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1 Introduction

The scope of Bayesian Optimization methods is usually limited to moderate-dimensional
problems [1]. [2] recently proposed to extend the applicability of these methods to up
to billions of variables, when only few of them are actually influential, through the so-
called Random EMbedding Bayesian Optimization (REMBO) approach. In REMBO,
optimization is conducted in a low-dimensional domain Y, randomly embedded in the
high-dimensional source space X . New points are chosen by maximizing the Expected
Improvement (EI) criterion [3] with Gaussian process (GP) models incorporating the
considered embeddings via two kinds of covariance kernels proposed in [2]. A first
one, kX , relies on Euclidean distances in X . It delivers good performance in moderate
dimension, albeit its main drawback is to remain high-dimensional so that the benefits
of the method are limited. A second one, kY , is defined directly over Y and is there-
fore independent from the dimension of X . However, it has been shown [2] to possess
artifacts that may lead EI algorithms to spend many iterations exploring equivalent
points. Here we propose a new kernel with a warping (see e.g. [4]) inspired by simple
geometrical ideas, that retains key advantages of kX while remaining of low dimension
as kY .

2 Background on the REMBO method and related

issues

The considered minimization problem is to find x∗ ∈ argminx∈X f(x), with f : X ⊆
R

D 7→ R, where X is a compact subset of R
D, assumed to be [−1, 1]D for sim-

plicity. From [2], one main hypothesis about f is that its effective dimensional-
ity is de < D: there exists a linear subspace T ⊂ R

D of dimension de such that
f(x) = f(x⊤ + x⊥) = f(x⊤), x⊤ ∈ T and x⊥ ∈ T ⊥ ⊂ R

D ([2], Definition 1). Given
a random matrix A ∈ R

D×d, d ≥ de with components sampled independently from
N (0, 1), for any optimizer x∗ ∈ R

D, there exists at least a point y∗ ∈ R
d such that

f(x∗) = f(Ay∗) with probability 1 ([2], Theorem 2.). To respect box constraints, f
is evaluated at pX (Ay), the convex projection of Ay onto X . The low dimensional
function to optimize is then g : Rd 7→ R, g(y) = f(pX (Ay)).
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Optimizing g is carried out using Bayesian Optimization, e.g, with the EGO algo-
rithm [3]. It bases on Gaussian Process Regression [5], also known as Kriging [6], to
create a surrogate of g. Supposing that g is a sample from a GP with known mean (zero
here to simplify notations) and covariance kernel k(., .), conditioning it on n observa-
tions f(x1:n) = g(y1:n), denoted Z, provides a GP Z(.) with mean m(x) = k(x)TK−1Z
and kernel c(x,x′) = k(x,x′) − k(x)TK−1k(x′), where k(x) = (k(x,xi))1≤i≤n and
K = (k(xi,xj))1≤i,j≤n. The choice of k is preponderant, since it reflects a number of
beliefs about the function at hand. Among the most commonly used are the “squared
exponential” (SE) and “Matérn” stationary kernels, with hyperparameters such as
length scales or degree of smoothness [7, 8]. For REMBO, [2] proposed two versions of
the SE kernel, namely the low-dimensional kY(y,y

′) = exp
(

−‖y− y′‖2d/2l2Y
)

and the

high-dimensional kX (y,y′) = exp(−
∥

∥pX (Ay)− pX (Ay′)
∥

∥

2

D
/2l2X ) (y,y′ ∈ Y).

Selecting the domain Y ⊂ R
d is a major difficulty of the method: if too small, the

optimum may not be reachable while a too large domain renders optimizing harder, in
particular since pX is far from being injective. Distant points in Y may coincide in X ,
especially far from the center, so that using kY leads to sample useless new points in
Y corresponding to the same location in X . On the other hand, kX suffers from the
curse of dimensionality when Y is large enough: whereas embedded points pX (Ay) lie
in a d dimensional subspace when they are inside of X , they belong to a D-dimensional
domain when they are projected onto the faces of X . To alleviate these shortcomings,
after showing that with probability 1− ǫ the optimum is contained in the centered ball
of radius de/ǫ (Theorem 3), the authors of [2] then suggest to set Y = [−

√
d,
√
d]d.

In practice, they split the evaluation budget over several random embeddings or set
d > de to increase the probability for the optimum to actually be inside Y, slowing
down the convergence.

3 Proposed kernel and experimental results

Both kY and kX suffering from limitations, it is desirable to have a kernel that retains
as much as possible of the actual high dimensional distances between points while
remaining of low dimension. This can be achieved by first projecting orthogonally
points on the faces of the hypercube to the subspace spanned by A: Ran(A), with
pA : X 7→ R

D, pA(x) = A(ATA)−1ATx. Note that these back-projections from the
hypercube can be outside of X . The calculation of the projection matrix is done only
once, inverting a d × d matrix. This solves the problem of adding already evaluated
points: their back-projections coincide. Nevertheless, distant points on the sides of X
from the convex projection can be back-projected close to each other, which may cause
troubles with the stationary kernels classically used.

The next step is to respect as much as possible distances on the border of X .
Unfolding and parametrizing the manifold corresponding to the convex projection of
the embedding of Y with A would be best but unfortunately it seems intractable
with high D. Alternatively, we propose to distort the back-projections outside of
X , coming from points on the sides of X . From the back-projection of the initial
mapping with pX , a pivot point is selected as the intersection between the frontier of
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X and the line (O; pA(pX (Ay)). Then the back-projection is stretched out such that
the distance between the pivot point and the initial convex projection are equal. It
results in respecting the distance on the embedding between the center O and the initial
convex projection. The resulting warping, denoted Ψ, is detailed in Algorithm 1 and
illustrated in Figure 1. Based on this, any positive definite kernel k on Y can be used.
For example, the resulting SE kernel is kΨ(y,y’) = exp

(

−‖Ψ(y)−Ψ(y′)‖2D/2l2Ψ
)

.
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Figure 1: New warping with Ψ, d = 1 and D = 2, from triangles in Y to diamonds in
X . Steps of the construction of Ψ(y1) are detailed.

Like kX , kΨ is not hindered by the non-injectivity brought by the convex projection
pX . Furthermore, it can explore sides of the hypercube without spending too much
budget since remaining on Ran(A). It is thus possible to extend the size of Y to avoid
the risk of missing the optimum. In experiments with kΨ, we set Y to [−γ, γ]d with γ

such that min
j∈[1,D]

d
∑

i=1

|Aj,i|γ = 1, ensuring to span [−1, 1] for each of the D variables.

Algorithm 1 Calculation of Ψ.

1: Map y ∈ Y to Ay
2: If Ay ∈ X Then
3: Define Ψ(y) = Ay
4: Else
5: Project onto X and back-project onto Ran(A): z = pA(pX (Ay))
6: Compute the intersection of [O; z] with X : z′ = (maxi=1,...,D |zi|)−1z

7: Define Ψ(y) = z′ + ‖pX (Ay)− z′‖D. z
′

‖z′‖D

8: EndIf

We compare the usual REMBOmethod with kY and the proposed kΨ, with a unique
embedding. Tests are conducted with the DiceKriging and DiceOptim packages [7].
We use the Matérn 5/2 kernel with hyperparameters estimated with Maximum Like-
lihood and we start optimization with space filling designs of size 10d. Initial designs
are modified such that no points are repeated in X for kY . For kΨ, we apply Ψ to

3



bigger initial designs before selecting the right number of points, as distant as possible
between each other. Experiments are repeated fifty times, taking the same random
embeddings for both kernels. Results in Figure 2 show that the proposed kernel kΨ
outperforms kY when d = 6, in particular since it avoids the problem of a too small do-
main Y. Additional tests with kX actually resulted in a worse performance. Studying
the efficiency of splitting the evaluation budget between several random embeddings,
compared to relying on a single one along with kΨ, would be the scope of future re-
search.

kY

kΨ

0.0 0.5 1.0 1.5

Figure 2: Boxplot of the optimality gap (best value found minus minimal function
value) for kernels kY and kΨ on the Hartmann6 test function (see e.g. [3]) with 250
evaluations, d = de = 6, D = 25.
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