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Polarization of active Janus particles

Thomas Bickel1, Guillermo Zecua2, and Alois Würger1
1Laboratoire Ondes et Matière d’Aquitaine, Université de Bordeaux & CNRS, 33405 Talence, France and

2Institut für Theoretische Physik, Universität Leipzig, 04103 Leipzig, Germany

We theoretically study the motion of surface-active Janus particles, driven by an effective slip
velocity due to a non-uniform temperature or concentration field ψ. With parameters realized in
thermal traps, we find that the torque exerted by the gradient ∇ψ inhibits rotational diffusion and
favors alignment of the particle axes. In a swarm of active particles, this polarization adds a novel
term to the drift velocity and modifies the collective behavior. Self-polarization in a non-uniform
laser beam could be used for guiding hot particles along a given trajectory.
PACS numbers: 82.70.Dd, 05.70.Ln, 47.70.Fw

PACS numbers:

Swarms of self-propelling birds, fish, or insects show
dynamical patterns that arise from the fact that each in-
dividual adapts to the state of its neighbors [1]. Similar
phenomena occur for liquid dispersions of active objects.
Thus cells of Escherichia coli move along a chemical gra-
dient generated by their neighbors and form stable spatial
structures [2]. More recently, self-driven Janus particles
(JPs) have been studied as a model active system [3, 4].
It has been shown that the interplay of self-propulsion
and rotational diffusion leads to Brownian motion with
an enhanced diffusion coefficient [5—10], and that the
particles’ chemical activity results in cluster formation
[11—13] and oriented motion [14]. Guiding a single mi-
croswimmer along a given trajectory can be achieved by
dynamical feedback [15].
Active colloids have been realized by partly coating sil-

ica or polystyrene particles with a metal or carbon layer;
self-propulsion arises from non-uniform surface proper-
ties such as temperature or chemical activity. An excess
temperature ψ = T is induced by heating the metal or
carbon cap through absorption of laser light [7—9, 13, 15]
or magnetic fields [10]. Chemical signalling with a mole-
cular solute, ψ = c, is achieved by electrocatalysis of
hydrogen peroxide at a metal cap [3, 5, 11, 12].
A minimal model for self-driven systems consists in a

drift-diffusion equation that was originally designed for
motile bacteria with chemotactic interactions [16], and
that describes complex spatial structures observed in cell
cultures [17]. More recently this model was adapted to
JPs that aggregate due to the chemical gradient gener-
ated by their electrocatalytic activity [11]. For thermally
active colloids, similar results were derived from the
Smoluchowski equation [18, 19]: Self-propulsion strongly
enhances the diffusion term, whereas the drift velocity
arises from the gradient field ∇ψ generated by the neigh-
bor particles; a sufficiently strong attractive drift term
may even cause the implosion of a swarm of JPs.
In the present Letter we show that active colloids are

polarized by their chemical or thermal interactions [20].
A non-uniform field ψ exerts a viscous torque on the JP,
which in turn aligns its symmetry axis on the gradient
∇ψ. This polarization affects both single-particle and
collective motion. In particular, it adds a novel contribu-
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FIG. 1: a) Motion of a Janus particle resulting from an
external field gradient ∇ψ. The particle moves at veloc-
ity u ∝ µ′ + µ along the field gradient and rotates at rate
Ω ∝ µ′ − µ. The mobility takes the values µ′ on the insu-
lating part and µ on the metal cap; the quasi-slip velocities
are indicated by full and dotted arrows. b) Self-propulsion
of an active JP. The particle’s own field ψS leads to a qua-
sislip velocity vs = µ∇‖ψS that is symmetric with respect
to the particle’s axis. The particle self-propels at a velocity
u0 ∝ µ

′
+µ. c) Non-uniform source field with gradient τ . The

quasislip velocity at the particle surface has contributions in
polar and azimuthal directions; both the magnitude of vθ and
the orientation of vϕ are sensitive to the intensity gradient τ .
The resulting angular velocity Ω0 contains terms proportional
to µ′ ± µ, as given in (8).

tion to the effective velocity of the drift-diffusion equa-
tion, which is dominant for strong driving or large Péclet
number and significantly modifes the collective behavior
and the phase diagram [18]. It turns out that oriented
self-propulsion is close to the usual model for bacteria
motility.

Polarization of Janus particles. Consider a JP in-
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teracting with a concentration or temperature field ψ.
Within a thin boundary layer, the parallel component of
the gradient of the local field ψ̄ induces an effective slip
velocity along the particle surface [22, 23]

vs(r) = µ(r)∇‖ψ̄(r). (1)

The main result of this paper arise from the material-
dependent non-uniform mobility constant µ and from the
properties of the local field ψ̄. We consider the case where
two values µ and µ′ occur on the two halfspheres of an
otherwise homogeneous JP, as indicated in Fig. 1. The
resulting effective slip velocities are indicated as solid and
dotted lines; their sign and magnitude depend on the
mobility values and on the local gradient ∇‖ψ̄.
The effective slip velocity (1) constitutes the bound-

ary condition for the velocity field v(r) of the surround-
ing fluid, v|B= u+Ω× rB + vs, where B indicates the
outer limit of the interaction layer, typically at a few
nanometers from the particle surface. This relation de-
termines the linear and angular velocities of the JP. The
former is given by the surface average u = −S−1

∫
dSvs,

and reads for a spherical particle [24]

u = −ξ1
µ+ µ′

3
∇ψ(r). (2)

Depending on the sign of µ+µ′, the particles move along
or opposite to the field gradient. For uniform surface
properties (µ = µ′) one recovers the usual phoretic ve-
locity of particles in an external field ∇ψ [22].

The factor ξ1 in (2) accounts for the deformation
of the field due to the presence of the JP. The local
gradient is given by the projection on the tangential
plane, ∇‖ψ̄ = ξ1(1 − r̂r̂) ·∇ψ, with the surface nor-
mal r̂. In the case of temperature, the correction factor
ξ1 = 3κs/(2κs + κp) is given by the heat conductivities
of solvant and particle, κs and κp [24]. The resulting lo-
cal gradient ∇‖T̄ is valid for a sufficiently thin cap, such
that the metal layer does not modify the heat flow pat-
tern. In contrast, a thick metal layer results in a spatially
varying ξ(r) that reduces the slip velocity on the cap and
enhances it on the insulating hemisphere [25]; the limit-
ing case of an isothermal cap is accounted for by putting
µ = 0 and augmenting µ′ by a factor that depends on the
orientation of the JP. In the case of an applied concen-
tration gradient the κi are the diffusion coefficients of the
solute; if the latter does not penetrate the particle, one
has ξ1 =

3
2 . For strong accumulation, additional correc-

tions are required due to tangential diffusive flux within
the interaction layer.

A non-uniform mobility factor µ(r) gives rise to a ro-
tational component of the effective slip velocity [21, 24].
For example, for µ′ = 0 the dotted arrows in Fig. 1a van-
ish, and the remaining vs results in a clockwise motion of
the surrounding fluid; the particle turns in the opposite
direction until its axis is parallel to ∇ψ. Equilibrating
the surface and viscous forces one obtains the angular

frequency

Ω = −
3

2a

∮
dS× vs
4πa2

, (3)

where dS is the oriented surface element and a the par-
ticle radius. Performing the integral and introducing the
unit vector n along the particle axis, one finds

Ω = n×A, A = −
3ξ1(µ

′ − µ)

8a
∇ψ(r). (4)

Note that the angular velocity is proportional to the mo-
bility difference µ− µ′ of the two hemispheres and thus
vanishes for a homogeneous surface. Yet in general µ and
µ′ are quite different from each other. If the heated metal
cap forms an isotherm, its thermophoretic mobility µ is
zero [25], whereas µ′ may take either sign depending on
the precise driving mechanism [26, 27].
The viscous stress underlying (3), tends to orient the

JP along the external field, whereas rotational diffusion
with coefficient Dr favors dispersion. The resulting ki-
netics are described by the Smoluchowski equation for
the distribution function f(n),

∂tf = −R · (Ω−DrR) f ≡ Lnf, (5)

with the rotation operator R = n×∇n, and the gra-
dient ∇n with respect to the orientation of the JP [18].
This equation is readily solved in terms of the angle θ
between the particle axis and the field gradient, result-
ing in Ω = A sin θ. The corresponding equation for the
steady-state, (A sin θ + Dr∂θ)f = 0, is readily solved,
f(θ) ∝ e(A/Dr) cos θ. This effective rotational potential
aligns the JP axis on the field gradient, with the mean
orientation

neq =

(
coth

A

Dr
−

Dr

A

)
A

A
. (6)

For an estimate of the polarization amplitude, we use
A ≈ u/a and note measured drift velocities u exceed 1
µm/s [28]. For a micron-size particle we then have A ≈ 1
s−1 and Dr ≈ 0.1 s−1, resulting in neq ≈ 1. In other
words, for experimental conditions as realized in colloidal
traps and thin films, we predict a strong polarization of
Janus particles, as illustrated in Fig. 2a).
Self-propelling Janus particles. Now we consider a

swarm of active JPs as shown in Fig. 2b). Their motion
consists of single-particle and interaction contributions:
Each particle self-propels in its own non-uniform field ψS,
whereas that of the neighbors, ψ(r) =

∑
j ψj(r− rj), re-

sults in the linear and angular velocities (2) and (4).
The self-generated term ψS arises from the active sur-

face property Q; for example, the surface temperature
TS is modified by laser heating at power Q = βI(r0),
where I is the beam intensity at the particle position
r0, and β the absorption coefficient per unit area of
the cap. For constant power Q0, the effective slip veloc-
ity is symmetric about the particle axis, as illustrated
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FIG. 2: Polarization of Janus particles in a field gradient ∇ψ.
a) Case of an externally applied field ψ; the orientation of
the particles is given by Eq. (6). There is no self-propulsion,
u0 = 0; the small translational velocity u is not indicated.
b) Self-confinement of a swarm of Janus particles. With an
appropriate choice of the mobilities µ and µ′, the drift velocity
(13) points toward the center of the swarm, thus favoring
cluster formation or even implosion [18]. The polarization is
due to the interaction field ψ which in the simplest case has
radial symmetry and its related to the density by ∇2ψ+kρ =

0. c) Guided self-propulsion. Self-driven hot JPs are polarized
either by the beam intensity gradient τ of the heating laser, or
by an external temperature gradient ∇Text that results from
local heating of the solvant with an IR laser. The JPs follow
the heated spot, first to the right and then downward in the
figure.

in Fig. 1b, and results in self-propulsion at a speed
nu0 = S−1

∮
dSµ(r)∇‖ψS. Solving the diffusion equa-

tion for ψS one finds [24]

u0 = ξ1
µ+ µ′

3

Q0
8κs

, (7)

where Q0/κs gives the mean gradient of ψS.
For a spatially varying laser intensity I(r) (or concen-

tration of a catalytic agent [21]), the source field breaks
the axial symmetry. The resulting slip velocity has both
polar and azimuthal components, as illustrated in Fig.
1c), and exerts a viscous torque

Ω0 = n×A0 (8a)

which is perpendicular on the particle axis n and on the
gradient of the source, τ =∇ ln I(r0),

A0 = −τ

(
(µ′ − µ)

5

18
ξ1 + (µ

′ + µ) ξ̃

)
3Q0
8κs

. (8b)

The first term involves the mobility difference and the
dipolar deformation factor ξ1. The second one, propor-
tional to µ′ + µ, arises from even-order multipoles of

ψS and carries a correction factor ξ̃ which is given by
the weighted average of the diffusivity contrast factors
ξn = (2n + 1)/(n + 1 + nκp/κs) [24]. For µ′ > µ both
terms result in counterclockwise rotation as shown in Fig.
1c.) The case of catalytic activity is discussed in [21].
Comparing self-propulsed motion with driving due to

neighbors in a swarm of JPs, we find that for a colloidal
volume fraction of at most a few percent, the velocity
u0 is much larger than that due to an external field, u.
The torques exerted by the field of an active neighbor
at distance R and by a intensity gradient vary as Ω ∼
u0a/R

2 and Ω0 ∼ u0τ , respectively; depending on the
system parameters, one or the other may dominate.
The state of a given JP is described by its position r

and the orientation of its axis n. The distribution func-
tion P (r,n) obeys the equation

∂tP = −∇ · (u0n+ u−D∇)P + LnP. (9)

The first term on the right-hand side describes transla-
tional motion with velocity u0n+u and gradient diffusion
with Einstein coefficient D. The second term accounts
for rotational motion according to (5); the diffusion co-
efficients are related through D = 4

3a
2Dr.

The relaxation time 1/Dr and particle radius a are
small compared to the time and length scales of collec-
tive motion [18]. Thus an approximate solution of (9) is
obtained by inserting the moment expansion P (r,n) =
ρ(r)+n · p(r)+..., integrating over n, and truncating the
resulting hierarchy at finite order. Neglecting quadrupo-
lar contributions and other small terms in the equation
for the polarization vector p(r) = (1/4π)

∫
dnnP , we find

[24]

p = −
u0
6Dr

∇ρ+ neqρ, neq =
A+A0

3Dr
. (10)

The first term, which has been derived in previous work
[18, 29], accounts for the diffusive transport of polariza-
tion in a non-uniform density; the prefactor u0/Dr gives
the distance over which the particle self-propels during
its rotational relaxation time; with u0 ∼ 10 µm/sec and
1/Dr ∼ 1 sec one finds about 10 microns. The sec-
ond term neqρ accounts for active polarization of JPs.
Fig. 2b) illustrates the alignement on the field gradient
(4) created by nearby JPs. The self-polarization ampli-
tude of the JPs along the intensity gradient τ is given by
neq ∼ A0/Dr; noting A0 ∼ τu0 and that τ is of the order
of the inverse beam width w, we have neq ∼ u0/wDr.
With typical values we find that Janus particles align on
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the intensity gradient of the laser beam, as illustrated in
Fig. 2c).
With the polarization p one obtains the drift-diffusion

equation for the density ρ [24]

∂tρ = −∇ · (ueffρ−Deff∇ρ) , (11)

where Deff = D(1 + 2
9Pe

2) is the effective diffusion coef-
ficient and Pe = u0a/D the Péclet number [4, 5]. The
effective velocity

ueff = u+u0neq (12)

consists of the interaction-driven drift (2) and oriented
self-propulsion with the equilibrium polarization neq =
(A+A0)/3Dr.
In a constant source field Q there is no self-

polarization, A0 = 0, and the drift velocity can be cast
in the form

ueff = ξ

(
−
µ+ µ′

3
+ Pe

µ− µ′

6

)
∇ψ(r). (13)

The first term in parentheses, which has derived previ-
ously [11, 18], is independent of the particle orientation.
The second one has not been considered so far; it arises
from self-propulsion of polarized JP and dominates at
large Péclet number. Since Pe ∝ µ + µ′, the two terms
in (13) carry opposite signs for µ > µ′.
Temperature and concentration fields generated by

the JPs’ heat absorption or chemical activity, satisfy
∇
2ψ + kρ = 0 with the particle density as source term.

Then the sign of the prefactor of ueff determines whether
self-propulsion disperses or confines a cloud of JPs. A
sufficiently large negative drift velocity results in cluster-
ing as illustrated in Fig. 2b [11—13] and may even drive
implosion of the swarm [18]. This latter scenario has
been discussed in detail for ueff = u and µ = µ′ < 0, cor-
responding to a negative Soret coefficient [18]. The cor-
rection term u0neq derived here, is dominant for |Pe| > 0
and, according to (13) results in attraction µ′2 > µ2, in-
dependently of the sign of the mobilities. Thus polariza-
ton enhances ueff by a factor Pe and, at large Péclet num-
ber, even modifies the dynamical phase diagram. Exper-
iments on cluster formation [11—13] and oriented motion
[14] support the qualitative features of the drift-diffusion
model, yet available data are not sufficiently precise for
a quantitative comparison.
Guided self-propulsion. So far we discussed polariza-

tion along the field gradient ∇ψ generated by the heat
absorption or chemical activity of neighbor JPs. Here
we discuss the case where both propulsion and polariza-
tion result from the particle’s self-generated temperature
field TS. With the linear velocity u0 and the order para-
meter neq = A0/3Dr, we obtain oriented motion along
the intensity gradient of the laser beam,

ueff = u0neq =
4

9
PeaA0. (14)

Note that this a single-particle property and varies with
the square of the laser intensity. A physical realization is
sketched in Fig. 2c, where a focussed laser beam illumi-
nates a swarm of JPs. Since the particles move towards
the center of the beam according to (3), they could be
guided by a mobile laser beam along a given trajectory.

Chemotaxis of bacteria. We compare the motion of po-
larized JPs with bacteria that are guided by chemotactic
signalling. E. coli self-propels through flagella rotating
in the “run” mode at a velocity u0 along its axis n [17].
After a period of τ ∼ 1 sec, they switch to the “tumble”
mode, which randomly changes the orientation and thus
plays the role of rotational diffusion. The cell performs
a random walk with diffusion coefficient Deff ∼ u20τ .
Bacteria are not able to actively reorient in a field gra-

dient, contrary to JPs according to (3). Yet they are
sensitive to the concentration of certain solutes. If a cell
detects a favorable change of ψ along its trajectory, it
augments the time τ ; on the other hand, if it feels it goes
the wrong direction, it switches more rapidly to the tum-
ble mode. As a consequence, the bacterium spends more
time in an orientation toward the source [17]. Assuming
a linear variation with the concentration gradient, one
has τ = τ0+αn ·∇ψ, where α describes the strength of
the response to chemical signalling. The resulting polar-
ization neq =

1
3α∇ψ results in the drift velocity

ueff = u0neq =
u0
3
α∇ψ. (15)

Comparison with the drift velocity of JPs shows that
bacteria motion corresponds to the second term in Eq.
(12), that is, to self-propulsion along the fieldd gradient
∇ψ.

In view of Eqs.(12) and (15) one expects for swarms of
JPs a dynamical behavior very similar to that observed in
bacteria cultures. Fine-tuning of the surface parameters
µ and µ′ would allow to separate the effects of phoretic
motion u and of oriented self-propulsion u0neq . Since
only the latter is present in (15), the relative weight of
these terms is an important parameter when comparing
the motion of JPs and bacteria.

We conclude with a remark on hydrodynamic inter-
actions which have been neglected in the present paper.
The interactions considered here are mediated by ther-
mal or concentration gradients ∇ψ which in three di-
mensions vary with the square of the inverse distance,
∇ψ ∝ r−2. Depending on the symmetry of effective slip
velocity, hydrodynamic interactions decay as r−3 or r−2

[25, 30, 31]; the latter term may attain values compa-
rable to the interaction contribution u in (12). Yet at
large Péclet number, it is small as compared to the self-
propulsion contribution u0neq .
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Supplementary information: Polarization of active Janus particles
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In these notes, we give some details regarding the derivation of the equations that are used in the
main body of the paper. We first derive general results regarding the phoretic velocity of an active
particle, and the deformation of the field ψ due to the presence of the JP. We then discuss the linear
and angular velocity of a spherical Janus particle in the gradient of an external field. Self-propulsion
of the active particle in its own field is discussed next. The distribution functions are considered in
the last section.

I. GENERAL RESULTS

We consider an active spherical particle of radius a
interacting with the solvent through a field ψ, that can be
either the temperature or the concentration of some fuel
molecules. Within a thin boundary layer, the gradient of
the field exerts an osmotic stress on the fluid that results
in a quasi-slip velocity parallel to the particle surface [1]

vs(r) = µ(r)∇‖ψ(r) , r ∈ B (1)

where B indicates the outer limit of the interaction layer,
typically a few tens of nanometers from the surface. The
mobility coefficient µ(r) depends on the local material
properties. The quasi-slip velocity contributes to the
boundary condition for the velocity field v of the sur-
rounding fluid

v(r) = u+Ω× (r− r0) + vs , r ∈ B (2)

where u and Ω respectively stand for the linear and an-
gular velocity of the sphere centered at r0.
At low Reynolds number, the velocity field is solution

of the Stokes equation. The corresponding Green’s func-
tion is the Oseen tensor [2]

O(r) = 1

8πηr

(
I+

rr

r2

)
, (3)

with I the 3 × 3 unit matrix and η the viscosity of the
fluid. The velocity field is then given by

v(r) =

∮

B

S′O(r− r′) · f(r′) , (4)

where f is the surface force density exerted by the particle
on the fluid. It is related to the total force F and torque
T acting on the particle respectively by

F = −
∮

B

S f(r) , and T = −
∮

B

S r× f(r) . (5)

Our goal is to relate the linear and angular velocity to
the gradient of the field ψ. To proceed, it is convenient
to define the average over the particle surface

〈. . .〉 = 1

4πa2

∮

B

S . . . . (6)

We first discuss the linear velocity; the angular velocity
is considered in a second step.

A. Linear velocity

The angular velocity is constant over the surface of the
particle. We thus have

〈Ω× (r− r0)〉 = Ω× 〈r− r0〉 = 0 . (7)

Averaging Eq. (2) then simply leads to

〈v〉 = u+ 〈vs〉 . (8)

The average velocity can also be calculated from Eq. (4)
(see for instance Ref. [2])

〈v〉 = 1

4πa2

∮

B

dS′
(∮

B

dSO(r− r′)
)
· f(r′)

=
1

4πa2

∮

B

dS′
(
2a

3η
I

)
· f(r′) = − 1

6πηa
F . (9)

Comparing Eqs. (8) and (9), we find

u = −〈vs〉 −
1

6πηa
F . (10)

This result reduces to the usual Stokes’ law F = −6πηu
for the passive situation (µ(r) = 0). In the case of self-
propulsion, there is no net force acting on the particle so
that

u = −〈vs〉 . (11)

B. Angular velocity

Let us first define the local normal to the particle’s
surface er = (r− r0)/a, r ∈ B. Taking the cross product
with Eq. (2), one can write

er × v(r) = er × u+ er × (Ω× aer) + er × vs . (12)

Given that 〈er〉 = 0 and 〈erierj 〉 = δij/3 (with i = x, y
or z), we get

〈er × v〉 = aΩ− a 〈(Ω · er)er〉+ 〈er × vs〉

=
2a

3
Ω+ 〈er × vs〉 . (13)
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The term on the left-hand side is evaluated thanks to
Eq. (4) (again, see Ref. [2])

〈er × v〉 =
1

4πa2

∮

B

S′
(∮

B

S er ×O(r− r′) · f(r′)
)

= − 1

12πηa2
T , (14)

so that

Ω = − 1

8πηa3
T− 3

2a
〈er × vs〉 . (15)

In the case of a passive sphere, we recover the Stokes’
law T = −8πηa3Ω for rotational friction. On the other
hand, we get for a torque-free active particle

Ω = − 3

2a
〈er × vs〉 . (16)

II. DEFORMATION OF AN EXTERNAL FIELD

ψ

According to (11) and (16), for the linear and angular
velocities in an external field ψ we need to known the
local gradient ∇‖ψ̄. When calculating the latter, one
has to account for the local deformation of the field ψ due
to the presence of the JP. Thus temperature is sensitive
to the heat conductivity contrast and concentration on
whether the solute can diffuse into the particle.
As discussed in the main paper, we assume that the

“active” properties of the JP are due to the surface only,
and that the particle volume is homogeneous. In other
words, we assume that the active surface does not con-
tribute to bulk material properties such as the heat con-
ductivity of the JP. In this section we show that the par-
allel component of the gradient of the local field ψ̄ is given
by

∇‖ψ̄ = ξ1∇‖ψ = ξ1(1− r̂r̂) ·∇ψ, (17)

where r̂ is the normal vector on the particle surface and ψ
the undeformed applied field. We discuss the correction
factor occuring in the translational and angular veloci-
ties, and derive the well-known expression for ξ1.
We consider fields that are harmonic functions,∇2ψ =

0, and obey well-known boundary conditions at the
particle-solvent interface. We first discuss the case of
temperature and then generalize our results to concentra-
tion fields. The temperature field and the heat flux κ∇T̄
are continuous at the interface. The heat flux condition
is expressed by the normal components of the gradient

κs∇⊥T̄s = κp∇⊥T̄p,

where κs and κp are the heat conductivities of solvant
and particle.
We adopt polar coordinates r and θ, where r = 0 is the

particle center and θ the polar angle with respect to the

external field gradient. Then the applied temperature
reads T = T0 −∆T (r/a) cos θ; its gradient is constant in
space. In order ot meet the above continuity condition
for heat conduction, one has to add at both sides of the
interface an additional solution of ∇2T = 0 which needs
to be proportional to cos θ. In the solvent (r > a), the
additional term must vanish at infinity,

T̄ = T0 −∆T cos θ

(
r

a
+ α

a2

r2

)
, (18a)

whereas inside the particle (r < a) we have

T̄ = T0 −∆T cos θ
( r
a
+ α

r

a

)
. (18b)

The coefficient α remains to be determined. Inserting the
temperature in the heat-flux conservation law one finds

α =
κs − κp
2κs + κp

; (19)

Not surprisingly, the coefficient α vanishes for zero con-
ductivity contrast; in this case the temperature field is
not deformed by the JP.
Plugging the expression for α in the parallel gradient

one calculates

∇‖T̄ = θ̂ (1 + α) sin θ
∆T

a

=
3κs

2κs + κp
(1− r̂r̂) ·∇T. (20)

Comparing with (17) gives

ξ1 = 1 + α =
3κs

2κs + κp
. (21)

The heat conductivity of various dielectric materials is
not very different from that of water, κs ≈ κp; thus for
thermoosmotic effects many authors put α = 0 and ξ1 =
1.
Similar results are obtained for the concentration ψ of

a molecular solute that interacts with the particle sur-
face.If this solute does not penetrate the particule, the
corresponding diffusivity vanishes, κp = 0, and we have
ξ1 =

3
2 . A more complex situation may arise if the solute

is involved in a chemical reaction at the particle surface.

III. PHORETIC MOTION IN THE GRADIENT

OF AN EXTERNAL FIELD ψ

We now focus on the motion of a Janus particle in an
external field ψ. The linear and angular velocities are
given by Eqs. (11) and (16) respectively, the slip velocity
being proportional to the parallel projection of the local
gradient. From Eqs. (1) and (17) we readily have

u = −ξ1
〈
µ(r)∇‖ψ

〉
.
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We also assume that the Janus particle consists in two
hemispheres with constant phoretic mobility, and such
that the orientation vector n of the particle is along the z-
direction: n = ez.Defining the polar angle θ with respect
to this axis, cos θ = r̂ · n, the mobility reads

µ(r) =

{
µ′ for 0 ≤ θ < π/2,
µ for π/2 < θ ≤ π.

Regarding the gradient of the field, it is assumed to be
constant at the scale of the particle. In the particle-fixed
cartesian coordinate systems it reads: ∇ψ = ∂xψ ex +
∂yψ ey + ∂zψ ez, and

∇‖ψ = eθ (eθ ·∇ψ) + eϕ (eϕ ·∇ψ) . (22)

The next step consists in writing the spherical unit vec-
tors in cartesian coordinates and averaging over the sur-
face of the sphere. The algebra is a little bit tedious but
presents no difficulty. We end up with

〈µ(r)∇‖ψ〉
∣∣∣
x
=

∂xψ

4

∫ π

0

dθ sin θµ(θ)
(
1 + cos2 θ

)

=
µ+ µ′

3
∂xψ , (23a)

〈µ(r)∇‖ψ〉
∣∣∣
y
=

∂yψ

4

∫ π

0

dθ sin θµ(θ)
(
1 + cos2 θ

)

=
µ+ µ′

3
∂yψ , (23b)

〈µ(r)∇‖ψ〉
∣∣∣
z
=

∂zψ

2

∫ π

0

dθ sin θµ(θ)
(
1− cos2 θ

)

=
µ+ µ′

3
∂zψ , (23c)

so that the linear velocity is obtained according to
Eqs. (1) and (11)

u = −ξ1
µ+ µ′

3
∇ψ . (24)

We proceed in a similar manner for the angular veloc-
ity. We first note that er ×∇‖ψ = er ×∇ψ. Averaging
over the surface of the particle, we find

〈µ(r) er ×∇ψ〉
∣∣∣
x
= −∂yψ

2

∫ π

0

dθ sin θ cos θµ(θ)

=
µ− µ′

4
∂yψ , (25a)

〈µ(r) er ×∇ψ〉
∣∣∣
y
=

∂xψ

2

∫ π

0

dθ sin θ cos θµ(θ)

= −µ− µ′

4
∂xψ , (25b)

〈µ(r) er ×∇ψ〉
∣∣∣
z
= 0 . (25c)

Finally, given the fact that n×∇ψext = (−∂yψ, ∂xψ, 0),
we get

Ω = ξ1
3(µ− µ′)

8a
n×∇ψ , (26)

so that Ω = n×A with A = 3ξ1(µ− µ′)/(8a)∇ψ.

IV. SELF-GENERATED FIELD ψ
S
WITH

UNIFORM SOURCE

Here we evaluate the field ψS generated due to the
active surface of the JP. Its precise form depends on the
permeability of the particle’s material for ψS, and on
the expression of the source at the active segment of the
JP. We discuss the case of temperature, ψ = T , which
is readily generalized to other mechanisms. In a second
step we evaluate self-propulsion of the particle due its
own field gradient ∇ψS , and calculate its linear velocity
u0. The angular velocity vanishes for a uniform source
field.
In our analysis we assume that, beyond the active sur-

face, the field ψ satisfies Laplace’s equation ∇2ψ = 0.
For the temperature field this is always the case; because
of the large heat diffusivity, advection is irrelevant and
the corresponding Péclet number is small. Deviations
may occur, however, in the case of a concentration field.
At moderate solution concentration, advective transport
in the interaction layer is slower than diffusion. For a
strong interaction potential, however, the Péclet number
is not necessarily small, thus requiring corrections to the
simple boundary layer picture used here.

A. Source field

We consider the case where the metal or carbon capped
hemisphere is heated through plasmonic absorption of
resonant laser light. Then the stationary field satisfies
Fourier’s diffusion equation

κ∇2T (r) = Q(r) (27)

with heat conductivity κ. The absorbed power density.Q
is the product of the absorption coefficient β and the
intensity of the laser beam I(r).
The metal layer of a sufficiently thin cap can be re-

placed by a halfsphere of zero thickness [3]. Then the
continuity of flux at the particle surface (r = a) reads

− [κs∂rTs − κp∂rTp]r=a = Q(θ), (28)

with

Q(θ) =

{
0 for 0 ≤ θ ≤ π

2 ,
Q0 for π

2 ≤ θ ≤ π.
(29)

Expansion in Legendre polynomials Pn gives the series

Q(θ) =
Q0

2

∞∑

n=0

(2n+ 1)qnPn(cos θ). (30)

The even coefficients vanish except for q0,

q2n = δn0, (31a)

whereas the odd ones are given by

q2n+1 =

∫ 0

−1

dcP2n+1(c) =
(−1)n+1(2n)!
22n+1n!(n+ 1)!

(31b)
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(The above definition of Q(θ) corresponds to q(π − θ)
of our previous work [3], and the present Q0

2n+1
2 qn

to (−1)nqn of [3].)

B. Temperature field

In order to solve Fourier’s equation (27) we expand the
temperature field in the liquid phase,

T = T0 +
∞∑

n=0

αn
an+1

rn+1
Pn(cos θ); (32)

a similar series occurs within the particle, with the same
coefficients αn yet powers rn/an. Inserting these expres-
sions in the boundary condition (28) one finds

[(n+ 1)κs + nκp]αn =
aQ0

2
(2n+ 1)qn.

For later convenience we introduce the factors

ξn =
(2n+ 1)κs

(n+ 1)κs + nκp
. (33)

and thus have the finite coefficients of the temperature
field read as

α0 =
aQ0

2κs
, α2n+1 = ξ2n+1

aQ0

2κs

(−1)n+1(2n)!
22n+1n!(n+ 1)!

(34)

The parallel component of the gradient is obtained as the
derivative with respect to the polar angle, ∂θ = − sin θ∂c,
with c = cos θ and r = a,

∇‖T = θ̂
∂θT

a
= −θ̂ sin θ

a

∞∑

n=0

αn∂cPn(c). (35)

C. Particle velocity u0

The self-generated temperature gradient ∇‖T is sym-
metric with respect to the particle axis n. Thus the sur-
face integral in the average of the slip velocity, nu0 =
−
〈
µ(r̂)∇‖T

〉
, simplifies significantly. Eq. (29) defines

polar coordinates such that r = a and θ = 0 indicates
the pole of the insulating part of the JP; in other words

n · r̂ = cos θ, n·θ̂ = − sin θ.
From (35) one obtains

u0 =

〈
µ(r) sin θ

∂θT

a

〉
.

With the shorthand notation c = cos θ the surface inte-
gral beomes

u0 = −µ′

2a

∞∑

n=1

αn

∫ 1

0

dc(1− c2)∂cPn

− µ

2a

∞∑

n=1

αn

∫ 0

−1

dc(1− c2)∂cPn. (36)

From the relation

(1− c2)∂cPn = n (Pn−1 − cPn) (37)

one readily finds that the integrals vanish for n =
3, 5, 7.... Since, on the other hand, all even coefficients
α2,α4,α6,...are zero according to (31a) and (34), the only
finite contribution is provided by the term n = 1. Both
remaining integrals take the value 1

3 , resulting in

u0 = ξ1
µ+ µ′

3

Q0

8κs
. (38)

The parameter −Q0/8κs gives the mean gradient of the
self-generated temperature field. Since self-propulsion
arises from the dipolar term (n = 1) only, its deformation
factor is the same as that of the thermophoretic velocity
(24). Positive u0 means that the particle moves the insu-
lating part ahead, and thus opposite to its self-generated
temperature gradient.
In the case where ψ denotes the concentration of a

molecular species involved in a chemical reaction at the
particle surface, the parameter Q0 is related to the activ-
ity, and κi are the diffusion coefficients. Since in general
κp = 0, we have ξ1 =

3
2 .

D. Angular velocity Ω0

Finally we consider the viscous torque

Ω0 = −
3

2a

〈
µ(r̂) r̂×∇‖T

〉
(39)

exerted by the self-generated temperature field. Since the
argument of the surface average is of axial symmetry, the
angular velocity vanishes,

Ω0 = 0,

for a source field Q0 in (29) that is constant over the cap
of the JP.

V. SELF-GENERATED FIELD ψS WITH

NON-UNIFORM SOURCE

Here we consider a self-driven particle with a non-
uniform source field. In the case of a laser-heated metal-
capped JP, a non-uniform source Q0 occurs if the in-
tensity of the laser beam I(r) varies along the particle
surface. The catalytic activity can vary over the parti-
cle surface by a concentration gradient or, in the case of
photoactive driving, by a non-uniform light intensity.
We consider the case of temperature, ψ = T . First we

evaluate the temperature gradient due to a non-uniform
intensity of the laser beam, and then calculate the result-
ing angular velocity Ω0 of the JP. The linear velocity u0
calculated in the preceding section, is hardly affected the
non-uniform external source field.
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A. Non-uniform laser intensity

Expanding the laser intensity to linear order about the
position r0 of the center of the JP, we find that the ab-
sorbed power density Q(r) carries a correction factor

Q(θ) (1 + a r̂ · τ ) , (40)

where Q(θ) is defined in (29) with the constant Q0 =
βI(r0), and where we have introduced the logartithmic
derivative

τ =∇ ln I(r0).

For a Gaussian profile I(r) = I0e
−r2/2ω2 of width ω, one

has τ = r0/ω
2. Note that τ has the dimension of an

inverse length. The corrections due to non-uniform heat-
ing carry a small parameter aτ ∼ a/ω which is signifantly
smaller than unity.
It turns out convenient to use spherical coordinates

r, θ, ϕ but to express vectors in the cartesian basis ex,
ey, ez, which is chosen such that the z-direction coincides
with the axis of the JP, ez = n, and that τ lies in the
x− z-plane,

τ = τxex + τzez.

For later use we give

r̂ = ex sin θ cosϕ+ ey sin θ sinϕ+ ez cos θ,

θ̂ = ex cos θ cosϕ+ ey cos θ sinϕ− ez sin θ,
ϕ̂ = −ex sinϕ+ ey cosϕ.

Inserting the scalar product in the source field, we find
for the modulation factor in (40)

1 + a r̂ · τ = 1 + aτz cos θ + aτx sin θ cosϕ.

The second term on the right-hand side is independent
of the azimuthal angle ϕ and merely results in a slight
modifcation of axisymmetric temperature field discussed
in the previous section.
Thus in the following, we keep only the correction pro-

portional to τx, which depends on ϕ and thus breaks the
symmetry of the temperature field with respect to the
particle axis,

Q(θ) (1 + a r̂ · τ ) = Q(θ) [1 + aτx sin θ cosϕ] . (41)

Expanding the factor Q(θ) sin θ in terms of associated
Legendre polynomials Pn1(cos θ) results in

Q(θ) sin θ =
Q0

2

∞∑

n=1

(2n+ 1)q̂nPn1(cos θ).

The coefficients are given by

q̂n =
1

n(n+ 1)

∫ 0

−1

dc
√
1− c2Pn1(c).

where we have used cos θ = c and sin θ =
√
1− c2, and

the normalization

∫ 1

−1

dcP 2
n1(c) =

2n(n+ 1)

(2n+ 1)
.

For further use we note the definition

Pn1 = −
√
1− c2∂cPn (42a)

and the relation

(
1− c2

)
∂cPn = −n (cPn − Pn−1) , (42b)

and thus find

q̂n =
1

(n+ 1)

∫ 0

−1

dc (cPn − Pn−1)

From the symmetry properties of the Legendre polyno-
mials Pn it is clear that the coefficients of odd order
n = 3, 5, 7, ... vanish; the finite ones read

q̂1 = −
1

3
, q̂2m = (−1)m+1

(2m− 2)!
4m(m+ 1)!(m− 1)! . (43)

B. Temperature field

The temperature field comprises an axisymmetric part
Tas , which is essentially given by (32), and a second term
that shows the same angular dependence as the correc-
tion to Q(θ),

T = Tas + aτx cosϕ
∞∑

n=1

α̂n
an+1

rn+1
Pn1(c),

Then the heat diffusion equation is readily solved. The
continuity condition (28) for the radial heat flux at the
particle surface, relates the α̂n and q̂n according to

[(n+ 1)κs + nκp] α̂n =
aQ0

2
(2n+ 1)q̂n.

Inserting the factors ξn defined in (33), one finds

α̂n = ξnq̂n
aQ0

2κs
, (44)

The component of the temperature gradient parallel to
the particle surface are given by the derivatives with re-
spect to θ and ϕ. With ∂ϕ cosϕ = − sinϕ and ∂θPn1 =
− sin θ∂cPn1(c) one readily finds

∇‖T = ∇‖Tas − τx

∞∑

n=1

α̂n ×
(
ϕ̂ sinϕPn1 + θ̂ cosϕ sin θ∂cPn1

)
. (45)
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C. Angular velocity Ω0

Inserting the above temperature gradient in (39) and
noting that the cross-product of the axisymmetric part
vanishes, 〈r̂×∇‖Tas〉 = 0, we have

Ω0 =
3

2a
τx

∞∑

n=1

α̂n ×
〈
µ(c)

(
r̂× ϕ̂ sinϕPn1 + r̂× θ̂ cosϕ sin θ∂cPn1

)〉
.

In a first step we evaluate the average of ϕ-dependent
factors with respect to the azimuthal angle,

〈r̂× ϕ̂ sinϕ〉ϕ = −〈θ̂ sinϕ〉ϕ = −
cos θ

2
ey,

〈r̂× θ̂ cosϕ〉ϕ = 〈ϕ̂ cosϕ〉ϕ =
1

2
ey,

and obtain

Ω0 = −
3

4a
τxey

∞∑

n=1

α̂n
〈
µ(c) (cos θPn1 − sin θ∂cPn1)

〉
.

Since µ(c) = µ′ for c > 0 and µ(c) = µ for c < 0, the
integrals simplify to

〈
µ(c) (cos θPn1 − sin θ∂cPn1)

〉
= (µ′ + (−1)nµ) kn,

with

kn =

∫ 1

0

dc
(
cPn1 −

√
1− c2∂cPn1

)
.

In view of α̂n and q̂n, we only need to calculate k1 and
k2n. Using (42a) we find

k1 = −
5

6
, k2n = 1−

π

2

(2n+ 2)!(2n− 2)!
[4n(n+ 1)!(n− 1)!]2

. (46)

Noting α̂2n+1 = 0 for n > 1, we have

Ω0 = −
3

4a
τxey

(
(µ′ − µ)α̂1k1 + (µ

′ + µ)
∞∑

n=1

α̂2nk2n

)
.

Inserting α̂2n from (44), summing the even-order terms
in

ξ̃ =
∞∑

m=1

ξ2mq̂2mk2m, (47)

and introducing the cross product n× τ =τxey, we ob-
tain the form

Ω0 = −(n× τ )
3Q0

8κs

(
5

6
(µ′ − µ) ξ1 + (µ

′ + µ) ξ̃

)
(48)

Note that Q0/κs gives the self-generated temperature
gradient along the particle surface. With the definition

of the intensity gradient τ , one finds the approximate
relation between angular and linear velocities, Ω0 ≈ τu0.
For convenience we give the first terms of the series

ξ̃ =
ξ2
8

(
1− 3π

16

)
− ξ4
48

(
1− 5π

64

)
+ ...

For the case where the diffusivities in particle and solvent
are the same, κp = κs, we have ξn = 1 and the numerical

value ξ̃ ≈ 0.040. On the other hand, if the diffusivity
in the particle vanishes, κp = 0, the factors ξn =

2n+1
n+1

result in ξ̃ ≈ 0.065.

VI. PROBABILITY DISTRIBUTION

FUNCTIONS

A. Angular distribution function

A Janus particle in an external field tends to align its
director n with the field according to Eq. (26), whereas
rotational diffusion favors dispersion. As a result, the
orientation of the particle follows a distribution f(n, t)
that satisfies a continuity equation

∂tf = −∇n ·J . (49)

were the total probability current J is the sum of a
convective part with angular velocity Ω and a diffusive
part with rotational diffusion coefficient Dr. In Eq. (49),
∇n is the gradient with respect to the orientation of
the Janus particle. Introducing the rotation operator
R = n×∇n, the Smoluchowski equation for the proba-
bility distribution becomes [4]

∂tf = −R · (Ωf) +DrR
2f ≡ Lnf . (50)

In spherical coordinates one has n = er and ∇n(. . .) =
∂θ(. . .) eθ+(sin θ)

−1∂ϕ(. . .) eϕ, with θ the angle between
n and ez. Without loss of generality it can be assumed
that A = Aez. (Here and in the following the vector A
comprises both contributions,A andA0, discussed in the
main paper.) We then have Ω = n ×A = −A sin θ eϕ,
so that the rotational diffusion operator reads

Lnf = A∂θ (sin θf) +Dr∂
2
θf . (51)

The steady-state solution of the Smoluchowski equation
is readily obtained

f(θ) =
A

2Dr sinh(A/Dr)
e(A/Dr) cos θ . (52)

The (thermodynamic) average of the orientation vector
is then nx = ny = 0, and

nz = coth
A

Dr
− Dr

A
. (53)
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B. Probability distribution function

Next, we consider a set of active Janus particles. Each
particle self-propels in its own non-uniform field with ve-
locity u0n – see Eq. (38). The field due to the neigh-
bors plays the role of an external field and results in the
translational and rotational velocities u and Ω given by
Eqs. (24) and (26), respectively. The corresponding prob-
ability distribution function P (r,n, t) obeys the equation

∂tP = −∇ · (u0n+ u−D∇)P + LnP , (54)

with Ln defined in Eq. (50). Note that the translational
and rotational diffusion coefficients are related through
D = 4

3a
2Dr. We then decompose P (r,n, t) as

P (r,n, t) = ρ(r, t)+n·p(r, t)+(nn− I/3) :Q(r, t)+. . . ,
(55)

where the density ρ, the polarization vector p, the
quadrupolar tensorQ, and higher moments are functions
of r and t but not n. Explicitly, the first moments read

ρ(r, t) =

∫
dn̂P (r,n, t) , (56)

p(r, t) =

∫
d̂nnP (r,n, t) , (57)

Q(r, t) =

∫
dn̂ (nn− I/3)P (r,n, t) , (58)

with n̂ = n/(4π).

1. Evolution equation for the density

We first focus on the particle density ρ(r, t). Integrat-
ing Eq. (54) over n and using the fact that

∫
dn̂∇ . . . =

∇
(∫

dn̂ . . .
)
, it is straightforward to get

∂tρ = −∇ · (u0p+ uρ−D∇ρ) . (59)

Note that the contribution from rotational diffusion van-
ishes since

∫
dn̂∇n ·J = 0 . (60)

2. Evolution equation for the polarization

We now consider the polarization vector p(r, t). Mul-
tiplying Eq. (54) by n and integrating over n yields

∂tp = −∇·
(
u0

∫
dn̂Pnn

)

−∇ · (up−D∇p) +

∫
dn̂nLnP . (61)

Let us discuss separately the first and the third terms on
the RHS of Eq. (61). Writing nn = I/3+ (nn− I/3), we
simply get for the first term

∫
dn̂Pnn =

I

3
ρ+Q . (62)

The third term is the sum of two contributions
∫
dn̂nLnP = −

∫
dn̂nR · (ΩP ) +Dr

∫
dn̂nR2P

≡ I1 + I2 . (63)

The latter are evaluated thanks to the moment expan-
sion (55). We get for the first integral

I1 = −
∫
dn̂nR · [Ω (ρ+ n · p+ . . .)]

= −ρ

∫
dn̂nR ·Ω− p ·

∫
dn̂nR · (Ωn) + . . . ,

(64)

with Ω = n × A, the vector A being independent of
the orientation. Since Rαnβ = −eαβγnγ, with eαβγ the
Levi-Civita symbol, we find thatR ·Ω = −2n ·A and so

−
∫
dn̂nR ·Ω = 2

(∫
dn̂nn

)
·A =

2

3
A . (65)

Here, the last equality comes from
∫
dn̂nαnβ =

1
3δαβ.

The second integral in Eq. (64) vanishes since it involves
an odd number of components nα. We then find

I1 =
2

3
Aρ+ . . . , (66)

where the terms that are neglected are at least quadrupo-
lar. Regarding the second integral, it reads

I2 = Dr

∫
dn̂nR2 (ρ+ n · p+ . . .)

= Dr

(∫
dn̂nR2n

)
· p+ . . . . (67)

Since R2n = −6n, it is straightforward to get I2 =
−2Drp+ . . ..
Closure of the above equations is achieved by neglect-

ing quadrupolar and higher-order terms; this approxima-
tion is supported by a its relation to a gradient expansion
[7], which in turn is justifiifed by a rather smooth spatial
variation. We thus obtain the evolution equation for the
polarization vector

∂tp = −
u0
3
∇ρ−∇ · (up−D∇p)+

2

3
Aρ−2Drp . (68)

where the last two terms arise from the rotational oper-
ator Ln. Following Golestanian [6] we assume moreover
that both the explict time derivative and the divergence
terms are small. Solving the remainder for p and re-
placing A→ A+A0, we readily obtain the steady-state
polarization

p = − u0
6Dr

∇ρ+
A

3Dr
ρ+

A0

3Dr
ρ. (69)
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