark 3, provides the consistency of the MLE ém,n for any z1 € X.

Theorem 6. Suppose that all = (w,a,b,r) in © satisfy Condition (27).
Then Assumptions (A-1), (A-2), (B-2), (B-3) and (B-4) hold with V being
defined as the identity function on X and with any 1 € X.

Proof. For convenience, we divide the proof into two steps.

Step 1. We first prove Assumptions (A-1) and (A-2) by applying Theorem 4.
We set V(z) = V(x) = 2 and thus we only need to check (A-3), (A-4), (A-5),
(A-6), (A-7) and (A-8). Condition (A-3) holds. We have for all § € O,

RV(z)=w+ (a+br)z = (a+br)V(z) +w,

which yields (A-4). The fact that the kernel R is weak Feller easily follows
by observing that, as p — p/, NB(r,p) converges weakly to NB(r,p'), so
(A-5) holds.

We now prove (A-6). Let oo = w/(1—a). Let € R and define recursively
the sequence zg = z,z, = w + azxp_q for all positive integers k. Since 0 <
a < 1, this sequence converges to the fixed point x,.. Therefore, defining P,

n (23), for any neighborhood N of z,, there exists some n such that
zn € N and we have
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R'(z;N) =P, (X, e N)>P, (X =ap forallk=1,...,n)
Py (Yo=...=Yp_ 1 =0)>0.

So (A-6) holds. Assumption (A-7) holds since we have for all (z,2/,y) €
X2 x Y with = # «/,
|1y () — by (2')]

=a<l1.
o — 2] ¢

To prove (A-8), we apply Lemma 5 with C = X, S = {1} (so p boils down

to the Dirac measure on {1}). For all (z,y) € X XY, let j(z) = (1%&) and

h(x;y) = I?;(,lzi—(%) <1+Lx>y Indeed, h satisfies (F-1). Thus by Lemma 5, for all

(z,2') € X? and y € Y, we get that

1 Ax
Ck(.%',.%'/):< +zTAx

W) S (O, 1] and qﬁ(m,x/) =x AN .%'/
VT

satisfy (A-8)(i). For any given r > 0, let a function W : X? — [1,00) be
defined by, for all (z,2') € X2, W(z,2') = 1V r. By definition of W, as a
constant function, (A-8)(ii) and (A-8)(iv) clearly hold. Moreover, (A-8)(iii)
holds since for all (z,2’) € X2, we have that

1—a(z, ) <A Vr)|z—2a|=W(z,2)|z -2 .

Therefore, (A-8) holds, which completes Step 1.
Step 2. We now prove (B-2), (B-3) and (B-4). By assumption on ©, then
there exists (w,,b,b, 7,7, a,a) € (0,00)% x (0,1)? such that

w<w<w, <b<b r<r<r, a<a+br<a.

Clearly, (B-2) and (B-3) hold by definitions of 1/13(1‘) and ¢°(z;y). It remains
to check (B-4) for a well-chosen closed subset X; and any z1 € X. Let X; =
[w,00) C X so that (B-4)(i) holds. By noting that for all (6, z,y) € © xXxY,
g?(x;y) < 1, we have (B-4)(ii). From (9) and (25), we have for all s < t,
yse € Y5 2 € X and 6 € ©,

) 1 — gt—st1 . . l=s
P (yse) (1) = w (ﬁ) +a e+ bY aly (28)
=0

Using (28), we have, for all § € ©, z € X and y1., € Y",

¢6<y1:n>($1) - ¢6<y1n>(x)‘ =a" ‘xl - 1" < a’ ’1’1 — .%" .
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This gives (B-4)(iii) and (B-4)(iv) by setting o = & < 1 and ¥ (z) = |71 —
z|. Next we set ¢, H and C to meet Conditions (B-4)(v) and (B-4)(vi)
and (B-4)(vii). Let us write, for all§ € © and y € Y,

\1’1 —¢§<x1>\ <w+ (L+a)r +by <@+ (1+a&)x + by
and, for all (z,2') € X? = [w, 00)?,

9’ (z;y) ‘

m = ‘(T‘i‘y) [hl(l +2') —In(1 —i—x)] +y [lnx —lnx'”

r+y)(l+w) " +yw ] [z -]

<
<[F+y(l4w )] |z — 2’| .
+(

Setting ¢(y) = wVi+(1+a )x1+(b\/(1—|—w 1))y, H(z) = z and C = 0 then
yield Conditions (B-4)(v), (B-4)(vi) and (B-4)(vii). Now (B-4)(viii) follows
from

/ln+ y G (x,dy) < /y GO (z,dy) = rz <7V (z) .
This concludes the proof. O

4.2 NM-GARCH model

The NM(d)-GARCH(1,1) of Example 2 is a specific case of Definition 1
where X = ]Ri and v is the Lebesgue measure on Y = R,

1/13( X) :w+Ax+y2b (29)
p o~ Y? /22y
g9 (x; ZWW, (x,y) X XY, (30)

and 6 = (v,w,A,b) € O, a compact subset of Py x (0,00)% x ]RiXd X ]R‘j_,
with P4 defined by (3).

In [12], it is shown that the equation satisfied by the variance of a uni-
variate NM(d)-GARCH(1,1) process admits a constant solution if and only
if

Amax(A +by") <1, (31)
where, for any square matrix M, |A|max(M) denotes the spectral radius of
M. It follows that the existence of a weakly stationary solution implies (31)
but it does not say anything about the existence of stationary or weakly
stationary solution. The result below shows that (31) is indeed a sufficient
condition for the existence of a stationary solution with finite variance. It

moreover provides with Theorem 3 and Remark 3 the consistency of the
MLE 6y, , for any x; € X.
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Theorem 7. Suppose that all 6 = (v,w, A,b) in © satisfy Condition (31).
Then Assumptions (A-1), (A-2), (B-2), (B-3) and (B-4) hold with V being
defined as any norm on X.

Proof. In this proof section, we set

d
V(x)=Ixl = |zl , (32)
(=1

for all x = (xy) € X. As in Theorem 6, we divide the proof into two steps.
Step 1. We first show that Assumptions (A-1) and (A-2) hold with the
above V by applying Theorem 4. Define V on X by setting

V(x) = (1+x0)"x,
where 1 is the vector of X with all entries equal to 1 and xg is defined by
1+xo=(I—(A+by")")" 11,

We indeed note that by Condition (31) the above inversion is well defined
and moreover

I—(A+by")) =143 (AT +4b7)"
E>1

and, since A, b, « all have non-negative entries, it follows that xg has non-
negative entries. Thus, for all x = (zy) € X,

Vix)=1Tx <V(x),

so that V' < V. Hence by Theorem 4, we thus only need to check (A-3),
(A-4), (A-5), (A-6), (A-7) and (A-8) with V defined as above for a given
0 = (v,w,A,b) € © (so we drop 6 in the notation in the remaining of Step
1). Condition (A-3) holds for any metric d associated to a norm on the finite
dimensional space X. (The precise choice of d is postponed to the verification
of (A-7).) We have

RV (x) = /V(w + Ax + y°b) G(x,dy)
=1 +x0) w+(1+x)" (A+by")x
=V(w)+17T - (A+by")) " (A+by" —I+1)x
= V(w) +xix
<V(w) + AV (x),
where we set A = maxy {x¢ /(1 +%0¢)} < 1. Hence (A-4) holds. Condition

(A-5) easily follows from the continuity of the Gaussian distribution with
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respect to its variance parameter. We now prove (A-6). From (9) and (29),
we have for all n > 1, yp.n,_1 € Y and x € X,

n—1

P {yom-1)(x) = A"x + > Ad(w+yn_;_;b). (33)
j=0

Let us use the norm

M| = maxz M, 5| = sup [Mx|

|x|<

on d x d matrices. Note that by (31), there exists § € (0,1) and ¢ > 0 such
that, for any k£ > 1,

A+ <ot (34)

Using that A, b, « all have nonnegative entries, we have
Ja4] = fea+ 2y 3)

Hence (I-A)~! = I+3 s AF is well defined and we set xoo = (I — A) 'w
so that, with (29), we have

n—1
UV (Youn—1)(X) — Xoo = A"x + Z Alw + Z v 1 jA’b.
j=>n j=0
Then, using definition (23), we get that, Py-a.s., for all n > 1,

|Xn - Xoo| = W)(Yb:nflﬂx) - Xoo|

< |A™(x — Xo0)| +Z |Aw| + <0<m<ax Y2> Z |Ab| .
i>n

With (34) and (35), this implies

— < . —
< <|Xn Xoo| < € [5 <|X Xoo| + 1—5 1—-6 03?% 1Y] L.

To obtain (A-6), it is sufficient to observe that, since g takes positive values
in (30), for any positive €, x € X and any n > 1,

PX< max Y2<6>>0.
0<j<n—1

Next we prove (A-7). We have
hy(x) — ¥y (x') = A(x —x') .

17



Since (34) and (35) imply that |Almax(A) < 1, there exists a vector norm
which makes A strictly contracting. Choosing the metric d on X as the
one derived from this norm, we get (A-7). To show (A-8), we again rely
on Lemma 5. Let us set C = (0,00) and S = {1,...,d} and define the
probability measure p on S by u({s}) = 7s, for all s € S. For all (t,y) €

CxY,let j(t) = W and h(t;y) = exp (—y?/2t). Obviously, Relation (24)
holds and h satisfies (F-1). Hence, Lemma 5 implies that o and ¢ defined
respectively for all x = (z1,...,2q), X' = (2,...,2)) € X by

1
/A%
a(x,x") = min {<w %) } € (0,1) and ¢(x,x') = (z1Az], ..., zaAZY),

1<0<d x V)

satisfy (A-8)(i). For x = (x1,...,2q4), X' = (2],...,2}) € X, we have
e — )|\ 2
1—a(x,x')=1— min (1 — 7/@)
1<e<d Ty \/xe

< : —1/\ /—1 I
_lrgnglgd(% zy ) [x — x|

<W(x,x")d(x,x'),

where d is the metric previously defined and W is defined by W(x,x’) =
1v (cd minlggd(:vzl A xz_l)) with ¢q > 0 is conveniently chosen (such a
constant exists since d is the metric associated to a norm and X has finite
dimension). Then (A-8)(ii) and (A-8)(iii) hold and, since for all y € Y and
x € X, 1y(x) has all its entries bounded from below by the positive entries
of w, W(ty(x),1y(x)) is uniformly bounded over (x,x’,y) € X x X x Y
and (A-8)(iv) holds. This completes Step 1.
Step 2 We now show that Assumptions (B-2), (B-3) and (B-4) hold.
Clearly, (B-2) and (B-3) hold by definitions of ¢Z(x) and ¢%(x;y). Tt
remains to show (B-4). Since © is compact, then

< mi <@, b<|b| <b, [Amax(A+byl) <p
w < min wy, lw| <@, b < [b] < b, [Amax(A +by") < p,

IA+by"|| <L

for some (w,@,b,b, p) € (0,00)* x (0,1) and L > 0. By [16, Lemma 12], we
note that this implies that, for all § € (p,1), there exists C > 0 such that
for all k > 1 and all 8 € O,

H(A—Irb’yT)kH <05k, (36)

We set X1 = [w, 00)? C X so that (B-4)(i) holds. Moreover, for all (6,x,y) €
O x X1 x VY, ¢’(x;y) < (27nw) /2. Thus, Condition (B-4)(ii) holds. Now let
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x1 € X. Using (33), (36) and (35), we have, for all x € X, y1., € Y" and
ESECR

w@ <y1:n>(xl) - ¢9 <y1:n>(x) = |An(X1 - X)|
<C&|x; — x| .
Using that the norm defining d is equivalent to the norm |-|, we get (B-4)(iii)

with B )
T/J(X) = Cl ’Xl - X’ )

for some positive constant C’. Hence (B-4)(iv) holds and since
‘Xl - wg(xl)‘ <(L+1) x| +w+y%,
we also get (B-4)(v) provided that
o(y) = (L+1) x| +@ + 5% (37)

It is straightforward to show that, for all 6 € ©, x € Xy, y € R, and

te{l,...,d},
dln g’ 1 /4> 1
. < 1 - .
‘ Oy (X’y)‘_2<22+g

Thus, by the mean value theorem, for all § € O, (x,x’) € Xy xXj and y €Y,

0 0/t 1 y2 1 /
‘hlg (x;9) —Ing (X;y)‘§§ 2t Ix —x'| .

We thus obtain (B-4)(v), (B-4)(vi) and (B-4)(vii) by setting C' = 0,

Hew = sp |x—x,
d(x,x")<u

and
d(y) = (L+1) x| +@ +1/(2w) + y° (b + w?) .

In addition, for all # € © and x € X, we have
/yng(x, dy) =~Tx .

Hence, using (32) with the above definitions, we obtain (B-4)(viii) and the
proof is concluded. O
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4.3 The Threshold INGARCH model

The threshold INGARCH(1, 1) in Example 3 is a specific case of Definition 1
where v is the counting measure on Y = Z_,

Yy(z) = w+az + by , (38)

TAT) (.%' A T)y (39)
yt

with § = (w,a,b,7) in a compact subset © of (0,00)* and X = (0,00). In

this model, if a < 1, we then have the ergodicity and consistency results as

stated in Theorem 8 below.

9 (a;y) =

Theorem 8. Suppose that all 6 = (w,a,b,7) in © satisfy a < 1. Then
Assumptions (A-1), (A-2), (B-2), (B-3) and (B-4) hold with V being defined
as the identity function on X and with any x1 € X.

Proof. Asin the proofs of the two theorems above, for convenience, we divide
the proof into two steps.

Step 1. We first prove Assumptions (A-1) and (A-2) by applying Theorem 4.
We set V(z) = V(z) = 2 and thus we only need to check (A-3), (A-4), (A-5),
(A-6), (A-7) and (A-8). Condition (A-3) holds with the usual metric on R.
We have for all € ©,

RV(z)=w+ar+blz A1) <aV(x)+ (w+ br),

which yields (A-4). The fact that the kernel R is weak Feller easily follows
by observing that, as 2 — 2/, P(x) converges weakly to P(z’) and the map
x +— x AT is continuous, so (A-5) holds.

The proof of (A-6) is similar to the NBIN-GARCH case of Theorem 6
and is thus omitted. Assumption (A-7) holds since we have for all (z,2/,y) €
X2 x Y with z # 2/,

[ty () — Yy (2')]

|z — 2’|

=a<l1.

To prove (A-8), we apply Lemma 5 with C = X; S = {1} (so p boils down
to the Dirac measure on {1}). For all (z,y) € X x Y, let j(z) = e=®"7) and
h(z;y) = (mg_'T)y Then h indeed satisfies (F-1). Thus by Lemma 5, for all
(z,2') € X2 and y € Y, we get that

a(z,2') = e”@VEINTHEAOAT ¢ (0.1] and  @(z,2') =z A2’

satisfy (A-8)(i).

Let W(x,2') =1 for all (z,2) € X2, which is a constant function. Thus
(A-8)(ii) and (A-8)(iv) clearly hold. Moreover, (A-8)(iii) holds since for all
(z,2') € X2, we have that

1—a(z,2)<zvar —z A =z -2 =W(z,2 )|z — 2] .
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Therefore, (A-8) holds, which completes Step 1.
Step 2. We now prove (B-2), (B-3) and (B-4). By assumption on ©, then
there exists (w,©,b,b,7,7,a, @) € (0,00)% x (0,1)? such that

w<w<w, <b<b <7< a<a<a

Clearly, (B-2) and (B-3) hold by definitions of ¢Z($) and ¢°(z;y). It remains
to check (B-4) for a well-chosen closed subset X; and any z7 € X. Let X; =
[w,00) C X so that (B-4)(i) holds. By noting that for all (6, z,y) € © xXxY,
g?(x;y) < 1, we have (B-4)(ii). From (9) and (38), we have for all s < t,
yse € Y5 2 € X and 6 € ©,

t—s

_ t—s+1 )
VO Y) (@) = w <1la7> +a ™+ b aly, ;. (40)

“a :
7=0
Using (40), we have, for all § € ©, € X and y1.,, € Y",
W (y1m) (1) — T,Z)e(y1;n>(x)‘ =a" v — x| < a&" v — 7| .
This gives (B-4)(iii) and (B-4)(iv) by setting o = & < 1 and ¥ (z) = |71 —

z|. Next we set ¢, H and C to meet Conditions (B-4)(v) and (B-4)(vi)
and (B-4)(vii). Let us write, for all§ € © and y € Y,

‘331 —¢z($1)‘ <w+(1+a)zr+by <@+ (1+ &)z + by
and, for all (z,2") € X} = [w, 00)?,
‘lnge(az;y) — lnge(x';y)‘ = |(x' AT —x /\7’) +y (ln(m ANT) — ln(az/ /\7'))‘
<1+ wnrn)™My) [z—2].
Setting ¢(y) = 1+w+(

1
yield Conditions (B-4)(v

from

+a)z1+(bV (wAT) )y, H(z) =z and C = 0 then
), (B-4)(vi) and (B-4)(vii). Now (B-4)(viii) follows

/an“y GY(z,dy) < /y Gz, dy) =x AT <V(z).

This concludes the proof. O

5 Numerical experiments

5.1 Numerical procedure

In this part we provide a numerical method for computing the (conditional)
MLE 6, ,, for the parameter § = (w, a, b, r) in the NBIN-GARCH(1, 1) model
introduced in Example 1 and studied in Section 4.1. It is convenient to write
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0 = (¥,r) with ¥ = (w,a,b) and then to write ¢ (z) and g"(x;y) instead
of ¢g(az) and ¢%(x;y) in (25) and (26), respectively. In contrast to the ap-
proach used in [20], we allow the component r to be any positive real number,
rather than a discrete one and to be unknown as well. We thus maximize
jointly with respect to the parameters ¢ and r the log-likelihood function
Lz,n(y1;n> = Sj?,f) (y1.n)- In practice, one does not rely on a compact set ©
of parameters as in Theorem 6. Instead the maximization is performed over
all parameters w > 0, a > 0, b > 0, r > 0 such that the stability con-
straint a+br < 1 holds (taken from (27)). We use the constrained nonlinear
optimization function auglag (Augmented Lagrangian Minimization Algo-
rithm) from the package alabama (Augmented Lagrangian Adaptive Barrier
Minimization Algorithm) in R. For this purpose we provide an initial pa-
rameter point and a numerical computation of the normalized log-likelihood
function LY, (y1.n) and of its gradient. The initial point is obtained by ap-
plying a conditional least square (CLS) estimation based on an ARMA(1,1)
representation of the model, see [20, Section 3]. The computation of the
log-likelihood and of its derivatives are derived as follows. For all z € X,
denoting uy = ¢?(y1.5—1)(x) for all k£ > 2 and u} = z, we have

L (1) = m Zlng ( (y1e-1)(x )?/k)

=n""Ing"(z,p) 1zlng (ukyk) :

The computation of uk for all £k > 2 is done iteratively by observing that

= ¢%(yx_1)(uy_,) and the computation of L(ﬁ r) (y1.n) is deduced. The
computatlon of the derivatives with respect to parameter § = (9, 7) of the
function L( Y )(y1:n> are then obtained in two steps. First, for & > 2, the
derivative of uk with respect to ¥ are obtained iteratively by (9u119 /0¥ =0
and

duj, duy_,
By = Lubr Yir) +a—pg
Then the derivatives of Lg?;f) (y1.n) with respect to ¢ and r are given by
8L§;79;Z") 1 " 9ln 9 [ 8uk yk Y+ T 8uz
50 =" e <“kyk> - Z w1 tul) 99
k=1
and
({“)Lg?;f) 1 " dln 9 [
o= L ()
n
—n 'y <r2(7~ + ) — In(1 + ug)) —Ty(r),
k=1
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respectively, where I'y is the digamma function I'a(r) = %ln ol'(r), r > 0.

5.2 Simulation study
We consider two NBIN-GARCH(1, 1) models with parameters:

(M.1) 0, = (ws, Ax, by, 1) = (3, .2, .2, 2) and
(M.2) 0, = (ws, ax, by, 1) = (3, .35, .1, 1.5).

We simulated m = 200 data sets for each sample size n = 27,28 29 and
210 Tn Figure 2, we display the obtained boxplots of the difference of the
normalized log-likelihood function evaluated respectively at MLE and at the
true value 6. As predicted by the theory, this difference appears to converge
to 0 as the number of observations n — oo. For the NBIN-GARCH(1,1)
model, it can be shown that ©, = {6,}, which implies the convergence
of the MLE to the true parameter. We can observe this behavior for each
component of the MLE for the two models in Figure 3 and Figure 4. We
also report the Monte Carlo mean along with the mean absolute deviation
error (MADE): MADE = m ™1 > it 0., — 6,7] as an evaluation criterion
for the estimated parameter in Table 1.

Table 1: Mean of estimates, MADEs (within parentheses) for the NBIN-
GARCH(1,1) models

Sample size n

Model Parameter n =27 n =28 n =29 n = 210
w 3.311(.973) 3.212(.719) 3.108(.507) 3.062(.372)
a .165(.138) 173(. 113) .187(.076) .193(.055)
(M.1) -
b .194(.049) .195(.034) .197(.025) .200(.018)
T 2.045(.241) 2.035(.166) 2.020(.112) 2.011(.074)
w 3.525(1.325) 3.362(1.258) 3.326(1.041) 3.167(.761)
a .252(.227) .290(.213) .296(.170) .319(.136)
(M.2) -
b .092(.056) .097(.039) .098(.028) .100(.022)
7 1.563(.175) 1.539(.129) 1.520(.093)  1.513(.066)
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Figure 2: Boxplots of the differences of log-likelihood functions evaluated at
the estimated MLE and the true value for Models (M.1) and (M.2) with
sample sizes n = 27,28, 2% and n = 219, respectively. The red “continuous”
line indicates the position of zero.
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Figure 3: Boxplots of the estimated MLE for Model (M.1) with sample sizes
n=27,28 2% and n = 219, respectively. The red “dashed” line indicates the

true value of the parameter and the blue “x” indicates the location of the
Monte Carlo mean of the MLE.
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6 Postponed proofs

6.1 Convergence of the MLE

Assumptions (A-1) and (A-2) are supposed to hold throughout this section.
The proof of Theorem 3 relies on the approach introduced in [18], which
was already used in [7] for a restricted class of observation-driven models.
Our main contribution here is to provide the handy conditions listed in
Assumption (B-4). We first show that our conditions imply (B-1) and the
following one.

(B-5) There exists x1 € X such that, for all 8,6, € ©, p’(Y1 | Y_.0) defined as
in (14) with = x1 is finite PP*-a.s. Moreover, for all 8, € ©, we have

6,0 Y. Y,
lim sup n? (Q’Z;< k-1 (@1); Vi)
k=00 9@ P’ (Ve | Yoooik—1)

=0 P-as. (41)

Indeed we have the following lemma.
Lemma 9. Assumptions (B-2), (B-3) and (B-4) imply (B-5) and (B-1).
Proof. See 6.3. O

Now the proof of Theorem 3 directly follows from the following lemma.

Lemma 10. Assume that (B-2), (B-3) and (B-4)(i)—(ii) hold and that x;
satisfies (B-5). Then O, defined by (15) is a non-empty closed subset of ©
and (16) holds.

Proof. By [7, Theorem 33], to obtain (16), it is sufficient to show that, for
all 0, € ©, the two following assertions hold.

(a) Ef+ [sup(;e@ In* pf (Y7 | ono:O)] < 00,

(b) the function 6 ~— Inp? (Y7 | Y_ce:0) is continuous on ©, P*-a.s.

In (B-5), p’(Y1|Y_oo0) is defined P%-a.s. as the limit in (14) with z = z;.
So, P*-a.s., by (B-4)(i)—(ii), p?(¥1 | Y_se:0) is bounded by the finite constant
appearing in (B-4)(ii). Hence Condition (a) holds.

Condition (b) then follows from (41). Since almost sure convergence im-
plies the convergence in probability and P%* is shift invariant, the random
sequence

00,0
9" (YY) (21); Y1)
Uy, :=sup |In )
0co P’(V1]Y_0)

converges to zero in If”e*—probability. Then there exists a subsequence
of (Up,) which converges PP*-a.s. to zero. Hence, interpreting this con-
vergence as a uniform (in @) convergence of Ing®(?(Y_,..0)(21); Y1) to
Inp? (Y1 |Y_wse:0) to conclude that (b) holds, it is sufficient to show that
0 — In g (V7 (Y_n0)(21); Y1) is continuous for all m PP-a.s. This is indeed
the case by (B-2) and (B-3) and since ¢°(z;y) is positive. O

m6Z+,
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6.2 Ergodicity

For proving Theorem 4, we first recall a more general set of conditions de-
rived in [7], which are based on the following definition.

Definition 11. Let G be a probability kernel from X? to Y*2 @ P({0,1})
satisfying the following marginal conditions, for all (z,2’) € X? and B € ),

{C_r’((x,x’); BxY x{0,1}) = G(z; B), (@)

G((x,2');Y x B x {0,1}) = G(2'; B) ,
and such that the following coupling condition holds
Cl(2,a)i {(y,y)  yeYIx 11) = G(@ ey Y2 x {(1}) . (43)
Define the following quantities successively.

e The trace measure of G((z,2');-) on the set {(y,y) : y €Y} x {1} is
denoted by

G((z,2");B) = G((z,2");{(y,y) : y€ B} x{1}), BeY. (44)
e The probability kernel R from (X2, X®2%) to (X% x {0,1},X%? ®
P({0,1}) is defined for all x,2" € X? and A € X*? by

R((z,2'); A x {1}) = /Y 14(¥y(2), 9y (a") G((z,2");dy) . (45)

e The measurable function a from X? to [0,1] is defined by
alz,z') = R((z,2'); X? x {1}) = G((=,2"); Y? x {1}) . (46)

e The kernel R is defined for all (z,2') € X? and A € X®2 by

R((@,2'); Ax{1}) . :
R((w,a'); A) = alz, 7) if afz, z') > 0,

0 otherwise.

(47)

We can now introduce the so-called contracting condition which yields
ergodicity.

(A-9) There exists a kernel G yielding o and R as in Definition 11, a measurable
function W : X2 — [1,00) satisfying Conditions (A-8)(ii) and (A-8)(iii)
and real numbers (D, (1, (2, p) € (R4 )3 x (0,1) such that for all (z,2') €
X2 and, for all n > 1,

R"((w,2);d) < Dp"d(z,2) (48)
R*((z,2');d x W) < Dpd (z, 2" )W (2, 2') . (49)
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Under Conditions (A-3), (A-4), (A-5), (A-6) and (A-9) and by combining
Theorem 6, Proposition 8 and Lemma 7 in [7], we immediately obtain the
following result.

Theorem 12. Assume (A-3), (A-4), (A-5), (A-6) and (A-9). Then the
Markov kernel K admits a unique invariant distribution = and (V) < oo
for any V : X = Ry such that V< V.

Assumptions (A-3), (A-4), (A-5) and (A-6) are quite usual and easy to
check. The key point to obtain ergodicity is thus to construct G satisfy-
ing (A-9). For this, we can also rely on the following result which is quoted
from [7, Lemma 9].

Lemma 13. Assume that there exists (p,3) € (0,1) x R such that for all
(z,2") € X2,

R ((z,2); {(21,2]) € X2 o d(zy,2)) > p d(z,a")}) =0, (50)
RW<W+§8. (51)

Then, (48) and (49) hold.
Now we can prove that our set of conditions is sufficient.

Proof of Theorem 4. We only need to show that (A-7) and (A-8) imply (A-9).

We preface our proof by the following lemma.

Lemma 14. Assume (A-8)(i). Then one can define a kernel G as
in Definition 11 with the same a given in (46). Moreover, the kernel R
defined by (47) satisfies, for all (z,z') € X? such that a(x,2') > 0 and all
measurable functions f : X2 — R,

R((z,2"); ) = G(o(x,2); /) with  f(y) = f(uy(@),vy(a) . (52)

Let us conclude the proof of Theorem 4 before proving this lemma. By
Lemma 14 and Lemma 13, it remains to check that (50) and (51) hold for
all (z,2') € X2. Observe that by definition of R, Condition (A-8)(iv) is
equivalent to

sup <RW($,$') - W(az,ﬂf)) <00
(z,2")eX?
so we can find 8 € R such that (51) holds for all (x,2') € X2.

Now, let (x,2') € X? and let (X,X’) be distributed according to
R((z,');) which is defined in (52). When x = 2/, then d(X,X’) = 0,
implying that Condition (50) holds with any nonnegative p. For x # 2/, let

p be defined by
I (M CORTCD)

/ )
(@2’ ,y)EXZXY d(.%',.%' )
r#z’

(53)

29



which is in (0,1) by (A-7). Then

d(X, X)) d(@y(2), ¢y (2'))
d(x, ) Yd(ac x/}; sp

Therefore, Condition (50) holds for all (z,z") € X2 with p as in (53). O

We conclude this section with the postponed

Proof of Lemma 14. Let (z,2') € X2. We define G((z,2');-) as the distri-
bution of (Y,Y’,U) drawn as follows. We first draw a random variable Y
taking values in Y with density g(¢(z,2’);-) with respect to v. Then we
define (Y,Y’,U) by separating the two cases, a(z,2') = 1 and «a(z,2) < 1.

e Suppose that a(x,2’) = 1. Then from (A-8)(i), we have
G(z;) = G(a's) = G(d(z,2"); ) .
In this case, we set (Y,Y",U) = (Y,Y,1).
e Suppose now that a(z,z’) < 1. Then, using (22), the functions

(1= afz,2") ™" [g(z;) = alz,2")g(¢(z,2'); )]
and
(1 —afz,2") ™" [g(2s) — alz,2")g(¢(z,2"); )]
are probability density functions with respect to v and we let A and
A’ be two independent random variables taking values in Y drawn

with these two density functions, respectively. In this case we draw
U independently according to a Bernoulli variable with mean «o(z,x")

and set o
V.Y = (Y,Y) ifUu=1,
’ (A,A)  ifU=0.

One can easily check that the so defined kernel G satisfies (42) and (43).
Moreover, for all (z,2') € X2,

G((z,2");Y? x {1}) =P(U = 1) = oz, 2') ,

which is compatible with (46). The kernel R is defined by setting R((z,z’);-)
as the conditional distribution of (X, X') = (¢y (z), vy (2)) given that U =
1. To complete the proof of Lemma 14, observe that for any measurable
f: X2 = R, we have, for all (z,2') € X2 such that a(z,z") > 0,

R((z,2'); f ) E [f(dy(z),9y(z") | U = 1]
E [f(¢y(2), ¥y (a"))]
G(p(z,2'); f)

where f(y) = f(iby(x), ¢, (")) for all y € Y.
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6.3 Proof of Lemma 9
Under (A-2), Assumptions (B-4)(viii) implies that for all § € ©,
75 (In"(¢)) < o0, (54)

and if moreover C > 0,

5 (¢) < o0 (55)
For proving Lemma 9, we will also make use of [7, Lemma 34] which we
quote here for convenience.

Lemma 15. Let {Uy}nez, be a stationary sequence of real-valued random
variables on (2, F,P). Assume that E(In" |Up|) < oo. Then, for all n €
(0,1),

lim n*U, =0, P-a.s.

k—oo

Proof of Lemma 9. We first show that PP (Y|Y_0er0) in (14) is finite for = x;
P%-a.s. By (B-2), this follows by writing

P’ (Y1 | Y—oc0) = ¢° (w(’(y—oo:o>;y1) : (56)
if, for all 0,60, € O, the limit
VY so0) = lim 9?(Y_0)(z1)  is well defined P%-a.s. (57)

m—r0o0

For all § € ©, m >0, 2 € X and y_,.0 € Y™ ! using (B-4)(iii), we have

AW (Ym0) (21), (Ym0 () < " () . (58)

Taking x = ¢g_m_1(az1) and using (B-4)(v), we obtain, for all y_,,,—1.0 €
Ym+2’

d(¢€<y—m:0>(x1)7w9<y—m—1:0>(x1)) <o e ¢(y m—l) :
Using (54) and Lemma 15, we have that

Ve (0,1), Y gMg(Vy) <oo, Phas., (59)
keZ
and thus (¢f(Y_ m:0)(21)), <, is a Cauchy sequence PP-a.s. Its limit exists

PP-a.s., since (X, d) is assumed to be complete, which defines the X-valued
random variable 1% (Y_.0) for all 8,6, € © when Y has distribution P*-a.s.
Thus (57) holds and we further obtain that

sup d(?(Yogo) (1), 1) < sup Z AW (Yomo) (1), 9 (Yopsr0) (1))
0co €0
< Z 0" (Y ) <oo, Pleoas. (60)
m>0
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so that, letting k£ — oo,

supd(¢? (Y_sei0), 1) < Z 0" d(Yon) <oo, Plas. (61)
0co m>0

Let us now prove (B-1). Relation (56) directly yields (B-1)(i). Let us
prove (B-1)(ii), hence consider the case 6 = 6,. Using (58), we have

AW (Y0 (1), W0 (Vo) (X)) < 0™ (X ) PPr-as.

Since {(X_m)}m>o is stationary under P+, it is bounded in probability,
and since g < 1, for all € > 0, we have

Tim PP (d (07 (Vo) (Xo) 0 (Vo) (2)) > €) =0 (62)
Note that for all m > 1, 9% (Y_,,.0)(X_,,) = X1 P%*-a.s., hence we get that

V(Y o) = X1 PP-ass. (63)
To complete the proof of (B-1)(ii), we need to show that, under P, y

g% (WO (Y_o0);y) = g% (X1;y) is the conditional density of Y given Y_ .0,
that is, for any B € ),

[ 16)d" i vidy) =P (Vi € BIY-ca)
Now, note that, by defintion of P%*,
[ 18)g" (Xi;)v(@y) =B (Vi € B| X1) = P* (Vi € B| X1, Y-0)
But since (63) implies that X is 0(Y_s.0)-measurable, X; can be removed
in the last conditioning, which concludes the proof (B-1)(ii).

Finally, it remains to show the uniform convergence (41) in (B-5).
By (B-3) and (57), we have, for all 0,0, € ©, k € Z,

W Vo) = 0 Vi) (#0(V o)) o Blroas. (64)
From (B-4)(iii) and (64), we get
A (Vi) (@), 0 (Vo)) < 0470 (09 (Vor) o BPreas,
On the other hand (B-4)(iv) and (61) imply

sup 1) (wg <Y_oo:0>> <oo, Plras., (65)
0cO
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which, with the previous display, yields,

sup AW (Vie—1)(21), Y7 (Voook—1)) = Oksoo <Qk> P%*-a.s. (66)
€

Since X; is closed and satisfies Condition (B-4)(i), we have that,
0 (V1) (1) and 9% (Y_ok—1) are in X; for all & > 2. Thus Condi-
tion (B-4)(vi) gives that

9" (W0 (Yip—1)(21); Vi)
SEI@) I g€ (¢0<Y—oo:k—1>; Yk)

where

< A(1) x Ap(2) x Ag(3) x Ap(4) PPas.

Ap(1) =sup H <d(1/19(Y1:k,1>(x1), 1/10<ono:k71>)>

0cO

Ap(2) = sup e€ @1 (Vosr1)
0cO

Ak(3) = Sup eCd(x17w6<Y1:k—1>({L'1))
0cO

Ap(4) = ¢(Yz) -
By (66) and (B-4)(vii), we have
Ak(1) = Ok o0 (gk) PP _as.

With (59), this yields (41) in the case where C' = 0. For C' > 0, we further
observe that, by (61) and (55), we have, for all §, € © and k € Z,

_ Cry (¢)

Ef [anr Ak(2)] < E% |C Z Qm(g (Y,erk,l) 1—o

m>0

< 0.

Then Lemma 15 implies that, P%-a.s., 4;(2) = O(n~%) for any n € (0,1).
The same property applies similarly to A (3) by using (60) in place of (61).
This yields (41) in the case where C' > 0, which concludes the proof. O
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