A warped kernel improving robustness in Bayesian optimization via random embeddings - Archive ouverte HAL Access content directly
Conference Papers Year : 2015

A warped kernel improving robustness in Bayesian optimization via random embeddings

Abstract

This works extends the Random Embedding Bayesian Optimization approach by integrating a warping of the high dimensional subspace within the covariance kernel. The proposed warping, that relies on elementary geometric considerations, allows mitigating the drawbacks of the high extrinsic dimensionality while avoiding the algorithm to evaluate points giving redundant information. It also alleviates constraints on bound selection for the embedded domain, thus improving the robustness, as illustrated with a test case with 25 variables and intrinsic dimension 6.
Fichier principal
Vignette du fichier
WarpedKernel.pdf (260.74 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01078003 , version 1 (27-10-2014)
hal-01078003 , version 2 (20-02-2015)

Identifiers

Cite

Mickaël Binois, David Ginsbourger, Olivier Roustant. A warped kernel improving robustness in Bayesian optimization via random embeddings. Learning and Intelligent Optimization: 9th International Conference, LION 9. Revised Selected Papers, Jan 2015, Lille, France. ⟨10.1007/978-3-319-19084-6_28⟩. ⟨hal-01078003v2⟩
390 View
425 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More