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Abstract

This paper generalizes asymptotic properties obtained in the observation-driven
times series models considered by Douc et al. (2013) in the sense that the condi-
tional law of each observation is also permitted to depend on the parameter. The
existence of ergodic solutions and the consistency of the Maximum Likelihood
Estimator (MLE) are derived under easy-to-check conditions. The obtained con-
ditions, however, appear to apply for a wide class of models. We illustrate our
results with two recently introduced observation-driven times series, namely,
the NBIN-GARCH and the NM-GARCH, demonstrating the consistency of the
MLE for these two models.

Keywords: consistency, ergodicity, maximum likelihood, observation-driven
models, time series of counts.

1. Introduction

Observation-driven time series models have been widely used in various dis-
ciplines such as in economics, finance, epidemiology, population dynamics, etc.
These models have been introduced by Cox (1981) and later considered by
Streett (2000), Davis et al. (2003), Fokianos et al. (2009), Neumann (2011),
Doukhan et al. (2012), Davis and Liu (2012) and Douc et al. (2013). The cele-
brated GARCH(1, 1) model, see Bollerslev (1986), as well as most of the models
derived from this one, see Bollerslev (2008) for a list of some of them, are typi-
cal examples of observation-driven models. Observation-driven models have the
nice feature that the associated (conditional) likelihood and its derivatives are
easy to compute and the prediction is straightforward. The consistency of the
maximum likelihood estimator (in short, MLE) for the class of these models
can be cumbersome, except when it can be derived using computations specific
to the studied model (the GARCH(1,1) case being one of the most celebrated
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example). When the observed variable is discrete, general results concerning the
consistency of the MLE have been obtained recently in Henderson et al. (2011)
and Douc et al. (2013). However, the consistency result of Douc et al. (2013)
applies to some restricted class of models and does not cover the case where
the distribution of the observations given the hidden variable also depends on
an unknown parameter. We now introduce two simple examples, to which the
results of Douc et al. (2013) can not be directly applied. The first one is the
negative binomial integer-valued GARCH (NBIN-GARCH) model, which was
first introduced by Zhu (2011) as a generalization of the Poisson IN-GARCH
model.

Example 1 (Definition of the NBIN-GARCH(1, 1) model).

Xk+1 = ω + aXk + bYk ,

Yk+1|X0:k+1, Y0:k ∼ NB

(

r,
Xk+1

1 +Xk+1

)

,
(1)

where Xk takes values in X = R+, Yk takes values in Z+ and θ = (ω, a, b, r) ∈
(0,∞)4 is an unknown parameter. In (1),NB(r, p) denotes the negative binomial
distribution with parameters r > 0 and p ∈ (0, 1), that is: if Y ∼ NB(r, p), then

P(Y = k) = Γ(k+r)
k!Γ(r) (1 − p)rpk for all k ≥ 0, where Γ stands for the Gamma

function.

The NBIN-GARCH model belongs to the class of integer-valued GARCH
models that account for overdispersion (i.e., variability is larger than mean)
and potential heavy tails in the high values. To the best of our knowledge the
consistency of the MLE has not been treated for this model.

The second example is the univariate normal mixture GARCH model (NM-
GARCH) proposed by Haas et al. (2004) and later considered by Alexander and
Lazar (2006). It is formally defined by

Example 2 (Definition of the NM(d)-GARCH(1, 1) model where d ∈ N \ {0}).

Xk+1 = ω +AXk + Y 2
k b ,

Yk+1|X0:k+1, Y0:k ∼ Gθ(Xk+1; ·) , (2)

dGθ(x; ·)

dν
(y) =

d
∑

ℓ=1

γℓ
e−y

2/2xℓ

(2πxℓ)1/2
, x ∈ (0,∞)d, y ∈ R ,

where ν is the Lebesgue measure on R, Xk = [X1,k . . . Xd,k]
T takes values in

X = R
d
+; γ = [γ1 . . . γd]

T a d-dimensional vector of mixture coefficients belonging
to the d-dimensional simplex

Pd =

{

γ ∈ R
d
+ :

d
∑

ℓ=1

γℓ = 1

}

, (3)
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ω, b are d-dimensional vector parameters with positive and non-negative entries,
respectively and A is a d× d matrix parameter with non-negative entries. Here
we have θ = (γ,ω,A,b). Note that Gθ depends on θ only through the mixture
coefficients γ1, . . . , γd. If d = 1, we obtain the usual conditionally Gaussian
GARCH(1,1) process. In such a case, since γ = γ1 = 1, Gθ no longer depends
on θ.

The NM-GARCH model is another natural extension of GARCH processes,
where the usual Gaussian conditional distribution of the observations given the
hidden volatility variable is replaced by a mixture of Gaussian distributions
given a hidden vector volatility variable. Up to our knowledge, the usual con-
sistency proof of the MLE for the GARCH cannot be directly adapted to this
model.

For a well-specified model, a classical approach to establish the consistency
of the MLE generally involves two main steps: first the maximum likelihood
estimator (MLE) converges to the maximizing set Θ⋆ of a limit criterion, and
second the maximizing set indeed reduces to the true parameter θ⋆, which is
usually referred to as solving the identifiability problem. In this paper, we are
interested in solving the problem involved in the first step, that is, the conver-
gence of MLE. We extend the convergence result of MLE obtained in Douc et al.
(2013), which is valid for a restricted class of models, to a larger class of models
in which the two examples introduced above are embedded. More precisely, we
show the convergence of MLE in observation-driven models where the probabil-
ity distributions of observations explicitly depend on the unknown parameters.
Moreover, we provide very simple conditions that are easy to check in practice,
as shown by the two illustrating examples.

The paper is organized as follows. Specific definitions and notation are in-
troduced in Section 2. Then, Section 3 contains the main contribution of the
paper, that is, sufficient conditions for the existence of ergodic solutions and for
the consistency of the MLE. These results are then applied in Section 4 to the
two examples introduced above. Finally, Section 5 provides the proofs of the
main results, mainly inspired from Douc et al. (2013). Appendix A contains the
proof of a technical lemma.

2. Definitions and notation

Consider a bivariate stochastic process {(Xk, Yk) : k ∈ Z+} on X×Y, where
(X, d) is a complete and separable metric space endowed with the associated
Borel σ-field X and (Y,Y) is a Borel space. Let (Θ,∆), the set of parameters,
be a compact metric space, {Gθ : θ ∈ Θ} be a family of probability kernels
on X × Y and {(x, y) 7→ ψθy(x) : θ ∈ Θ} be a family of measurable functions
from (X×Y,X ⊗Y) to (X,X ). The observation-driven time series model can be
formally defined as follows.

Definition 1. A time series {Yk : k ∈ Z+} valued in Y is said to be distributed
according to an observation-driven model with parameter θ ∈ Θ if there is a
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bivariate Markov chain {(Xk, Yk) : k ∈ Z+} on X × Y whose transition kernel
Kθ satisfies

Kθ((x, y); dx′dy′) = δψθ
y(x)

(dx′) Gθ(x′; dy′) , (4)

where δa denotes the Dirac mass at point a. Moreover, we will say that the
observation-driven time series model is dominated by some σ-finite measure ν
on (Y,Y) if for all x ∈ X, the probability kernelGθ(x; ·) is dominated by ν. In this

case we denote by gθ(x; ·) its Radon-Nikodym derivative, gθ(x; y) = dGθ(x;·)
dν (y),

and we always assume that for all (x, y) ∈ X× Y and for all θ ∈ Θ,

gθ(x; y) > 0 .

A dominated parametric observation-driven model is thus characterized by
the collection {(gθ, ψθ) : θ ∈ Θ}. The class of observation-driven time series
models is a particular case of partially-observed Markov chains since only Yk’s
are observed, whereas Xk’s are hidden variables. Note that our notation for
observation-driven models is slightly different from that of Douc et al. (2013)
where their sequence {Yk} corresponds to our sequence {Yk−1}. Note also that
the process {Xk : k ≥ 1} by itself is a Markov chain with transition kernel
defined by

Rθ(x;A) =

∫

✶A(ψ
θ
y(x)) G

θ(x; dy), x ∈ X, A ∈ X . (5)

However, observation-driven time series models do not belong to the class of
hidden Markov models. This can be seen in the following recursive relation,
which holds for all k ≥ 0,

Xk+1 = ψθYk
(Xk) ,

Yk+1 | Fk ∼ Gθ(Xk+1; ·) ,
(6)

where Fk = σ (Xℓ, Xℓ+1, Yℓ : ℓ ≤ k, ℓ ∈ Z+) and which can be represented
graphically as below.

Xk Xk+1

Yk+1Yk

ψθ

Gθ

Figure 1: Graphical representation of the observation-driven model.

The most popular example is the GARCH(1,1) process, where Gθ(x; ·) is
a centered (say Gaussian) distribution with variance x and ψθy(x) is an affine
function of x and y2. One can readily check that Examples 1 and 2 are other
instances of dominated observation-driven models.
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The inference about model parameter is carried out by relying on the condi-
tional likelihood of the observations (Y1, . . . , Yn) given X1 = x for an arbitrary
x ∈ X. The corresponding conditional density function with respect to ν⊗n is,
under parameter θ, for all x ∈ X,

y1:n 7→
n
∏

k=1

gθ
(

ψθ〈y1:k−1〉(x); yk
)

, (7)

where, for any vector y1:p = (y1, . . . , yp) ∈ Yp, ψθ〈y1:p〉 is the X → X function
obtained as the successive composition of ψθy1 , ψ

θ
y2 , ..., and ψ

θ
yp ,

ψθ〈y1:p〉 = ψθyp ◦ ψθyp−1
◦ · · · ◦ ψθy1 , (8)

with the convention ψθ〈ys:t〉(x) = x for s > t. Then, the corresponding (con-

ditional) Maximum Likelihood Estimator (MLE) θ̂x,n of the parameter θ, is
defined by

θ̂x,n ∈ argmax
θ∈Θ

Lθx,n〈Y1:n〉 , (9)

where

Lθx,n〈y1:n〉 := n−1
n
∑

k=1

ln gθ
(

ψθ〈y1:k−1〉(x); yk
)

. (10)

In this contribution, we study the convergence of θ̂x,n as n → ∞ for some
well-chosen value of x under the assumption that the model is well specified
and the observations are in a steady state. This means that we assume that
the observations {Yk : k ∈ Z+} are distributed according to P̃

θ⋆ with θ⋆ ∈ Θ,
where, for all θ ∈ Θ, P̃θ denotes the stationary distribution of the observation-
driven time series corresponding to the parameter θ. However whether such
a distribution is well defined is not always obvious. We will use the following
ergodicity assumption.

(A-1) For all θ ∈ Θ, the transition kernel Kθ of the complete chain admits a unique
stationary distribution πθ on X× Y.

With this assumption, we can now define P̃
θ. The following notation and defi-

nitions will be used throughout the paper.

Definition 2. For any probability distribution µ on X×Y, we denote by P
θ
µ the

distribution of the Markov chain {(Xk, Yk), k ≥ 0} with kernel Kθ and initial
probability mesure µ. Under Assumption (A-1), we denote by πθ1 and πθ2 the
marginal distributions of πθ on X and Y, respectively and by P

θ and P̃
θ the

probability distributions defined respectively as follows.

a) P
θ denotes the extension of Pθπθ on the whole line (X× Y)Z.

b) P̃
θ is the corresponding projection on the component YZ.
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The probability distributions Pθ and P̃
θ are more formally defined by setting,

for all m ∈ Z and B ∈ Y⊗(m+Z
∗

+),

P̃
θ
(

Ym+Z− ×B
)

= P
θ
(

XZ ×
(

Ym+Z− ×B
))

= P
θ
πθ

(

Xm+Z
∗

+ ×B
)

, (11)

or equivalently, using the canonical functions Yk, k ∈ Z,

P̃
θ (Ym+1:∞ ∈ B) = P

θ (Ym+1:∞ ∈ B) = P
θ
πθ (Ym+1:∞ ∈ B) . (12)

Here and in what follows, we abusively use the same notation Yk both for the
canonical projection defined on YZ and for the one defined on (X × Y)Z+ . We
also use the symbols Eθ and Ẽ

θ to denote the expectations corresponding to P
θ

and P̃
θ, respectively.

3. Main results

3.1. Preliminaries

In this section, we follow the same lines as in Douc et al. (2013) to derive the

convergence of the MLE θ̂x,n for a general class of observation-driven models.
The approach is to establish that, as the number of observations n→ ∞, there
exists a (YZ,Y⊗Z) → (R,B(R)) measurable function pθ,θ⋆(·|·) such that the
normalized log-likelihood Lθx,n〈Y1:n〉 defined in (10), for some appropriate value
of x, can be approximated by

n−1
n
∑

k=1

ln pθ,θ⋆(Yk|Y−∞:k−1) .

To define pθ,θ⋆(·|·), we set, for all y−∞:1 ∈ YZ− , whenever the following limit is
well defined,

pθ,θ⋆ (y1 | y−∞:0) = lim
m→∞

gθ
(

ψθ〈y−m:0〉(x); y1
)

. (13)

Then, by (A-1), the process Y is ergodic under P̃θ⋆ and provided that

Ẽ
θ⋆

[

ln+ pθ,θ⋆(Y1|Y−∞:0)
]

<∞ ,

it can be shown that

lim
n→∞

Lθx,n〈Y1:n〉 = Ẽ
θ⋆

[

ln pθ,θ⋆(Y1|Y−∞:0)
]

, P̃
θ⋆ -a.s.

In this paper we show that with probability tending to one, the MLE θ̂x,n
eventually lies in a neighborhood of the set

Θ⋆ = argmax
θ∈Θ

Ẽ
θ⋆

[

ln pθ,θ⋆(Y1|Y−∞:0)
]

, (14)
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which only depends on θ⋆. In this contribution, we provide practical conditions
implying

lim
n→∞

∆(θ̂x,n,Θ⋆) = 0, P̃
θ⋆ -a.s., (15)

but, for the sake of brevity, we do not precisely determine the set Θ⋆. Many
approaches have been proposed to investigate this problem, which is often re-
ferred to as the identifiability problem. In particular cases, one can prove that
Θ⋆ = {θ⋆}, in which case the strong consistency of the MLE follows from (15).
We will mention a general result which precises how the set Θ⋆ is related to the
true parameter θ⋆ in Remark 2. For the moment, let us mention that we have

θ⋆ ∈ Θ⋆ , (16)

provided that the following assumption holds:

(B-1) For all θ, θ⋆ ∈ Θ, we have

(i) If θ 6= θ⋆, y 7→ pθ,θ⋆(y|Y−∞:0) is a density function P̃
θ⋆ -a.s.

(ii) Under P̃θ⋆ , the function y 7→ pθ⋆,θ⋆(y|Y−∞:0) is the conditional density
function of Y1 given Y−∞:0.

Indeed, (16) follows by writing for all θ ∈ Θ,

Ẽ
θ⋆

[

ln pθ⋆,θ⋆(Y1|Y−∞:0)− ln pθ,θ⋆(Y1|Y−∞:0)
]

= Ẽ
θ⋆

[

ln
pθ⋆,θ⋆(Y1|Y−∞:0)

pθ,θ⋆(Y1|Y−∞:0)

]

= Ẽ
θ⋆

[

Ẽ
θ⋆

[

ln
pθ⋆,θ⋆(Y1|Y−∞:0)

pθ,θ⋆(Y1|Y−∞:0)

∣

∣

∣

∣

Y−∞:0

]]

,

which is nonnegative under (B-1) since it is the expectation of a conditional
Kullback-Leibler divergence.

3.2. Convergence of the MLE

In this part, we always assume that (A-1) holds. The following is a list of
additional assumptions on which our convergence result relies.

(A-2) There exists a function V̄ : X → R+ such that, for all θ ∈ Θ, πθ1(V̄ ) <∞.

Remark 1. Assumption (A-2) is usually obtained as a byproduct of the proof
of Assumption (A-1), see Section 3.3. It is here stated as an assumption for
convenience.

The following set of conditions can readily be checked on gθ and ψθ.

(B-2) For all y ∈ Y, the function (θ, x) 7→ gθ(x; y) is continuous on Θ× X.

(B-3) For all y ∈ Y, the function (θ, x) 7→ ψθy(x) is continuous on Θ× X.
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The function V̄ appearing in (B-4)(viii) below is the same one as in Assump-
tion (A-2). Moreover, in this condition and throughout the paper we write f . V
for a real-valued function f and a nonnegative function V defined on the same
space X, whenever there exists a positive constant c such that |f(x)| ≤ cV (x)
for all x ∈ X.

(B-4) There exist x1 ∈ X, a closed set X1 ⊆ X, ̺ ∈ (0, 1), C ≥ 0 and measurable
functions ψ̄ : X1 → R+, H : R+ → R+ and φ̄ : Y → R+ such that the
following assertions hold.

(i) For all θ ∈ Θ and (x, y) ∈ X× Y, ψθy(x) ∈ X1.

(ii) sup
(θ,x,y)∈Θ×X1×Y

gθ(x; y) <∞.

(iii) For all θ ∈ Θ, n ∈ Z+, x ∈ X, and y1:n ∈ Yn,

d
(

ψθ〈y1:n〉(x1), ψ
θ〈y1:n〉(x)

)

≤ ̺n ψ̄(x) , (17)

(iv) ψ̄ is locally bounded.

(v) For all θ ∈ Θ and y ∈ Y, ψ̄(ψθy(x1)) ≤ φ̄(y).

(vi) For all θ ∈ Θ and (x, x′, y) ∈ X1 × X1 × Y,

∣

∣

∣

∣

ln
gθ(x; y)

gθ(x′; y)

∣

∣

∣

∣

≤ H(d(x, x′)) eC (d(x1,x)∨d(x1,x
′)) φ̄(y) , (18)

(vii) H(u) = O(u) as u→ 0.

(viii) If C = 0, then, for all θ ∈ Θ,

Gθ ln+ φ̄ . V̄ , (19)

otherwise, for all θ ∈ Θ,
Gθφ̄ . V̄ . (20)

Let us now state our main result as follows.

Theorem 3. Assume that (A-1), (A-2), (B-2), (B-3) and (B-4) hold. Then,
letting x1 ∈ X as in (B-4), the function pθ,θ⋆(·|·) defined by the limit (13) with
x = x1 satisfies (B-1) and the convergence (15) of the MLE holds with the set
Θ⋆ defined by (14).

For convenience, the proof is postponed to Section 5.1. The consistency of
the MLE then follows from Theorem 3 by the following remark.

Remark 2. In (Douc et al., 2014, Section 4.2), it is shown that the assumptions
of Theorem 3 imply that any θ ∈ Θ⋆ is such that P̃θ = P̃

θ⋆ . Thus we can conclude
that the MLE converges to the equivalence class of the true parameter. This type
of consistency was already introduced in Leroux (1992). Note that the usual
consistency then immediately follows from the identifiability of the parameter:
P̃
θ = P̃

θ⋆ ⇒ θ = θ⋆.
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3.3. Ergodicity

In this section, the observation-driven model is studied to prove the condi-
tion (A-1). Since this is a “for all θ (...)” condition, to save space and alleviate
the notational burden, we will drop the superscript θ from, for example, Gθ, Rθ

and ψθ and respectively write G, R and ψ, instead.
Ergodicity of Markov chains are usually studied using ψ-irreducibility. This

approach is well known to be quite efficient when dealing with fully dominated
models, see Meyn and Tweedie (2009). It is not at all the same picture for
observation-driven models, where other tools need to be invoked, see Fokianos
and Tjøstheim (2011); Douc et al. (2013). Since the ergodicity is studied for
a given parameter θ, the ergodicity results of Douc et al. (2013) directly ap-
ply, even though observation-driven models are restricted to the case where g
does not depend on the unknown parameter θ in this reference. Our main con-
tribution here is to focus on an easy-to-check list of assumptions yielding the
ergodicity conditions (A-1) and (A-2). We also provide a lemma (Lemma 5)
which gives the construction of the instrumental functions α and φ used in the
list of assumptions.

(A-3) The measurable space (X, d) is a locally compact, complete and separable
metric space and its associated σ-field X is the Borel σ-field.

(A-4) There exist (λ, β) ∈ (0, 1)×R+ and a measurable function V : X → R+ such
that RV ≤ λV + β.

(A-5) The Markov kernel R is weak Feller, that is, for any continuous and bounded
function f defined on X, Rf is continuous and bounded on X.

(A-6) The Markov kernel R has a reachable point, that is, there exists x0 ∈ X such
that, for any x ∈ X and any neighborhood N of x0, R

m(x;N ) > 0 for at
least one positive integer m.

(A-7) We have sup
(x,x′,y)∈X

2×Y

x 6=x′

d(ψy(x), ψy(x
′))

d(x, x′)
< 1.

(A-8) There exist a measurable function α from X2 to (0, 1], a continuous function
φ : X2 → X and a measurable function W : X2 → [1,∞) such that the
following assertions hold.

(i) For all (x, x′) ∈ X2, α(x, x′) = 1 if and only if x = x′.

(ii) For all x ∈ X, φ(x, x) = x.

(iii) For all (x, x′) ∈ X2 and y ∈ Y,

min {g(x; y), g(x′; y)} ≥ α(x, x′)g (φ(x, x′); y) . (21)

(iv) For all x ∈ X, W (x, ·) is finitely bounded in a neighborhood of x, that
is, there exists γx > 0 such that sup

x′∈B(x,γx)

W (x, x′) <∞.

9



(v) For all (x, x′) ∈ X2, 1− α(x, x′) ≤ d(x, x′)W (x, x′).

(vi) sup

(
∫

Y

W (ψy(x), ψy(x
′))G(φ(x, x′); dy)−W (x, x′)

)

< ∞, where

the sup is taken over all (x, x′) ∈ X2.

We can now state the main ergodicity result.

Theorem 4. Conditions (A-3), (A-4), (A-5), (A-6), (A-7) and (A-8) imply that
K admits a unique stationary distribution π on X× Y. Moreover π1V̄ <∞ for
every V̄ : X → R+ such that V̄ . V .

The proof of Theorem 4 is postponed to Section 5.2 for convenience.
The first conclusion of Theorem 4 can directly be applied for all θ ∈ Θ to

check (A-1). The second conclusion can be used to check (A-2). In doing so, one
must take care of the fact that although V may depend on θ, V̄ does not.

Assumptions (A-4), (A-5) and (A-6) have to be checked directly on the
Markov kernel R defined by (5). To this end it can be useful to define, for
any given x ∈ X, the distribution

P̄x := Pδx⊗G(x;·) (22)

on (X × Y)Z+ , where Pµ is defined for any distribution µ on X × Y as in Defi-
nition 2. Then the first component process {Xk, k ∈ Z+} associated to P̄x is a
Markov chain with Markov kernel R and initial distribution δx.

We now provide a general framework for constructing α and φ that appear
in (A-8).

Lemma 5. Suppose that X = CS for some measurable space (S,S) and C ⊆ R.
Thus for all x ∈ X, we write x = (xs)s∈S, where xs ∈ C for all s ∈ S. Suppose
moreover that for all x = (xs)s∈S ∈ X, we can express the conditional density
g(x; ·) as a mixture of densities of the form j(xs)h(xs; ·) over s ∈ S. This means
that for all t ∈ C, y 7→ j(t)h(t; y) is a density with respect to ν and there exists
a probability measure µ on (S,S) such that

g(x; y) =

∫

S

j(xs)h(xs; y)µ(ds) , y ∈ Y . (23)

We moreover assume that h takes non-negative values, j is one-to-one and that
one of the two following assumptions holds.

(F-1) For all y ∈ Y, the function h(·; y) : t 7→ h(t; y) is non-decreasing.

(F-2) For all y ∈ Y, the function h(·; y) : t 7→ h(t; y) is non-increasing.

For all (x, x′) ∈ X2, denoting x ∧ x′ := (min{xs, x
′
s})s∈S and x ∨ x′ :=

(max{xs, x
′
s})s∈S, we define α(x, x′) and φ(x, x′) as















α(x, x′) = inf
s∈S

{

j(xs ∨ x
′
s)

j(xs ∧ x′s)

}

and φ(x, x′) = x ∧ x′ under (F-1) ;

α(x, x′) = inf
s∈S

{

j(xs ∧ x
′
s)

j(xs ∨ x′s)

}

and φ(x, x′) = x ∨ x′ under (F-2) .

Then α and φ defined above satisfy (A-8)(i), (A-8)(ii) and (A-8)(iii).

10



Proof. We only prove this result under Condition (F-1). The proof is similar
under (F-2).

Since for all t ∈ C, y 7→ j(t)h(t; y) is a density with respect to ν, we have

j(t) =

(
∫

h(t; y)ν(dy)

)−1

> 0 .

Thus j is strictly decreasing on C. Clearly, the defined α and φ are positive
and continuous functions and satisfy (A-8)(i) and (A-8)(ii), respectively. For all
(x, x′) ∈ X2 and y ∈ Y, we have

g(x; y) =

∫

S

j(xs)h(xs; y)µ(ds)

≥

∫

S

j(xs ∨ x
′
s)h(xs ∧ x

′
s; y)µ(ds)

≥

∫

S

j(xs ∨ x
′
s)

j(xs ∧ x′s)
j(xs ∧ x

′
s)h(xs ∧ x

′
s; y)µ(ds)

≥

∫

S

inf
s∈S

{

j(xs ∨ x
′
s)

j(xs ∧ x′s)

}

j(xs ∧ x
′
s)h(xs ∧ x

′
s; y)µ(ds)

= α(x, x′)g(φ(x, x′); y) .

By symmetry of α and φ, we get (21) and thus (A-8)(ii) holds.

4. Examples

Let us now apply these results to prove the convergence of MLE of Exam-
ples 1 and 2.

4.1. NBIN-GARCH model

Example 1 is a specific case of Definition 1 where ν is the counting measure
on Y = N,

ψθy(x) = ω + ax+ by , (24)

gθ(x; y) =
Γ(y + r)

y!Γ(r)

(

1

1 + x

)r (
x

1 + x

)y

, (25)

with θ = (ω, a, b, r) in a compact subset Θ of (0,∞)2 × R
2
+ and X = (0,∞).

In (Zhu, 2011, Theorem 1), the equation satisfied by the mean of the obser-
vations µk = E[Yk] is derived and is shown to admit a constant solution if and
only if

rb+ a < 1 . (26)

This clearly implies that this condition is necessary to have a stationary solution
{Yk} with finite mean. However it does not imply the existence of such a solution.
In fact, the following result shows that (26) is indeed a necessary and sufficient
condition to have a stationary solution {Yk} with finite mean. It also shows
that all the assumptions of Theorem 3 hold, which, with Remark 2, provides
the consistency of the MLE θ̂x1,n for any x1 ∈ X.
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Theorem 6. Suppose that all θ = (ω, a, b, r) in Θ satisfy Condition (26). Then
Assumptions (A-1), (A-2), (B-2), (B-3) and (B-4) hold with V̄ being defined as
the identity function on X and with any x1 ∈ X.

Proof. For convenience, we divide the proof in two steps.
Step 1. We first prove Assumptions (A-1) and (A-2) by applying Theorem 4.
We set V̄ (x) = V (x) = x and thus we only need to check (A-3), (A-4), (A-5),
(A-6), (A-7) and (A-8). Condition (A-3) holds. We have for all θ ∈ Θ,

RV (x) = ω + (a+ br)x = (a+ br)V (x) + ω,

which yields (A-4). The fact that the kernel R is weak Feller easily follows by
observing that, as p → p′, NB(r, p) converges weakly to NB(r, p′), so (A-5)
holds.

We now prove (A-6). Let x∞ = ω/(1− a). Let x ∈ R and define recursively
the sequence x0 = x, xk = ω+axk−1 for all positive integers k. Since 0 < a < 1,
this sequence converges to the fixed point x∞. Therefore, defining Px as in (22),
for any neighborhood N of x∞, there exists some n such that xn ∈ N and we
have

Rn(x;N ) = P̄x (Xn ∈ N ) ≥ P̄x (Xk = xk for all k = 1, . . . , n)

= P̄x (Y0 = . . . = Yn−1 = 0) > 0.

So (A-6) holds. Assumption (A-7) holds since we have for all (x, x′, y) ∈ X2 ×Y
with x 6= x′,

|ψy(x)− ψy(x
′)|

|x− x′|
= a < 1 .

To prove (A-8), we apply Lemma 5 with C = X, S = {1} (so µ boils down

to the Dirac measure on {1}). For all (x, y) ∈ X × Y, let j(x) =
(

1
1+x

)r

and

h(x; y) = Γ(y+r)
y!Γ(r)

(

x
1+x

)y

. Indeed, j is one-to-one and h satisfies (F-1). Thus

by Lemma 5, for all (x, x′) ∈ X2 and y ∈ Y, we get that

α(x, x′) =

(

1 + x ∧ x′

1 + x ∨ x′

)r

∈ (0, 1] and φ(x, x′) = x ∧ x′

satisfy (A-8)(i), (A-8)(ii) and (A-8)(iii). For any given r > 0, let a function
W : X2 → [1,∞) be defined by, for all (x, x′) ∈ X2, W (x, x′) = 1 ∨ r. By
definition of W , as a constant function, (A-8)(iv) and (A-8)(vi) clearly hold.
Moreover, (A-8)(v) holds since for all (x, x′) ∈ X2, we have that

1− α(x, x′) ≤ (1 ∨ r)|x− x′| =W (x, x′)|x− x′| .

Therefore, (A-8) holds, which completes Step 1.
Step 2. We now prove (B-2), (B-3) and (B-4). By assumption on Θ, then there
exists (ω, ω̄, b, b̄, r, r̄, α, ᾱ) ∈ (0,∞)6 × (0, 1)2 such that

ω ≤ ω ≤ ω̄, ≤ b ≤ b̄, r ≤ r ≤ r̄, α ≤ a+ br ≤ ᾱ .

12



Clearly, (B-2) and (B-3) hold by definitions of ψθy(x) and g
θ(x; y). It remains to

check (B-4) for a well-chosen closed subset X1 and any x1 ∈ X. Let X1 = [ω,∞) ⊂
X so that (B-4)(i) holds. By noting that for all (θ, x, y) ∈ Θ×X×Y, gθ(x; y) ≤ 1,
we have (B-4)(ii). From (8) and (24), we have for all s ≤ t, ys:t ∈ Yt−s+1, x ∈ X
and θ ∈ Θ,

ψθ〈ys:t〉(x) = ω

(

1− at−s+1

1− a

)

+ at−s+1x+ b

t−s
∑

j=0

ajyt−j . (27)

Using (27), we have, for all θ ∈ Θ, x ∈ X and y1:n ∈ Yn,

∣

∣ψθ〈y1:n〉(x1)− ψθ〈y1:n〉(x)
∣

∣ = an |x1 − x| ≤ ᾱn |x1 − x| .

This gives (B-4)(iii) and (B-4)(iv) by setting ̺ = ᾱ < 1 and ψ̄(x) = |x1−x|. Next
we set φ̄, H and C to meet Conditions (B-4)(v) and (B-4)(vi) and (B-4)(vii).
Let us write, for all θ ∈ Θ and y ∈ Y,

∣

∣x1 − ψθy(x1)
∣

∣ ≤ ω + (1 + a)x1 + by ≤ ω̄ + (1 + ᾱ)x1 + b̄y

and, for all (x, x′) ∈ X2
1 = [ω,∞)2,

∣

∣ln gθ(x; y)− ln gθ(x′; y)
∣

∣ = |(r + y) [ln(1 + x′)− ln(1 + x)] + y [lnx− lnx′]|

≤
[

(r + y)(1 + ω)−1 + y ω−1
]

|x− x′|

≤
[

r + y (1 + ω−1)
]

|x− x′| .

Setting φ̄(y) = ω̄ ∨ r̄+ (1+ ᾱ)x1 +
(

b̄ ∨ (1 + ω−1)
)

y, H(x) = x and C = 0 then
yield Conditions (B-4)(v), (B-4)(vi) and (B-4)(vii). Now (B-4)(viii) follows from

∫

ln+ y Gθ(x, dy) ≤

∫

y Gθ(x, dy) = rx ≤ rV̄ (x) .

This concludes the proof.

4.2. NM-GARCH model

The NM(d)-GARCH(1, 1) of Example 2 is a specific case of Definition 1
where X = R

d
+ and ν is the Lebesgue measure on Y = R,

ψθy(x) = ω +Ax+ y2b , (28)

gθ(x; y) =
d

∑

ℓ=1

γℓ
e−y

2/2xℓ

(2πxℓ)1/2
, (x, y) ∈ X× Y , (29)

and θ = (γ,ω,A,b) ∈ Θ, a compact subset of Pd × (0,∞)d ×R
d×d
+ ×R

d
+, with

Pd defined by (3).
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In Haas et al. (2004), it is shown that the equation satisfied by the variance
of a univariate NM(d)-GARCH(1, 1) process admits a constant solution if and
only if

|λ|max(A+ bγT ) < 1 , (30)

where, for any square matrix M, |λ|max(M) denotes the spectral radius of M.
It follows that the existence of a weakly stationary solution implies (30) but it
does not say anything about the existence of stationary or weakly stationary
solution. The result below shows that (30) is indeed a sufficient condition for
the existence of a stationary solution with finite variance. It moreover provides
with Theorem 3 and Remark 2 the consistency of the MLE θ̂x1,n for any x1 ∈ X.

Theorem 7. Suppose that all θ = (γ,ω,A,b) in Θ satisfy Condition (30).
Then Assumptions (A-1), (A-2), (B-2), (B-3) and (B-4) hold with V̄ being de-
fined as any norm on X.

Proof. In this proof section, we set

V̄ (x) = |x| =
d

∑

ℓ=1

|xℓ| , (31)

for all x = (xℓ) ∈ X. As in Theorem 6, we divide the proof in two steps.
Step 1. We first show that Assumptions (A-1) and (A-2) hold with the above
V̄ by applying Theorem 4. Define V on X by setting

V (x) = (1+ x0)
Tx ,

where 1 is the vector of X with all entries equal to 1 and x0 is defined by

1+ x0 = (I−
(

A+ bγT
)T

)−11 .

We indeed note that by Condition (30) the above inversion is well defined and
moreover

(I− (A+ bγT )T )−1 = I+
∑

k≥1

(

AT + γbT
)k

,

and, since A, b, γ all have non-negative entries, it follows that x0 has non-
negative entries. Thus, for all x = (xℓ) ∈ X,

V̄ (x) = 1Tx ≤ V (x) ,

so that V̄ . V . Hence by Theorem 4, we thus only need to check (A-3), (A-4), (A-
5), (A-6), (A-7) and (A-8) with V defined as above for a given θ = (γ,ω,A,b) ∈
Θ (so we drop θ in the notation in the remaining of Step 1). Condition (A-3)
holds for any distance d associated to a norm on the finite dimensional space X.

14



(The precise choice of d is postponed to the verification of (A-7).) We have

RV (x) =

∫

V (ω +Ax+ y2b) G(x, dy)

= (1+ x0)
T
ω + (1+ x0)

T
(

A+ bγT
)

x

= V (ω) + 1T (I−
(

A+ bγT
)

)−1
(

A+ bγT − I+ I
)

x

= V (ω) + xT0 x

≤ V (ω) + λV (x) ,

where we set λ = maxℓ {x0,ℓ/(1 + x0,ℓ)} < 1. Hence (A-4) holds. Condition (A-
5) easily follows from the continuity of the Gaussian distribution with respect
to its variance parameter. We now prove (A-6). From (8) and (28), we have for
all n ≥ 1, y0:n−1 ∈ Yn and x ∈ X,

ψθ〈y0:n−1〉(x) = Anx+

n−1
∑

j=0

Aj(ω + y2n−1−jb) . (32)

Let us use the norm

‖M‖ = max
j

∑

i

|Mi,j | = sup
|x|≤1

|Mx|

on d×d matrices. Note that by (30), there exists δ ∈ (0, 1) and c > 0 such that,
for any k ≥ 1,

∥

∥

∥

(

A+ bγT
)k
∥

∥

∥
≤ c δk . (33)

Using that A, b, γ all have nonnegative entries, we have

∥

∥Ak
∥

∥ ≤
∥

∥

∥

(

A+ bγT
)k
∥

∥

∥
. (34)

Hence (I −A)−1 = I +
∑

k≥1 A
k is well defined and we set x∞ = (I−A)

−1
ω

so that, with (28), we have

ψθ〈y0:n−1〉(x)− x∞ = Anx+
∑

j≥n

Aj
ω +

n−1
∑

j=0

y2n−1−jA
jb .

Then, using definition (22), we get that, P̄x-a.s., for all n ≥ 1,

|Xn − x∞| = |ψ〈Y0:n−1〉(x)− x∞|

≤ |An(x− x∞)|+
∑

j≥n

∣

∣Aj
ω

∣

∣+

(

max
0≤j≤n−1

Y 2
j

) n−1
∑

j=0

∣

∣Ajb
∣

∣ .

With (33) and (34), this implies

P̄x

(

|Xn − x∞| ≤ c

[

δn
(

|x− x∞|+
|ω|

1− δ

)

+
|b|

1− δ
max

0≤j≤n−1
Y 2
j

])

= 1 .
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To obtain (A-6), it is sufficient to observe that, since g takes positive values
in (29), for any positive ǫ, x ∈ X and any n ≥ 1,

P̄x

(

max
0≤j≤n−1

Y 2
j < ǫ

)

> 0 .

Next we prove (A-7). We have

ψy(x)− ψy(x
′) = A(x− x′) .

Since (33) and (34) imply that |λ|max(A) < 1, there exists a vector norm which
makes A strictly contracting. Choosing the metric d on X as the distance corre-
sponding to this norm, we get (A-7). To show (A-8), we again rely on Lemma 5.
Let us set C = (0,∞) and S = {1, . . . , d} and define the probability measure
µ on S by µ({s}) = γs, for all s ∈ S. For all (t, y) ∈ C × Y, let j(t) = 1

(2πt)1/2

and h(t; y) = exp
(

−y2/2t
)

. Obviously, j is one-to-one, Relation (23) holds and
h satisfies (F-1). Hence, Lemma 5 implies that α and φ defined respectively for
all x = (x1, . . . , xd), x

′ = (x′1, . . . , x
′
d) ∈ X by

α(x,x′) = min
1≤ℓ≤d

{

(

xℓ ∧ x
′
ℓ

xℓ ∨ x′ℓ

)
1
2

}

∈ (0, 1] and φ(x,x′) = (x1∧x
′
1, . . . , xd∧x

′
d) ,

satisfy (A-8)(i), (A-8)(ii) and (A-8)(iii). For x = (x1, . . . , xd), x
′ = (x′1, . . . , x

′
d) ∈

X, we have

1− α(x,x′) = 1− min
1≤ℓ≤d

{

(

1−
|xℓ − x′ℓ|

xℓ ∨ x′ℓ

)
1
2

}

≤ max
1≤ℓ≤d

{

|xℓ − x′ℓ|

xℓ ∨ x′ℓ

}

≤ min
1≤ℓ≤d

(x−1
ℓ ∧ x′−1

ℓ ) |x− x′|

≤W (x,x′) d(x,x′) ,

where d is the distance previously defined and W is defined by W (x,x′) = 1 ∨
(

cd min1≤ℓ≤d(x
−1
ℓ ∧ x′−1

ℓ )
)

with cd > 0 is conveniently chosen (such a constant
exists since d is the distance associated to a norm and X has finite dimension).
Then (A-8)(iv) and (A-8)(v) hold and, since for all y ∈ Y and x ∈ X, ψy(x) has all
its entries bounded from below by the positive entries of ω, W (ψy(x), ψy(x

′))
is uniformly bounded over (x,x′, y) ∈ X × X × Y and (A-8)(vi) holds. This
completes Step 1.
Step 2 We now show that Assumptions (B-2), (B-3) and (B-4) hold.

Clearly, (B-2) and (B-3) hold by definitions of ψθy(x) and g
θ(x; y). It remains

to show (B-4). Since Θ is compact, then

ω ≤ min
1≤ℓ≤d

ωℓ, |ω| ≤ ω, b ≤ |b| ≤ b̄, |λ|max(A+ bγT ) ≤ ρ̄,
∥

∥A+ bγT
∥

∥ ≤ L
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for some (ω, ω, b, b, ρ̄) ∈ (0,∞)4 × (0, 1) and L > 0. By (Moulines et al., 2005,
Lemma 12), we note that this implies that, for all δ̄ ∈ (ρ̄, 1), there exists C̄ > 0
such that for all k ≥ 1 and all θ ∈ Θ,

∥

∥

∥

(

A+ bγT
)k
∥

∥

∥
≤ C̄ δ̄k . (35)

We set X1 = [ω,∞)d ⊂ X so that (B-4)(i) holds. Moreover, for all (θ,x, y) ∈
Θ × X1 × Y, gθ(x; y) ≤ (2πω)−1/2. Thus, Condition (B-4)(ii) holds. Now let
x1 ∈ X. Using (32), (35) and (34), we have, for all x ∈ X, y1:n ∈ Yn and θ ∈ Θ,

∣

∣ψθ〈y1:n〉(x1)− ψθ〈y1:n〉(x)
∣

∣ = |An(x1 − x)|

≤ C̄ δ̄n |x1 − x| .

Using that the norm defining d is equivalent to the norm | · |, we get (B-4)(iii)
with

ψ̄(x) = C̄ ′ |x1 − x| ,

for some positive constant C̄ ′. Hence (B-4)(iv) holds and since
∣

∣x1 − ψθy(x1)
∣

∣ ≤ (L+ 1) |x1|+ ω + y2b̄ ,

we also get (B-4)(v) provided that

φ̄(y) ≥ (L+ 1) |x1|+ ω + y2b̄ . (36)

It is straightforward to show that, for all θ ∈ Θ, x ∈ X1, y ∈ R, and ℓ ∈
{1, . . . , d},

∣

∣

∣

∣

∂ ln gθ

∂xℓ
(x; y)

∣

∣

∣

∣

≤
1

2

(

y2

ω2
+

1

ω

)

.

Thus, by the mean value theorem, for all θ ∈ Θ, (x,x′) ∈ X1 × X1 and y ∈ Y,

∣

∣ln gθ(x; y)− ln gθ(x′; y)
∣

∣ ≤
1

2

(

y2

ω2
+

1

ω

)

|x− x′|

We thus obtain (B-4)(v), (B-4)(vi) and (B-4)(vii) by setting C = 0,

H(u) = sup
d(x,x′)≤u

|x− x′| ,

and
φ̄(y) = (L+ 1) |x1|+ ω + 1/(2ω) + y2(b̄+ ω2) .

In addition, for all θ ∈ Θ and x ∈ X, we have
∫

y2Gθ(x, dy) = γ
Tx .

Hence, using (31) with the above definitions, we obtain (B-4)(viii) and the proof
is concluded.
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5. Postponed proofs

5.1. Convergence of the MLE

Assumptions (A-1) and (A-2) are supposed to hold throughout this section.
The proof of Theorem 3 relies on the approach introduced in Pfanzagl (1969),
which was already used in Douc et al. (2013) for a restricted class of observation-
driven models. Our main contribution here is to provide the practical conditions
of Assumption (B-4). We divide the proof in two steps. The first step is to show
that our conditions imply (B-1) and the following one.

(B-5) There exists x1 ∈ X such that, for all θ, θ⋆ ∈ Θ, pθ,θ⋆(Y1 |Y−∞:0) is well
defined by (13) with x = x1, P̃

θ⋆ -a.s. Moreover, for all θ⋆ ∈ Θ, we have

lim
k→∞

sup
θ∈Θ

∣

∣

∣

∣

ln
gθ(ψθ〈Y1:k−1〉(x1);Yk)

pθ,θ⋆(Yk |Y−∞:k−1)

∣

∣

∣

∣

= 0 P̃
θ⋆ -a.s. (37)

Indeed we have the following lemma.

Lemma 8. Assumptions (B-2), (B-3) and (B-4) imply (B-5) and (B-1).

Proof. See Appendix A.

Now the proof of Theorem 3 directly follows from the following lemma.

Lemma 9. Assume that (B-2), (B-3) and (B-4)(i)–(ii) hold and that x1 satis-
fies (B-5). Then Θ⋆ defined by (14) is a non-empty closed subset of Θ and (15)
holds.

Proof. By (Douc et al., 2013, Theorem 33), to obtain (15), it is sufficient to
show that, for all θ⋆ ∈ Θ, the two following assertions hold.

(a) Ẽ
θ⋆

[

supθ∈Θ ln+ pθ,θ⋆(Y1 |Y−∞:0)
]

<∞ ,

(b) the function θ 7→ ln pθ,θ⋆(Y1 |Y−∞:0) is continuous on Θ, P̃θ⋆ -a.s.

In (B-5), pθ,θ⋆(Y1 |Y−∞:0) is defined as the limit (13) with x = x1. So, P̃
θ⋆ -a.s.,

by (B-4)(i)–(ii), pθ,θ⋆(Y1 |Y−∞:0) is bounded by the finite constant appearing
in (B-4)(ii). Hence Condition (a) holds.

Condition (b) then follows from (37). Since almost sure convergence implies
the convergence in probability and P̃

θ⋆ is shift invariant, the random sequence

Um := sup
θ∈Θ

∣

∣

∣

∣

ln
gθ(ψθ〈Y−m:0〉(x1);Y1)

pθ,θ⋆(Y1 |Y−∞:0)

∣

∣

∣

∣

, m ∈ Z+ ,

converges to zero in P̃
θ⋆ -probability. Then there exists a subsequence of (Um)

which converges P̃θ⋆ -a.s. to zero. Hence, interpreting this convergence as a uni-
form (in θ) convergence of ln gθ(ψθ〈Y−m:0〉(x1);Y1) to ln p

θ,θ⋆(Y1 |Y−∞:0) to con-
clude that (b) holds, it is sufficient to show that θ 7→ ln gθ(ψθ〈Y−m:0〉(x1);Y1)
is continuous for all m P̃

θ⋆ -a.s. This is indeed the case by (B-2) and (B-3) and
since gθ(x; y) is positive.
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5.2. Ergodicity

For proving Theorem 4, we first recall a more general set of conditions derived
in Douc et al. (2013), which are based on the following definition.

Definition 10. Let Ḡ be a probability kernel from X2 to Y⊗2 ⊗ P({0, 1})
satisfying the following marginal conditions, for all (x, x′) ∈ X2 and B ∈ Y,

{

Ḡ((x, x′);B × Y × {0, 1}) = G(x;B) ,

Ḡ((x, x′);Y ×B × {0, 1}) = G(x′;B) ,
(38)

and such that the following coupling condition holds

Ḡ((x, x′); {(y, y) : y ∈ Y} × {1}) = Ḡ((x, x′);Y2 × {1}) . (39)

Define the following quantities successively.

• The trace measure of Ḡ((x, x′); ·) on the set {(y, y) : y ∈ Y} × {1} is
denoted by

Ǧ((x, x′);B) = Ḡ((x, x′); {(y, y) : y ∈ B} × {1}), B ∈ Y . (40)

• The probability kernel R̄ from (X2,X⊗2) to
(

X2 × {0, 1},X⊗2 ⊗ P({0, 1})
)

is defined for all x, x′ ∈ X2 and A ∈ X⊗2 by

R̄((x, x′);A× {1}) =

∫

Y

✶A(ψy(x), ψy(x
′)) Ǧ((x, x′); dy) . (41)

• The measurable function α from X2 to (0, 1] is defined by

α(x, x′) = R̄((x, x′);X2 × {1}) = Ḡ((x, x′);Y2 × {1}) . (42)

• The probability kernel R̂ is defined for all (x, x′) ∈ X2 and A ∈ X⊗2 by

R̂((x, x′);A) =
R̄((x, x′);A× {1})

α(x, x′)
. (43)

We can now introduce the so-called contracting condition which yields er-
godicity.

(A-9) There exists a kernel Ḡ yielding α and R̂ as in Definition 10, a measurable
function W : X2 → [1,∞) satisfying Conditions (A-8)(v) and (A-8)(iv) and
real numbers (D, ζ1, ζ2, ρ) ∈ (R+)

3×(0, 1) such that for all (x, x′) ∈ X2 and,
for all n ≥ 1,

R̂n((x, x′); d) ≤ Dρnd(x, x′) , (44)

R̂n((x, x′); d⊗W ) ≤ Dρndζ1(x, x′)W ζ2(x, x′) . (45)
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Under Conditions (A-3), (A-4), (A-5), (A-6) and (A-9) and by combining Theo-
rem 6, Proposition 8 and Lemma 7 in Douc et al. (2013), we immediately obtain
the following result.

Theorem 11. Assume (A-3), (A-4), (A-5), (A-6) and (A-9). Then the Markov
kernel K admits a unique invariant distribution π and π1(V̄ ) < ∞ for any
V̄ : X → R+ such that V̄ . V .

Assumptions (A-3), (A-4), (A-5) and (A-6) are quite usual and easy to check.
The key point to obtain ergodicity is thus to construct Ḡ satisfying (A-9). For
this, we can also rely on the following result which is quoted from (Douc et al.,
2013, Lemma 9).

Lemma 12. Assume that there exists (ρ, β) ∈ (0, 1) × R such that for all
(x, x′) ∈ X2,

R̂
(

(x, x′);
{

(x1, x
′
1) ∈ X2 : d(x1, x

′
1) ≤ ρ d(x, x′)

})

= 1 , (46)

R̂W ≤W + β . (47)

Then, (44) and (45) hold.

Now we can prove our Practical conditions.

Proof of Theorem 4. We only need to show that (A-7) and (A-8) imply (A-9).
We preface our proof by the following lemma.

Lemma 13. Assume (A-8)(i) and (A-8)(ii). Then one can define a kernel Ḡ
as in Definition 10 with the same α given in (42). Moreover, the kernel R̂ is
defined by, for all (x, x′) ∈ X2 and all measurable functions f : X2 → R+,

R̂((x, x′); f) = G(φ(x, x′); f̃) with f̃(y) = f(ψy(x), ψy(x
′)) . (48)

Let us conclude the proof of Theorem 4 before proving this lemma. By
Lemma 13 and Lemma 12, it remains to check that (46) and (47) hold for all
(x, x′) ∈ X2. Observe that by definition of R̂, Condition (A-8)(vi) is equivalent
to

sup
(x,x′)∈X2

(

R̂W (x, x′)−W (x, x′)
)

<∞ .

so we can find β ∈ R such that (47) holds for all (x, x′) ∈ X2.
Now, let (x, x′) ∈ X2 and let (X,X ′) be distributed according to R̂((x, x′); ·)

which is defined in (48). When x = x′, then d(X,X ′) = 0, implying that Con-
dition (46) holds with any nonnegative ρ. For x 6= x′, let ρ be defined by

ρ = sup
(x,x′,y)∈X

2×Y

x 6=x′

d(ψy(x), ψy(x
′))

d(x, x′)
, (49)

which is in (0, 1) by (A-7). Then

d(X,X ′)

d(x, x′)
=
d(ψY (x), ψY (x

′))

d(x, x′)
≤ ρ .

Therefore, Condition (46) holds for all (x, x′) ∈ X2 with ρ as in (49).
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We conclude this section with the postponed

Proof of Lemma 13. Let (x, x′) ∈ X2. We define Ḡ((x, x′); ·) as the distribution
of (Y, Y ′, U) drawn as follows. We first draw a random variable Ȳ taking values
in Y with density g(φ(x, x′); ·) with respect to ν. Then we define (Y, Y ′, U) by
separating the two cases x = x′ and x 6= x′.

• Suppose that x = x′. Using (A-8)(ii), for all y ∈ Y,

g(x; y) = g(x′; y) = g(φ(x, x′); y) .

In this case, we set (Y, Y ′, U) = (Ȳ , Ȳ , 1).

• Suppose now that x 6= x′. From (A-8)(i), α(x, x′) < 1 and, using (21), the
functions

(1− α(x, x′))−1 [g(x; ·)− α(x, x′)g(φ(x, x′); ·)]

and
(1− α(x, x′))−1 [g(x′; ·)− α(x, x′)g(φ(x, x′); ·)] ,

are probability density functions with respect to ν and we let Λ and Λ′

be two independent random variables taking values in Y drawn with these
two density functions, respectively. In this case we draw U independently
according to a Bernoulli variable with mean α(x, x′) and set

(Y, Y ′) =

{

(Ȳ , Ȳ ) if U = 1 ,

(Λ,Λ′) if U = 0 .

One easily checks that the so defined kernel Ḡ satisfies (38) and (39). Moreover,
for all (x, x′) ∈ X2,

Ḡ((x, x′);Y2 × {1}) = P(U = 1) =

{

1 if x = x′ ,

α(x, x′) if x 6= x′ ,

hence, by (A-8)(i), is equal to α(x, x′) in all cases, which is compatible with (42).
The kernel R̂ is defined by setting R̂((x, x′); ·) as the conditional distribu-

tion of (X,X ′) = (ψY (x), ψY (x
′)) given that U = 1. To complete the proof

of Lemma 13, observe that for any measurable f : X2 → R+, we have, for all
(x, x′) ∈ X2,

R̂((x, x′); f) = E [f(ψY (x), ψY (x
′)) | U = 1]

= E [f(ψȲ (x), ψȲ (x
′))]

= G(φ(x, x′); f̃) ,

where f̃(y) = f(ψy(x), ψy(x
′)) for all y ∈ Y.
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Appendix A. Proof of Lemma 8.

Under (A-2), Assumptions (B-4)(viii) implies that for all θ ∈ Θ,

πθ2
(

ln+(φ̄)
)

<∞ , (A.1)

and if moreover C > 0,
πθ2

(

φ̄
)

<∞ . (A.2)

For proving Lemma 8, we will also make use of (Douc et al., 2013, Lemma 34)
which we quote here for convenience.

Lemma 14. Let {Un}n∈Z+
be a stationary sequence of real-valued random vari-

ables on (Ω,F ,P). Assume that E(ln+ |U0|) <∞. Then, for all η ∈ (0, 1),

lim
k→∞

ηkUk = 0 , P-a.s.

Proof of Lemma 8. We first show that pθ,θ⋆ in (13) is well defined for x = x1.
By (B-2), this follows by setting

pθ,θ⋆ (y1 | y−∞:0) = gθ
(

ψθ,θ⋆〈y−∞:0〉; y1
)

, (A.3)

if, for all θ, θ⋆ ∈ Θ, the following limit is well defined,

lim
m→∞

ψθ〈Y−m:0〉(x1) = ψθ,θ⋆〈Y−∞:0〉, P̃
θ⋆ -a.s. (A.4)

For all θ ∈ Θ, m ≥ 0, x ∈ X and y−m:0 ∈ Ym+1, using (B-4)(iii), we have

d(ψθ〈y−m:0〉(x1), ψ
θ〈y−m:0〉(x)) ≤ ̺m+1 ψ̄(x) . (A.5)

Taking x = ψθy−m−1
(x1) and using (B-4)(v), we obtain, for all y−m−1:0 ∈ Ym+2,

d(ψθ〈y−m:0〉(x1), ψ
θ〈y−m−1:0〉(x1)) ≤ ̺m+1 φ̄ (y−m−1) .

Using (A.1) and Lemma 14, we have that

∀η ∈ (0, 1),
∑

k∈Z

η|k|φ̄ (Yk) <∞ , P̃
θ⋆ -a.s. , (A.6)

and thus
(

ψθ〈Y−m:0〉(x1)
)

m≥0
is a Cauchy sequence P̃

θ⋆ -a.s. Its limit exists

P̃
θ⋆ -a.s., which, since (X, d) is assumed to be complete, defines the X-valued

random variable ψθ,θ⋆〈Y−∞:0〉 for all θ, θ⋆ ∈ Θ. Thus (A.4) holds and we further
obtain that

sup
θ∈Θ

d(ψθ,θ⋆〈Y−k:0〉, x1) ≤ sup
θ∈Θ

k
∑

m=0

d(ψθ〈Y−m:0〉(x1), ψ
θ〈Y−m+1:0〉(x1))

≤
∑

m≥0

̺m φ̄ (Y−m) <∞ , P̃
θ⋆ -a.s. (A.7)
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so that, letting k → ∞,

sup
θ∈Θ

d(ψθ,θ⋆〈Y−∞:0〉, x1) ≤
∑

m≥0

̺m φ̄ (Y−m) <∞ , P̃
θ⋆ -a.s. (A.8)

Let us now prove (B-1). Relation (A.3) directly yields (B-1)(i). Let us prove (B-
1)(ii), hence consider the case θ = θ⋆. Using (A.5), we have

d(ψθ⋆〈Y−m:0〉(x1), ψ
θ⋆〈Y−m:0〉(X−m)) ≤ ̺m+1 ψ̄(X−m) P

θ⋆ -a.s.

Since {ψ̄(X−m)}m≥0 is stationary under Pθ⋆ , it is bounded in probability, and
since ̺ < 1, for all ǫ > 0, we have

lim
m→∞

P
θ⋆

(

d
(

ψθ⋆〈Y−m:0〉(X−m), ψθ⋆〈Y−m:0〉(x)
)

> ǫ
)

= 0 . (A.9)

Note that for all m ≥ 1, ψθ⋆〈Y−m:0〉(X−m) = X1 P
θ⋆ -a.s., hence we get that

ψθ⋆,θ⋆〈Y−∞:0〉 = X1 P
θ⋆ -a.s. (A.10)

To complete the proof of (B-1)(ii), we need to show that, under P̃
θ⋆ , y 7→

gθ⋆(ψθ⋆,θ⋆〈Y−∞:0〉; y) = gθ⋆(X1; y) is the conditional density of Y1 given Y−∞:0,
that is, for any B ∈ Y,

∫

✶B(y)g
θ⋆ (X1; y) ν(dy) = P

θ⋆ (Y1 ∈ B |Y−∞:0) .

Now, note that, by defintion of Pθ⋆ ,
∫

✶B(y)g
θ⋆ (X1; y) ν(dy) = P

θ⋆ (Y1 ∈ B | X1) = P
θ⋆ (Y1 ∈ B | X1, Y−∞:0) .

But since (A.10) implies that X1 is σ(Y−∞:0)-measurable, X1 can be removed
in the last conditioning, which concludes the proof (B-1)(ii).

Finally, it remains to show the uniform convergence (37) in (B-5). By (B-3)
and (A.4), we have, for all θ, θ⋆ ∈ Θ, k ∈ Z+,

ψθ,θ⋆〈Y−∞:k−1〉 = ψθ〈Y1:k−1〉
(

ψθ,θ⋆〈Y−∞:0〉
)

, P̃
θ⋆ -a.s. (A.11)

From (B-4)(iii) and (A.11), we get

d(ψθ〈Y1:k−1〉(x1), ψ
θ,θ⋆〈Y−∞:k−1〉) ≤ ̺k−1ψ̄

(

ψθ,θ⋆〈Y−∞:0〉
)

, P̃
θ⋆ -a.s.

On the other hand (B-4)(iv) and (A.8) imply

sup
θ∈Θ

ψ̄
(

ψθ,θ⋆〈Y−∞:0〉
)

<∞ , P̃
θ⋆ -a.s. , (A.12)

which, with the previous display, yields,

sup
θ∈Θ

d(ψθ〈Y1:k−1〉(x1), ψ
θ,θ⋆〈Y−∞:k−1〉) = Ok→∞

(

̺k
)

P̃
θ⋆ -a.s. (A.13)
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Since X1 is closed and satisfies Condition (B-4)(i) we have that, for all k ≥ 2,
ψθ〈Y1:k−1〉(x1) and ψθ,θ⋆〈Y−∞:k−1〉 are in X1. Thus Condition (B-4)(vi) gives
that

sup
θ∈Θ

∣

∣

∣

∣

ln
gθ(ψθ〈Y1:k−1〉(x1);Yk)

gθ(ψθ,θ⋆〈Y−∞:k−1〉;Yk)

∣

∣

∣

∣

≤ Ak(1)×Ak(2)×Ak(3)×Ak(4) P̃
θ⋆ -a.s. ,

where

Ak(1) = sup
θ∈Θ

H
(

d(ψθ〈Y1:k−1〉(x1), ψ
θ,θ⋆〈Y−∞:k−1〉)

)

Ak(2) = sup
θ∈Θ

eC d(x1,ψ
θ,θ⋆ 〈Y−∞:k−1〉)

Ak(3) = sup
θ∈Θ

eC d(x1,ψ
θ〈Y1:k−1〉(x1))

Ak(4) = φ̄(Yk) .

By (A.13) and (B-4)(vii), we have

Ak(1) = Ok→∞

(

̺k
)

P̃
θ⋆ -a.s.

With (A.6), this yields (37) in the case where C = 0. For C > 0, we further
observe that, by (A.8) and (A.2), we have, for all θ⋆ ∈ Θ and k ∈ Z+,

Ẽ
θ⋆

[

ln+Ak(2)
]

≤ Ẽ
θ⋆



C
∞
∑

m≥0

̺mφ̄ (Y−m+k−1)



 =
Cπθ⋆2

(

φ̄
)

1− ̺
<∞ .

Then Lemma 14 implies that, P̃θ⋆ -a.s., Ak(2) = O(η−k) for any η ∈ (0, 1). The
same property applies similarly to Ak(3) by using (A.7) in place of (A.8). This
yields (37) in the case where C > 0, which concludes the proof.
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