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In this article it is showed how sub-micron dust is able to reach the lunar exosphere and produce the "horizon glow" and "streamers" observed at lunar horizon by astronauts in orbit and surface landers, during the Apollo era of exploration.

Introduction

While orbiting the Moon, the crews of Apollo 8, 10, 12, and 17 have observed "horizon glow" and "streamers" at the lunar horizon, during sunrise and sunset. This was observed from the dark side of the Moon [1,[START_REF] Mccoy | Proc. Lunar Sci. Conf. 5th[END_REF] (e.g., Fig. 1). NASA's Surveyor spacecraft also photographed "horizon glows," much like what the astronauts saw [3]. These observations were quite unexpected, since it was thought that the Moon had a negligible atmosphere. Now a new mission of NASA, called: "The Lunar Atmosphere and Dust Environment Explorer (LADEE)", was sent to study the Moon's thin exosphere and the lunar dust environment [4]. One of the motivations for this mission is to determine the cause of the diffuse emission seen at lunar horizon by astronauts in orbit and surface landers.

Here, we explain how sub-micron dust is able to reach the lunar exosphere and cause the diffuse emission at the lunar horizon.

Theory

It is known that the lunar dust results of mechanical disintegration of basaltic and anorthositic rock, caused by continuous meteoric impact and bombardment by interstellar charged atomic particles over billions of years [START_REF] Heiken | Lunar Sourcebook[END_REF]. Dust grains are continuously lifted above the lunar surface by these impacts and dust clouds are formed. They are dusty plasma clouds * because atoms from the dust grains are ionized by the UV radiation and X-rays from the solar radiation that incides continuously on the lunar surface [START_REF] Manka | Photon and Particle Interactions with Surfaces in Space[END_REF].

The gravitational interaction between these dusty plasma clouds and the Moon only can be described in the framework of Quantum Gravity.

The quantization of gravity shows that the gravitational mass m g and the inertial mass m i are correlated by means of the following factor [START_REF] De Aquino | Mathematical Foundations of the Relativistic Theory of Quantum Gravity[END_REF]:
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For example, we can look on the momentum variation p Δ as due to absorption or emission of electromagnetic energy. In this case, it was shown previously that the expression of χ , in the particular case of incident radiation on a heterogeneous matter(powder, dust, clouds, etc), can be expressed by the following expression [START_REF] De Aquino | Gravitational Ejection of Earth's Clouds[END_REF]: ) and A is the molar mass of the molecules (in kg.kmol -1 ). Then, Eq. ( 2), in the case of a dust cloud, can be rewritten in the following form ( ) ( )
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where, ( ) . Thus, Eq. ( 8) gives In the case of large clouds of sub-micron dusty plasma , Eq. ( 9) shows that 
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Note that this force is much greater than the electric force This means that, inside the clouds, thousands of sub-micron particles will be strongly attracted among them (See Fig. 3), forming thousands of large particles with radius in the range m μ 1000 10or more.

e g F F >> Fig. 3 -Strong gravitational attraction between sub- micron dust, producing microclusters of dust that will cause strong scattering of the sunlight in the lunar exosphere Sub-micron dust Thus, when a cloud of this type arrives to lunar exosphere it increases the number of these particles (gravitational microclusters of lunar dust) inside the lunar exosphere. Under these circumstances, it density becomes equal to the density of the lunar exosphere
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. 10 ~-m kg [14]. The amount of Rayleigh scattering that occurs for a beam of light depends upon the size of the particles and the wavelength of the light. Specifically, the intensity of the scattered light varies as the sixth power of the particle size, and varies inversely with the fourth power of the wavelength.

Thus, the lunar exosphere is fundamentally a very large cloud of submillimeter dust plasma. Consequently, in order to calculate the factor χ for the lunar exosphere, we can use the Eq. ( 5), assuming that most of the particles has 

× ≅ ≅ × - × ≅ ≅ - = π π )
Substitution of this value into Eq. ( 12) yields ( )
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Alternatively, we may put Eq.( 2) as a function of the radiation power density , D [START_REF] De Aquino | Mathematical Foundations of the Relativistic Theory of Quantum Gravity[END_REF], i.e., ( )
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From Electrodynamics we know that when an electromagnetic wave with frequency and velocity incides on a material with relative permittivity f c r ε , relative magnetic permeability r μ and electrical conductivity σ , its velocity is reduced to
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where is the index of refraction of the material, given by [
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Due to the lunar exosphere be a plasma its electrical conductivity,σ , must be high. Thus, we can consider that its can be expressed by Eq. ( 16). Substitution of Eq. ( 16) into Eq. ( 14) gives r n 5 ( )
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By substituting Eq. ( 7) into Eq. ( 17) we obtain the following expression of χ for the lunar exosphere: 

( ) ( ) 18 
⎭ ⎬ ⎫ ⎩ ⎨ ⎧ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ - × + - = = ⎪ ⎭ ⎪ ⎬ ⎫ ⎪ ⎩ ⎪ ⎨ ⎧ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ × + - = - - σ μ ρ πε σ μ χ r r T c T
By comparing Eq. ( 18) with Eq. ( 13) we can conclude that in the lunar exosphere: However, it can reach up to 1,000,000K [START_REF] Avinash | Anomalous dust temperature in dusty plasma experiments[END_REF].

In a previous paper, we have shown that the explanation of the Allais effect requires 1 . 1 -= χ for the lunar exosphere [9, Appendix A]. This is in agreement with the value here obtained (Eq.13). However, in the mentioned paper, we consider erroneously that the effect was produced the incidence of sunlight on the exosphere. Here, we can see the exact description of the phenomenon starting from the same equation (Eq. ( 14)) used in the above-cited paper.
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 1 Fig.1 -At sunrise and sunset many Apollo crews saw glows and light rays. This Apollo 17 sketch depicts the mysterious twilight rays.

  frequency and the power density of the incident radiation; n is the number of molecules per unit of volume;is the total surface area of the dust grains, which can be obtained by multiplying the specific surface area (SSA) of the grain (which is given by section area, and is the index of refraction of the heterogeneous body. r nIn the case of dust grain, is given by the following expression matter density of the dust grain (in kg.m -3
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  Substitution of this expression into Eq. (3) gives()

  The analysis of the lunar rocks collected by Apollo and Luna missions shows the following average composition (principal components) of the lunar soil [11]: SiO 2 (44.6%), Al 2 O 3 (16.5%), FeO (13.5%), CaO (11.9%). Considering the following data: SiO 2 we can calculate the value of the factor † The values of m φ were calculated starting from the unit cell volume, i.e., 92.92 Å 3 , 253.54 Å 3 , 80.41 Å 3 , 110.38Å 3 , respectively[12].
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  applying Eq. (5) for the particular case of lunar clouds of dusty plasma composed by sub-micro dust, we get expressed by the Planck's radiation law i.e., dusty plasma temperature. Thus, the Equation above can be rewritten as follows:Near the Moon's surface, the density of the lunar atmosphere is about [ Thus, we can assume that this is the density of dusty plasma clouds near the Moon's surface. The temperature of sub-micron dusty plasma can be evaluated by means of the following expression:

  Under these conditions, the gravitational interaction between the Moon and the cloud becomes repulsive, i.e., In this way, sub-micron dusty plasma can reach the lunar exosphere.
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 2 Fig.2 -How sub-micron dusty plasma can reach the lunar exosphere.
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  Considering that the Moon's radius is 1738km and that, evidences observed during the Apollo missions, indicate the existence of solar light scattering from a significant population of lunar particles, which exist in a little thick region (~1km) starting from 100km above the lunar surface[START_REF] Mccoy | Evidence for a high altitude distribution of lunar dust[END_REF], we can write that
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  Since the temperature T of the dusty plasma near the Moon's surface, giving by (radii ~1,000 times larger), and also with larger velocities μ v (due to the low density of the exosphere), we can conclude that . The temperature of dust in a plasma is typically 1-1,000K [