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Abstract

Let A0, A1, . . . , An be given square matrices of size m with rational coefficients.
The paper focuses on the exact computation of one point in each connected compo-
nent of the real determinantal variety {x ∈ Rn : det(A0+x1A1+ · · ·+xnAn) = 0}.
Such a problem finds applications in many areas such as control theory, computa-
tional geometry, optimization, etc. Using standard complexity results this problem
can be solved using mO(n) arithmetic operations. Under some genericity assump-
tions on the coefficients of the matrices, we provide an algorithm solving this problem

whose runtime is essentially quadratic in
(

n+m
n

)3
. We also report on experiments

with a computer implementation of this algorithm. Its practical performance illus-
trates the complexity estimates. In particular, we emphasize that for subfamilies of
this problem where m is fixed, the complexity is polynomial in n.

Keywords

Computer algebra, real algebraic geometry, determinantal varieties.

1 Introduction

1.1 Problem statement

Let A0, A1, . . . , An be given square matrices of size m with coefficients in the field of
rationals Q. Consider the affine map defined as

x = (x1, . . . , xn) 7→ A(x) = A0 + x1A1 + · · ·+ xnAn.

Consistently with the technical literature, we use the terminology linear matrix to refer
to A(x), even though the constant term A0 is not necessarily zero. The determinant of
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2Université de Toulouse; LAAS, F-31400 Toulouse, France.
3Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic.
4Sorbonne Universités, UPMC Univ Paris 06, Equipe PolSys, LIP6, F-75005, Paris, France.
5INRIA Paris-Rocquencourt, PolSys Project, France.
6CNRS, UMR 7606, LIP6, France.
7Institut Universitaire de France.

1



A(x), denoted by detA(x), lies in the polynomial ring Q[x] and it has degree at most m.
This polynomial defines the complex determinantal variety

D :=
{

x ∈ Cn : detA(x) = 0
}

.

In other words, D ⊂ Cn is the set of complex vectors x at which rankA(x) ≤ m − 1.
The goal of this paper is to provide a computer algebra algorithm with explicit complex-
ity estimates for computing at least one point in each connected component of the real
determinantal variety D ∩ Rn.

1.2 Motivations

First notice that when n = 1 our problem is called the real algebraic eigenvalue problem
[44], and hence that the case n > 1 can be seen as a multivariate generalization.

Non-symmetric square matrices depending linearly on parameters arise in many problems
of systems control and signal processing. For example, the Hurwitz matrix is used in sta-
bility criteria for systems described by linear ordinary differential equations, and vanishing
of the determinant of the Hurwitz matrix corresponds to a bifurcation between stability
and instability, see e.g. [6]. Alternatively, finding points on the real determinantal variety
of the Hurwitz matrix amounts to finding parameters (e.g. corresponding to a feedback
control law, or to structured uncertainty affecting the system) corresponding to a system
configuration at the border of stability.

Another classical example of non-symmetric square linear matrix arising in signals and
systems is the Sylvester matrix ruling controllability of a linear differential equation. In
this context, vanishing of the determinant of the Sylvester matrix corresponds to a loss
of controllability of the underlying system [31].

Linear matrices and optimization on determinantal varieties arise also in statistics [13, 29]
and in computational algebraic geometry [14].

Under the assumption that the matrices A0, . . . , An are symmetric, the matrix A(x) is
symmetric, and hence it has only real eigenvalues for all x ∈ Rn. The condition A(x) � 0,
meaning that A(x) is positive semidefinite, is called a linear matrix inequality, or LMI.
It is a convex condition on the space of variables x which appears frequently in diverse
problems of applied mathematics and especially in systems control theory, see e.g. [10].
A classical example is the Lyapunov stability condition for a linear ordinary differential
equation which is an LMI in the parameters of a Lyapunov function (a certificate or proof
of stability) depending quadratically on the system state.

When the matrix A(x) is symmetric, the set

S =
{

x ∈ Rn
∣

∣ A(x) � 0
}

(1)

is called a spectrahedron. Spectrahedra are affine sections of the cone of positive semidef-
inite matrices and they represent closed convex basic semialgebraic sets, i.e. convex sets
that can be defined by the common nonnegativity locus of a finite set of polynomials; they
are the object of active studies mainly in optimization theory, real algebraic geometry and
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Figure 1: A spectrahedron (red) with its real determinantal variety.

control theory [33, 32, 9]. Following a question posed in [36, Section 4.3.1], the authors of
[28] conjectured that every convex semialgebraic set is the projection of a spectrahedron.
On Figure 1 is represented a spectrahedron (for n = 3 and m = 5) together with its real
determinantal variety.

The minimization of a given function, for example a polynomial, over real convex sets is
a central problem in optimization theory. If the function is linear and the set is a spectra-
hedron, this is exactly the aim of semidefinite programming (SDP), see [8]. If the input
data of a semidefinite program are defined over Q, the solutions are algebraic numbers,
and the authors in [37] investigated their algebraic degree: giving explicit formulas or
bounds for this value is a measure of the complexity of the given program.

Convex LMIs and SDP are also widely used for solving nonconvex polynomial optimization
problems. Indeed, these optimization problems are linearized in the space of moments
of nonnegative measures (which is infinite-dimensional) and a suitable sequence of LMI
relaxations, or truncations (the so-called Lasserre hierarchy), that can be solved via SDP,
provides the solution to the original problem. The feasible set of every truncated problem
is a spectrahedron in the space of moments, for more details see [33, 32] and references
therein.

So far, the problem of (deciding the existence and) computing such solutions has been
addressed via several numerical methods, the most successful of which are primal-dual
interior-point algorithms [8] implemented in floating-point arithmetic in different SDP
solvers [35].

In this paper, the problem of computing points on spectrahedra is linked to polynomial
systems solving over the reals. In fact, we are interested in the developement of an exact
computer algebra algorithm to compute real points on hypersurfaces defined by the zero
locus of determinants of affine matrix expressions. By exact algorithm we mean that

3



we do not content ourselves with approximate floating-point computations. Our main
motivation starts from the geometrical aspects of SDP as explained above: boundaries
of spectrahedra are subsets of determinantal hypersurfaces, and so solving this problem
efficiently is a necessary step to address the associated positivity problem A(x) � 0, since
the rank of the matrix A(x) at a point in the boundary of the spectrahedron S drops
at least by one, while a point in the interior corresponds to a positive definite matrix.
Finding such a point is a certificate of strict feasibility.

1.3 State of the art

Modern computer algebra algorithms for solving our problem require at most mO(n) arith-
metic operations in Q, see [7, Ch.11, Par.6] and references therein. The core idea is to
reduce the input problem to a polynomial optimization problem whose set of optimizers
is expected to be finite and to meet every connected component of the solution set under
study. Such a reduction must be done carefully, especially for unbounded sets or singu-
lar situations. So far, it is an open problem to get a competitive implementation of the
algorithms in [7]: unbounded and singular cases imply algebraic manipulations that have
no impact on the complexity class but require to work over Puiseux series fields, and this
increases the constant hidden by the big-O notation in the exponent.

During the past decade, tremendous efforts have been made to obtain algorithms that
are essentially quadratic in mn when dealing with one n-variate polynomial equation of
degree m, see e.g. [2, 1, 4, 3, 41]. The goal is to get an implementation that reflects the
theoretical complexity gains. Most of these algorithms are probabilistic: some random
choices independent of the input are performed to ensure genericity properties. Our
contribution shares these features and it is inspired by some geometric ideas in [41].

A main limitation is that the algorithms in [41] are dedicated to the smooth case. In our
case, it turns out that D is in general a singular variety – see e.g. [11] and recall Figure
1 – which makes our problem more difficult from a geometric point of view.

Algorithms in [5] deal with singular situations but do not return sample points in the
connected components that are contained in the singular locus of the variety. As a con-
sequence, one cannot use them to decide the emptiness of D ∩Rn. The algorithm in [40]
may be used but it suffers from an extra-cost, since it requires essentially m4n arithmetic
operations.

Moreover, in [21, 23, 24], the authors have developed algorithms and complexity estimates
to isolate the real solutions of determinantal systems (see also [22] for related works on
a bilinear setting). Beyond the interest of solving our problem for the aforementioned
applications, it is of interest to extend these works to the real and positive dimensional
case.

In practice, one can observe that, when a determinantal equation is given as input to
software implementing singly exponential algorithms [39], its behaviour is significantly
different and worse than the one observed on generic equations.
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1.4 Basic definitions

Before describing the main results of this paper and the basic ideas on which they rely,
we need to introduce some notations and basic definitions that are used further. We refer
to [38, 43] for details.

We use the notations Q∗ := Q \ {0} and C∗ := C \ {0}. We also denote Cm
∗ the set of

non-zero complex vectors of length m.

A subset V ⊂ Cn is said to be an affine algebraic variety defined over Q if there exists a
system (i.e. a finite set) of polynomials f = (f1, . . . , fp) ∈ Q[x]p such that V is the locus
of their common complex solutions, i.e. V = {x ∈ Cn : f(x) = 0} = {x ∈ Cn : f1(x) =
· · · = fp(x) = 0}. In this case we write V = Z(f) = f−1(0). Algebraic varieties are
the closed sets in the Zariski topology, hence any set defined by a polynomial inequation
f 6= 0 defines an open set for the Zariski topology. We also consider the closure V of a set
V ⊂ Cn for the Zariski topology, that is the smallest algebraic subset of Cn containing V .

The set of polynomials that vanish on an algebraic set V generates an ideal of Q[x]
associated to V , denoted by I(V). This ideal is radical (i.e. fk ∈ I(V) for some integer
k implies that f ∈ I(V)) and it is generated by a finite set of polynomials, say f =
(f1, . . . , fp), and we write I(V) = 〈f1, . . . , fp〉 = 〈f〉.

Let V ⊂ Cn be an affine algebraic variety. Then the quotient ring C[V ] = C[x]/I(V) is
the coordinate ring of the variety V : the elements of C[V ] are called regular functions on
V . A map f : V → W ⊂ Cp defined over V with values in W , such that f ∈ C[V ]p, is
called a regular map, and if f is a bijection and its inverse is also a regular map, then f
is an isomorphism of affine algebraic varieties.

Let GLn(Q) denote the set of non-singular matrices of size n with coefficients in Q. Its
identity matrix is denoted by In. Given a matrix M ∈ GLn(Q) and a polynomial system
x ∈ Cn 7→ f(x) ∈ Cp we denote by f◦M the polynomial system x ∈ Cn 7→ f(Mx) ∈ Cp. If
V = Z(f), the image set Z(f ◦M) = {x ∈ Cn : f(Mx) = 0} = {M−1x ∈ Cn : f(x) = 0}
is denoted by M−1V .

Let
(

∂f

∂xk

)

=







∂f1
∂xk

...
∂fp
∂xk







denote the vector of Q[x]p containing partial derivatives of f w.r.t. variable xk, for some
k = 1, . . . , n. The co-dimension c of V is the maximum rank of the Jacobian matrix

Df :=

(

∂f

∂xk

)

k=1,...,n

:=







∂f1
∂x1

. . . . . . ∂f1
∂xn

...
...

∂fp
∂x1

. . . . . . ∂fp
∂xn







evaluated at x ∈ V . The dimension of V ⊂ Cn is n− c.

Let V ⊂ Cn be an algebraic set. We say that V is irreducible if it is not the union of two
sets that are closed for the Zariski topology and strictly contained in V . Otherwise V is
the union of finitely many irreducible algebraic sets, its irreducible components.
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Most of the time, we will consider equidimensional algebraic sets: these are algebraic
sets whose irreducible components share the same dimension. An algebraic set V of
dimension d is the union of equidimensional sets of dimensions k = 0, 1, . . . , d: this is the
so-called equidimensional decomposition of V . Suppose that V is d-equidimensional, that
is, equidimensional of dimension d. Given a polynomial system f : Cn → Cp and a point
x ∈ V := Z(f), we say that x is regular if Df(x) has rank n− d, and singular otherwise.
An algebraic set whose points are all regular is called smooth, and singular otherwise.
The set of singular points of an algebraic set V is denoted by sing V , while the set of its
regular points is denoted by reg V .

Given a polynomial system f : Cn → Cp, suppose that V = Z(f) ⊂ Cn is a smooth
d-equidimensional algebraic set, and let g : Cn → Cm be a polynomial system. Then the
set of critical points of the restriction of g to V is defined by the zero set of f and the
minors of size n− d+m of the matrix

(

Df
Dg

)

and we denote it by crit(g, f). In particular, the critical points of the restriction to V of
the projection map πi : (x1, . . . , xn) 7→ (x1, . . . , xi) is the zero set of f and the minors of
size n− d of the truncated Jacobian

(

∂f

∂xk

)

k=i+1,...,n

obtained by removing the first i columns in the Jacobian of f . The same definition applies
to the equidimensional components of a generic algebraic set.

1.5 Data representation

1.5.1 Input

We assume that the linear matrix A(x) = A0+x1A1+· · ·+xnAn is described via the square
matrices A0, A1, . . . , An of size m with coefficients in Q, which can also be understood as
a point in Q(n+1)m2

. To refer to this input we use the short-hand notation A.

1.5.2 Output

Our goal is to compute exactly sample points in each connected component of the real
variety D∩Rn. Our algorithm consists of reducing the initial problem to isolating the real
solutions of an algebraic set Z ⊂ Cn of dimension at most 0. To this end, we compute a ra-
tional parametrization of Z that is given by a polynomial system q = (q0, q1, . . . , qn, qn+1) ∈
Q[t]n+2 such that q0, qn+1 are coprime (i.e. with constant greatest common divisor) and

Z =

{

x =

(

q1(t)

q0(t)
, · · · ,

qn(t)

q0(t)

)

∈ Cn : qn+1(t) = 0

}

.
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This allows to reduce real root counting isolation to a univariate problem. Note also that
the cardinality of Z is the degree of polynomial qn+1, provided it is square-free; we denote
it by deg q.

Given a polynomial system defining a finite algebraic set Z ⊂ Cn, there exist many
algorithms for computing such a parametrization of Z. In the experiments reported in
Section 6, we use implementations of algorithms based on Gröbner bases [16, 17] and
the so-called change of ordering algorithms [20, 19] because they have the current best
practical behavior. Nevertheless, our complexity analyses are based on the geometric
resolution algorithm given in [27].

1.6 Main results and organization of the paper

The main result of the paper is sketched in the following. Its detailed statement is in
Proposition 5 and it will be proved in Section 2.3.

There exists a probabilistic exact algorithm with input square matrices A0, A1, . . . , An of
size m with coefficients in Q, and output a rational parametrization encoding a finite set
of points with non-empty intersection with each connected component of D ∩ Rn. In case
of success, the complexity of the algorithm is within

O˜

(

n2m2(n+m)5
(

n+m

n

)6
)

arithmetic operations, where O (̃s) = O(s logk s) for some k ∈ N.

Probabilistic aspects of this algorithm have been already mentioned and will be discussed
in details in the next sections. In particular, the paper is organized as follows.

Section 2 contains a detailed description of the algorithm and of its subroutines. Moreover,
its formal description is provided. Section 2.2 contains all regularity results, that is
Propositions 1, 2 and 3, proved in the following sections. It also contains the proof of
correctness of Theorem 4. As already mentioned, the proof of the main result is given in
Section 2.3. Section 3 contains the proof of Proposition 1. Section 4 contains the proof of
Proposition 2. Section 5 contains the proof of Proposition 3. Finally, Section 6 contains
numerical data of experiments and some examples.

2 Algorithm: correctness and complexity

2.1 Description of the algorithm

Our algorithm is guaranteed to return an output under some genericity assumptions on
the input. If the genericity assumptions are not satisfied, the algorithm raises an error.
The algorithm consists of computing critical points of the restriction of linear projections
to a given algebraic variety after a randomly chosen linear change of variables. These
points are the solutions of a Lagrange system to be defined in this section.
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2.1.1 Notations

Before giving an overview of the algorithm, we need to introduce some notations.

Change of variables. We denote by A ◦ M the affine map x 7→ A(Mx) obtained by
applying a change of variables with matrix M ∈ GLn(C). In particular A = A ◦ In.

Incidence variety. Given a matrix M ∈ GLn(C), define

f(A ◦M) : Cn+m → Cm

(x, y) 7→ A(Mx)y

as a polynomial system of size m in the variables x = (x1, . . . , xn) and y = (y1, . . . , ym).
Given u = (u1, . . . , um) ∈ Cm

∗ , define

f(A ◦M,u) : Cn+m → Cm+1

(x, y) 7→ (A(Mx)y, u′y − 1)

where u′y := u1y1 + · · · + umym denotes the inner product of two vectors, and let V(A ◦
M,u) := Z(f(A ◦M,u)) ⊂ Cn+m. We will see that under some genericity assumptions,
algebraic variety V(A ◦M,u) is equidimensional and smooth.

Fiber. Given w ∈ C, define

fw(A ◦M,u) : Cn+m → Cm+2

(x, y) 7→ (A(Mx)y, u′y − 1, x1 − w)

and let Vw(A ◦M,u) := Z(fw(A ◦M,u)) ⊂ Cn+m.

Lagrange system. Given v ∈ C, let J(x, y) := D1f(A ◦ M,u) denote the matrix of
size m+1 by n+m− 1 obtained by removing the first column of the Jacobian matrix of
f(A ◦M,u), and define

l(A ◦M,u, v) : Cn+2m+1 → Cn+2m+1

(x, y, z) 7→ (A(Mx)y, u′y − 1, J(x, y)′z, v · zm+1 − 1)

where variables z = (z1, . . . , zm+1) stand for Lagrange multipliers, and let Z(A◦M,u, v) :=
Z(l(A ◦M,u, v)) ⊂ Cn+2m+1.

Assumption G. We say that a polynomial system f of size p satisfies G if

• 〈f〉 is radical, and

• Z(f) is either empty or smooth and equidimensional of co-dimension p.

We say that a linear map A satisfies G if the polynomial system f(A, u) satisfies G for all
u ∈ Cm

∗ .
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2.1.2 Formal description

The algorithm takes as input A which is assumed to satisfy G . Then, it chooses randomly
M ∈ GLn(Q), u ∈ Qm, v ∈ Q and w ∈ Q and computes a rational parametrization of
Z(A ◦ M,u, v) ⊂ Cn+2m+1. Its projection on the (x, y)-space is expected to be the set
of critical points of the restriction to V(A ◦M,u) of the projection on the x1-coordinate.
Next, a recursive call is performed with input A◦M where the x1-coordinate is instantiated
to w. The new input should satisfy the same genericity properties as the one satisfied by
A. Before giving a detailed description of the algorithm, we describe basic subroutines
required by our algorithm.

Main subroutines. The algorithm uses the following subroutines:

• IsSing: it takes as input a polynomial system with coefficients in Q and it returns
false if the system satisfies G, and true otherwise;

• RatPar: it takes as input a polynomial system with coefficients in Q defining a finite
set and it returns a rational parametrization of the set, as defined in Section 1.5.2.

It also uses the following subroutines that perform basic operations on rational paramet-
rizations of finite sets:

• Image: it takes as input a rational parametrization of a finite set Z ⊂ CN and a
matrix M ∈ GLN(C) and it returns a rational parametrization of the image set
M−1Z corresponding to a change of variables;

• Union: it takes as input two rational parametrizations of finite sets Z1,Z2 and
returns a rational parametrization of Z1 ∪ Z2;

• Project: it takes as input a rational parametrization of a finite set Z and a subset
of variables, and it computes a rational parametrization of the projection of Z on
the linear subspace generated by these variables;

• Lift: it takes as input a rational parametrization of a finite set Z ⊂ CN and a number
w ∈ C, and it returns a rational parametrization of Z ′ = {(x, w) : x ∈ Z} ⊂ CN+1.

We can now describe more precisely our algorithm RealDet. It uses a recursive subroutine
RealDetRec that takes as input A satisfying G and returns a rational parametrization of
a finite set which meets all connected components of D ∩ Rn.

RealDetRec(A):

1. If n = 1 then return (1, t, detA(t));

2. Choose randomly

• M ∈ GLn(Q)

• u = (u1, . . . , um) ∈ Qm

• v ∈ Q

9



• w ∈ Q;

3. P = Project(RatPar(l(A ◦M,u, v)), (x1, . . . , xn));

4. Q = RealDetRec(Substitute(x1 = w,A ◦M)));

5. Q = Lift(Q, w);

6. return Image(Union(Q,P),M−1).

The main algorithm RealDet checks that the input satisfies G in which case it calls Re-

alDetRec.

RealDet(A):

1. Choose randomly u ∈ (Q∗)
m;

2. If IsSing(f(A, u)) then output an error message saying that the genericity assump-
tions are not satisfied;

3. else return RealDetRec(A).

2.2 Proof of correctness

It is immediate that it is sufficient to prove the correctness of RealDetRec. This algorithm
takes as input an affine map A satisfying G.

The result below shows that Assumption G is generic in the sense that there a exists a
non-empty Zariski open set of Cm2(n+1) contained in the set of linear matrices satisfying
G. It is also useful to ensure that recursive calls are valid, i.e. the inputs in recursive calls
satisfy the genericity assumption. The proof is given in Section 3.

Proposition 1 Let u = (u1, . . . , um) ∈ Qm
∗ .

1. There exists a non-empty Zariski open set A ⊂ Cm2(n+1) such that for all A ∈ A ,
f(A, u) satisfies G.

2. If A ∈ A there exists a non-empty Zariski open set W ⊂ C such that for any w ∈ W

fw(A, u) satisfies G.

Note that random choices are performed by algorithm RealDetRec at Step 2. These are
needed to ensure some genericity properties. The first one ensures that set Z(A◦M,u, v)
is finite; it is proved in Section 4.

Proposition 2 Let u = (u1, . . . , um) ∈ Qm, and assume that A ∈ A . Then there exist
two non-empty Zariski open sets M1 ⊂ GLn(C) and V ⊂ C such that for all M ∈
M1 ∩Qm×m and v ∈ V ∩Q, the following properties hold:

10



1. Z(A ◦M,u, v) is a finite set;

2. the Jacobian matrix Dl(A◦M,u, v) has maximal rank at any point of Z(A◦M,u, v);

3. the projection of Z(A◦M,u, v) on the (x, y)-space contains the set of critical points
of the restriction to V(A ◦M,u) of the projection on the x1-coordinate.

The proposition below states that, for M ∈ GLn(Q) generically chosen, and for any
connected component C of D∩Rn, πi(M

−1C) is closed for i = 1, . . . , n− 1. This is proved
in Section 5.

Proposition 3 Assume that A ∈ A . Then there exist a non-empty Zariski open set
M2 ⊂ GLn(C) and a non-empty Zariski open set U ⊂ Cm such that for any M ∈
M2 ∩Qn×n, u ∈ U ∩Qm and any connected component C of D∩Rn, the following holds:

1. for i = 1, . . . , n− 1, πi(M
−1C) is closed for the Euclidean topology;

2. for any w ∈ R lying on the boundary of π1(M
−1C), π−1

1 (w) ∩ M−1C is finite and
there exists (x, y) ∈ Rn × Rm such that (x, y) ∈ V(A ◦M,u) and π1(x, y) = w.

Note that, starting with an n-variate affine map, there are n calls to RealDetRec, among
which n− 1 are recursive.

The random choices performed at Step 2 of every recursive call to RealDetRec can be
organized in an array

(

(M (1), u(1), v(1), w(1)), . . . , (M (n−1), u(n−1), v(n−1), w(n−1))
)

(2)

where the upperscripts indicate the depth of the recursion. There are n − 1 choices
of these data because when n = 1 the recursive subroutine directly returns a rational
parametrization without making such a choice. To ensure the correctness of RealDetRec,
we need to assume that these choices are random enough so that data (M (j), u(j), v(j), w(j))
lie in some prescribed non-empty Zariski open set O(j) for j = 1, . . . , n − 1 as suggested
by the previous propositions. Because of the recursive calls, a priori the set O(j) depends
on the previous choices. This is formalized by the following assumption.

Assumption H. We use the notations for sets introduced in Propositions 1, 2, 3, with
the upperscript (j) to indicate the depth of recursion. We say that H holds if the array
(2) satisfies the following conditions:

• M (j) ∈ M
(j)
1 ∩ M

(j)
2 ∩Qn×n, for j = 1, . . . , n− 1;

• u ∈ U (j) ∩ (Q)m for j = 1, . . . , n− 1;

• v(j) ∈ V (j) ∩Q, for j = 1, . . . , n− 1;

• w(j) ∈ W (j) ∩Q, for j = 1, . . . , n− 1.

We can now prove the following correctness statement.
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Theorem 4 Assume that A ∈ A and that H holds. Then, RealDet(A) returns a ratio-
nal parametrization encoding a finite set of points with non-empty intersection with each
connected component of D ∩ Rn.

Proof : Our reasoning is by induction on n, the number of variables. We start with the
initialization. When n = 1, D ⊂ C is finite. Then a rational parametrization of D is the
triple (1, t, detA(t)), which is the output result. Now, our induction assumption is that
for any linear map x 7→ A(x) = A0+x1A1+ · · ·+xn−1An−1 that satisfies G, the algorithm
RealDetRec returns a correct answer provided that H holds.

Now, let A be a linear map and let C be a connected component of D ∩ Rn. We let
M,u, v and w be respectively the matrix, vectors and rational number chosen at Step 2
of RealDetRec, with input A.

First assume that the projection on the x1-coordinate of M
−1C is the whole x1-axis. Since

A satisfies G, we deduce that A◦M satisfies G. Since H holds, we conclude by Proposition
1 that fw(A◦M,u) generates a radical ideal and defines an algebraic variety which is either
empty or smooth (n− 2)-equidimensional.

Since, by assumption, π1(M
−1C) is the whole x1-axis, there exists a connected component

C ′ of the solution set of fw(A ◦M,u) such that {(w, x) | x ∈ C ′} is contained in M−1C. In
other words, the input of RealDetRec at Step 4 satisfies G and it is sufficient to compute
sample points in each connected component of the solution set of fw(A◦M,u) to obtain a
sample point in C. Correctness follows from the induction assumption which implies that
RealDetRec computes at least one point in each connected component of the algebraic set
defined by fw(A ◦M,u).

Now, assume that the projection π1 on the x1-coordinate of M−1C is not the whole x1-
axis. Since H is satisfied, we deduce by Proposition 3 that π1(M

−1C) is closed for the
Euclidean topology. Since π1(M

−1C) 6= R by assumption and since π1(M
−1C) is closed,

there exists x = (x1, . . . , xn) ∈ M−1C such that w = x1 lies in the boundary of π1(M
−1C).

Without loss of generality, we assume below that π1(M
−1C) is contained in [w,+∞[.

Recall that H holds. Then, by Proposition 3, π−1
1 (w) ∩ M−1C is finite and for all x ∈

π−1
1 (w) ∩M−1C there exists y ∈ Rm such that (x, y) ∈ V(A ◦M,u).

Below, we reuse the notations of the algorithm and we prove that there exists z ∈ Cm+1

such that (x, y, z) is a point lying in Z(A ◦ M,u, v). Combined with Proposition 2, we
also deduce that the above polynomial system defines a finite set which contains (x, y, z).
Thus, the calls to RatPar and Project are valid and (x, y, z) lies in the finite set of points
computed at Step 3 of RealDetRec. Correctness of the algorithm follows straightforwardly.

Thus, it remains to prove that there exists z ∈ Cm+1 such that (x, y, z) lies in Z(A ◦
M,u, v). Let M−1C ′ be the connected component of V(A ◦M,u) ∩ Rn+m which contains
(x, y). We claim that w = π1(x, y) lies on the boundary of π1(M

−1C ′).

Indeed, assume by contradiction that this is not the case, i.e. w ∈ π1(M
−1C ′) but does

not lie in the boundary of π1(M
−1C ′). This implies that there exists ε > 0 such that the

interval (w − ε, w + ε) lies in π1(M
−1C ′). As a consequence, there exists (x′, y′) ∈ M−1C ′

such that that π1(x
′, y′) < w. Moreover, since (x′, y′) ∈ M−1C ′ and M−1C ′ is connected,

we deduce that there exists a continuous semi-algebraic function τ : [0, 1] → M−1C ′ with

12



τ(0) = (x, y) and τ(1) = (x′, y′). Let πx be the projection map πx(x, y) = x. Since πx

and τ are continuous semi-algebraic functions, γ = πx ◦τ is continuous and semi-algebraic
(since it is the composition of semi-algebraic continuous functions). Finally, note that
γ(0) = x and γ(1) = x′; we deduce that x′ ∈ M−1C with π1(x

′) < w = π1(x). This
contradicts the fact that w lies in the boundary of π1(M

−1C) and that π1(M
−1C) lies in

[w,+∞[. We conclude that w = π1(x, y) lies on the boundary of π1(M
−1C ′).

As a consequence of the implicit function theorem [7, Section 3.5], we deduce that (x, y)
is a critical point of the restriction of the projection π1 to M−1C ′. Since M−1C ′ is a
connected component of V(A ◦ M,u) ∩ Rn and since the input satisfies G, we deduce
that the truncated Jacobian matrix D1f(A ◦ M,u) (defined jointly with the Lagrange
system in paragraph 2.1.1) is rank defective at (x, y) (see [42, Sections 2.1.4 and 2.1.5]).
Moreover, since H holds, we deduce by Proposition 2 that (x, y) lies in the projection of
Z(A ◦M,u, v). Thus, there exists z ∈ Cm+1 such that (x, y, z) lies in Z(A ◦M,u, v) as
requested. �

2.3 Complexity analysis and degree bounds

In this section, we estimate the complexity of the algorithm RealDet and we give an explicit
formula for a bound on the number of complex solutions computed by the algorithm.

We assume that G holds, so that we do not need to estimate the complexity of the
subroutine IsSing and we focus on the complexity of the algorithm RealDetRec.

We assume in the sequel that H holds. On input A satisfying G, RealDetRec computes
a rational parametrization of the solutions set of l(A ◦M,u, v) (Step 3) and performs a
recursive call with input Substitute(x1 = w,A ◦M) (Step 4). On input l(A ◦M,u, v), our
routine for computing rational parametrization of its solution set starts by building an
equivalent system.

The complexity results stated below depend on degrees of geometric objects defined by
systems which are equivalent to the Lagrange systems we consider. We need to introduce
some notations.

The sequence of linear matrices that are considered during the recursive calls is denoted
by A(0), . . . , A(n−1), where A(i) is a linear matrix in n − i variables; the systems f(A(i) ◦
M (i), u(i)) for 0 ≤ i ≤ n− 1 are respectively denoted by

fi = (fi,1, . . . , fi,m+1)

where fi,m+1 : y 7→ y′u(i) − 1. Note that the fi involve n+m− i variables. The Lagrange
systems l(A(i) ◦M (i), u(i), v(i)) are denoted by

li = (fi, gi,1, . . . , gi,n+m−i)

where gi,n+m−i : z 7→ v(i)zn+m−i+1 − 1.

Using fi,m+1, one can eliminate one of the y-variables, say ym, in fi. We denote by

f̃i = (f̃i,1, . . . , f̃i,m)

13



the polynomial system obtained this way. Recall that the polynomials gi,1, . . . , gi,n+m−i

express that there is a nonzero vector in the left kernel of the truncated Jacobian matrix
D1fi. Hence, one can equivalently express the existence of a non-zero vector in the left
kernel of the truncated Jacobian matrix D1f̃i. This yields a new polynomial system

l̃i := (f̃i,1, . . . , f̃i,m, g̃i,m+1, . . . , g̃i,n−i−1, g̃i,n−i, . . . , g̃i,n+2m−i−2).

Note that since we have assumed that H holds, one can deduce using Proposition 2 that
the Jacobian matrix Dl̃i has maximal rank at any complex solution of l̃i.

This new polynomial system contains:

• m polynomials which are bilinear in (x1, . . . , xn) and (y1, . . . , ym−1);

• m− 1 polynomials which are bilinear in (x1, . . . , xn) and (z1, . . . , zm−1);

• n− 1 polynomials which are bilinear in (y1, . . . , ym−1) and (z1, . . . , zm−1).

In the sequel, we denote by Vi,j the Zariski closure of the algebraic set defined by

f̃i,1, . . . , f̃i,j, when 1 ≤ j ≤ m

and
f̃i,1, . . . , f̃i,m, g̃i,m+1, . . . , g̃i,j when m+ 1 ≤ j ≤ n+ 2m− i− 2.

The algebraic set Wi,j is the subset of Vi,j at which the Jacobian matrix of its above
defining system has maximal rank. For 0 ≤ i ≤ n− 1, we denote by

δi = max{degWi,j : 1 ≤ j ≤ n+ 2m− i− 2}

and by δ the maximum of the δi. Remark that since H holds, Proposition 2 implies that
Wi,n+2m−i−2 = Z(l̃i).

We start by estimating the complexity of the main subroutines called by RealDetRec. We
prove the following result.

Proposition 5 Assume that H holds. Then, RealDetRec outputs a rational parametriza-
tion whose real zero locus meets each connected component of D ∩ Rn within

O˜
(

n2m2(n+m)5δ2
)

arithmetic operations in Q with δ ≤
(

n+m
m

)3
and O (̃s) = O(s · logk(s)) for some k ∈ N.

Assume that A satisfies G and that M , u and v lies in the non-empty Zariski open sets
defined in Propositions 2 and 3.

Lemma 6 Under the above notations and assumptions, there exists a probabilistic algo-
rithm which, on input li, computes a rational parametrization of the complex solution set
of it within

O˜
(

n2m2(n+m)5δ2
)

arithmetic operations in Q with δ ≤
(

n+m
m

)3
.
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Proof of Proposition 5: Through its recursive calls, the algorithm RealDetRec com-
putes rational parametrizations of the solution sets of the Lagrange systems l0, . . . , ln−1.

Lemma 6 shows that these computations are done within

O˜
(

(n+m)2(nm2 + (n+m)3)δ2
)

arithmetic operations in Q with δ ≤
(

n+m
m

)3
. Since there are n Lagrange systems to solve,

all these parametrizations are computed within

O˜
(

n2m2(n+m)5δ2
)

arithmetic operations in Q. Note that in all systems l0, . . . , ln−1 the number of variables
is bounded by n+ 2m+ 1 and the cardinality of their solution set is bounded by δ.

Following [42, Lemma 10.1.3], the call to the routine Project at Step 3 requires at most
O (̃(n+m)δ2) arithmetic operations in Q.

Next, by [42, Lemma 10.1.1 and Lemma 10.1.3], the calls to the routines Image and Union

and in Step 6 require respectively at most O (̃(n+m)2δ + (n+m)3) and O (̃(n+m)δ2)
arithmetic operations in Q. Summing up all these complexity estimates yields to the
announced complexity bounds. �

Proof of Lemma 6: It is sufficient to describe the proof for l = l0 only. We use the
geometric resolution algorithm given in [27] to compute a rational parametrization of the
complex solution set of the system l̃ obtained following the construction in Paragraph 2.3.
Note that since H holds by assumption, we deduce that l̃ is a reduced regular system, in
the sense defined in the introduction of [27].

Note that all polynomials of l̃ have degree ≤ 2 and that evaluating l̃ requires O (̃nm2)
arithmetic operations.

Thus, one can apply [27, Theorem 1]. When l̃ is a reduced regular sequence, it states that
one can compute a rational parametrization of the complex solution set of l̃ in probabilistic
time

O (̃ñ2(õ+ ñ3)δ2)

where

• ñ = n+ 2m− 2 is the total number of variables involved in l̃,

• õ is the complexity of evaluating l̃,

• and δ is the quantity introduced in Paragraph 2.3.

We obtain that one can compute a rational parametrization of the complex solution set
of l̃ in probabilistic time

O (̃(n+m)2(nm2 + (n+m)3)δ2).

Our conclusion follows and the bound on δ is proved in the following lemma. �
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Lemma 7 Under the above notations and assumptions the following inequality holds:

δ ≤

(

n+m

m

)3

.

Proof : To prove degree bounds on δ, we take into account the multi-linear structure in
x, y, z of the intermediate systems

f̃i,1, . . . , f̃i,t, for 1 ≤ j ≤ t

and
f̃i,1, . . . , f̃i,m, g̃i,m+1, . . . , g̃i,m+t for 1 ≤ t ≤ n+ 2m− i− 2.

We define ∆(m,n; t) as follows:

• when 1 ≤ t ≤ m, ∆(m,n; t) is the sum of the coefficients of the polynomial (s1+s2)
t

modulo the ideal generated by (sn+1
1 , sm2 );

• when m + 1 ≤ t ≤ n + m − 1, ∆(m,n; t) is the sum of the coefficients of the
polynomial (s1 + s2)

m(s1 + s3)
t−m modulo the ideal generated by (sn+1

1 , sm2 , s
m
3 );

• when n + m ≤ t ≤ n + 2m − 2, ∆(m,n; t) is the sum of the coefficients of the
polynomial (s1 + s2)

m(s1 + s3)
n−1(s3 + s2)

t−m−n+1 modulo the ideal generated by
(sn+1

1 , sm2 , s
m
3 ).

By [42, Proposition 10.1.1], the degrees of their components of highest dimension is
bounded by ∆(m,n; t). Immediate computations show that the following holds:

∆(m,n; t) =











∑min(n,t)
i=0

(

t
i

)

t ∈ {1, . . . ,m},
∑

(i,j)∈Ft

(

m
i

)(

t−m
j

)

t ∈ {m+ 1, . . . , n+m− 1},
∑

(i,j,ℓ)∈Ft

(

m
i

)(

n−1
j

)(

t−m−n+1
ℓ

)

t ∈ {n+m, . . . , n+ 2m− 2}.

for every m and n, where:

Ft =











(i, j) ∈ {1, . . . ,m} × {0, . . . , n− 1},

1 ≤ i ≤ min(m,n),

max(0, t− 2m+ 1) ≤ j ≤ min(t−m, i− 1),

if t ∈ {m+ 1, . . . , n+m− 1}, and

Ft =











(i, j, ℓ) ∈ {1, . . . ,m} × {0, . . . , n− 1} × {0, . . . , t−m− n+ 1},

max(0, t− 2m+ 1) ≤ j + ℓ ≤ n− 1,

max(1, t− 2m+ 2) ≤ i+ ℓ ≤ min(n, t− n+ 1).

if t ∈ {n + m, . . . , n + 2m − 2}. Let us remark that relations defining Fn+2m−2 become
linear contraints, which yields the following equality for the case t = n+ 2m− 2:

∆(m,n;n+ 2m− 2) =
m−1
∑

i=0

(

m

n− i

)(

n− 1

i

)(

m− 1

i

)

. (3)
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One can easily check that for all k ∈ N

(

n+m

n

)k

=
n
∑

i1,...,ik=0

(

m

i1

)(

n

i1

)

· · ·

(

m

ik

)(

n

ik

)

.

Moreover, for all m,n and for t ∈ {1, . . . ,m}, ∆(m,n; t) ≤ ∆(m,n; t+1), and ∆(m,n;m)
is bounded by

(

n+m
n

)

because of the previous formula.

Let t ∈ {m+ 1, . . . , n+m− 1}. Then ∆(m,n; t) =
∑min(m,n)

i=1 ai
(

m
i

)

where

ai =
∑

j:(i,j)∈Ft

(

t−m

j

)

=

min(t−m,i−1)
∑

j=max(0,t−2m+1)

(

t−m

j

)

≤
n
∑

j=0

(

n

i

)(

m

j

)(

n

j

)

.

and so ∆(m,n; t) ≤
(

n+m
n

)2
for all t ∈ {m+ 1, . . . , n+m− 1}.

Finally, for t ∈ {n+m, . . . , n+ 2m− 2}, one gets

∆(m,n; t) ≤
n
∑

i,j,ℓ=0

(

m

i

)(

n− 1

j

)(

t−m− n+ 1

ℓ

)

≤
n
∑

i,j,ℓ=0

(

m

i

)(

n

j

)(

m

ℓ

)

≤

(

n+m

n

)3

.

�

2.3.1 Complexity of Project.

According to [42, Lemma 9.1.6], given a rational parametrization q defining a zero-
dimensional set Z ⊂ CN , there exists a probabilistic algorithm computing a rational
parametrization q′ of the projection πi(Z) whose complexity is within O∼(Ndeg q2) oper-
ations. We remark here that deg q is the cardinality of Z provided that q is square-free;
if not, it is an upper bound. In the case of Z(A ◦M,u, v), we obtain from Lemma 7 that

deg q ≤
(

n+m
n

)3
.

Lemma 8 The complexity of Project in RealDetRec is

O∼

(

(n+ 2m− 2)

(

n+m

n

)6
)

.

Proof : It follows from the bound for δ of Lemma 7 and from [42, Lemma 9.1.6]. �

2.3.2 Complexity of Image, Union.

By [42, Lemma 9.1.1], given a rational parametrization q and a matrix M ∈ GLN(Q),
there exists an algorithm computing a rational parametrization q′ such that Z(q′) =
M−1Z(q) using O∼(N2δ + N3) operations. Moreover, by [42, Lemma 9.1.3] if q1, q2 are
rational parametrizations with degree sum bounded by δ, a rational parametrization of
Z(q1) ∪ Z(q2) can be computed in O∼(Nδ2) operations.
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Lemma 9 The complexity of Image and Union in RealDetRec is

O∼

(

(n+ 2m− 2)2
(

n+m

n

)3

+ (n+ 2m− 2)3 + (n+ 2m− 2)

(

n+m

n

)6
)

.

Proof : The proof of this fact follows straightforwardly from [42, Lemma 9.1.1], [42,
Lemma 9.1.3] and Lemma 7. �

2.3.3 A bound on the degree of the output

Let A be a n−variate linear matrix of size m and apply algorithm RealDet to A. Recall
that the number ∆(m,n, n+2m−2) computed in (3) is a bound on the number of complex
solutions computed by the first call of RealDetRec.

The following result, whose proof is straightforward, counts the maximum number of
complex solutions computed by RealDet.

Lemma 10 The number of complex solutions computed by RealDet with input a linear
matrix A satisfying Assumption G, is upper-bounded by the number

b(m,n) =
n
∑

j=1

∆(m, j, j + 2m− 2) =
n
∑

j=1

m−1
∑

i=0

(

m

j − i

)(

j − 1

i

)(

m− 1

i

)

.

We remark the following facts:

• ∆(m, j, j + 2m− 2) = 0 if j ≥ 2m;

• if m = m0 is fixed, n 7→ b(m0, n) is constant if n ≥ 2m0.

3 Regularity properties of the incidence variety

The aim of this section is to prove Proposition 1. To identify the linear map x 7→ A(x) =
A0 + x1A1 + · · · + xnAn with a point in Cm2(n+1), we denote by al,i,j the entry of matrix
Al at row i and column j, for l = 0, 1, . . . , n and i, j = 1, . . . ,m.

Proof of the first point of Proposition 1: Consider the polynomial map

p : Cn+m × Cm2(n+1) −→ Cm+1

(x, y, A) 7−→ f(A, u)

and, for a given A ∈ Cm2(n+1), the induced map

pA : Cn+m −→ Cm+1

(x, y) 7−→ p(x, y, A).

Assume first that Z(p) is empty. This is equivalent to saying that, for any A ∈ Cm2(n+1),
V(A, u) := Z(f(A, u)) is empty. By the Nullstellensatz [12, Chap. 8], this implies that
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for any A ∈ Cm2(n+1), the ideal I(V(A, u)) = 〈f(A, u)〉 = 〈1〉 is radical. We define
A = C(n+1)m2

and conclude.

Assume that Z(p) is non-empty. We prove below that there exists a non-empty Zariski
open set A ⊂ Cm2(n+1) such that for any A ∈ A , the Jacobian matrix Df(A, u) has
maximal rank at any point in Z(pA). This is sufficient to establish the requested property
G since by the Jacobian criterion [15, Theorem 16.19] this implies that

• the ideal 〈f(A, u)〉 is radical;

• the algebraic set V(A, u) is either empty or smooth and equidimensional of co-
dimension m+ 1 in Cn+m.

To prove the existence of the aforementioned non-empty Zariski open set A , we first
need to prove that 0 is a regular value of p, i.e. at any point of the fiber Z(p) the
Jacobian matrix Dp with respect to variables x, y and aℓ,i,j has maximal rank. Take
(x, y, A) ∈ Z(p). It suffices to prove that there exists a maximal minor of Df(A, u) which
is not zero at (x, y, A).

Remark that, since y is a solution of the equation u′y = 1, there exists 1 ≤ s ≤ m such
that ys 6= 0. Moreover, since u 6= 0, there exists 1 ≤ ℓ ≤ m such that uℓ 6= 0. Now
consider the submatrix of Df(Au) obtained by selecting

• the partial derivatives with respect to yℓ where ℓ is as above;

• the partial derivatives with respect to a0,r,s for all 1 ≤ r ≤ m and for s as above.

Checking that this submatrix has maximal rank at (x, y, A) is straightforward since

• the partial derivatives of the entries of A(x)y with respect to a0,r,s for 1 ≤ r ≤ m is
the diagonal matrix with ys 6= 0 on the diagonal;

• the partial derivative of the polynomial u′y − 1 with respect to yℓ is uℓ 6= 0, while
the partial derivatives of that polynomial with respect to a0,r,s are 0.

Thus, up to reordering the columns of this submatrix, it is triangular with non-zero entries
on the diagonal. Finally, we conclude that 0 is a regular value of p. By Thom’s Algebraic
Weak Transversality theorem [42, Section 4.2] there exists a non-empty Zariski open set
A ⊂ Cm2(n+1) such that, for every A ∈ A , 0 is a regular value of the map pA. This
concludes the proof. �

Proof of the second point of Proposition 1: Let A ∈ A and consider the map

π1 : V(A, u) → C

(x, y) 7→ x1.

which is the restriction to V(A, u) of the projection on the first variable. Since A ∈ A , the
variety V(A, u) is either empty or smooth and equidimensional and by Sard’s Lemma ([42,
Section 4.2]) the image by π1 of the set of critical points of π1 is contained in an algebraic
hypersurface of C (that is, a finite set). This implies that there exists a non-empty Zariski
open set W ⊂ C such that if w ∈ W , at least one of the following fact holds:
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• the set π−1
1 (w) = {(x, y) ∈ V(A, u) | x1 = w} is empty: this fact implies that the

system fw(A, u) defines the empty set, and that 〈fw(A, u)〉 = 〈1〉, which is a radical
ideal;

• for all (x, y) ∈ π−1
1 (w), (x, y) is not a critical point of π1; this fact implies that

the Jacobian matrix of fw(A, u) has full rank at each point (x, y) in the zero set
of fw(A, u), and so by the Jacobian criterion [15, Theorem 16.19] that fw(A, u)
defines a radical ideal and its zero set is a smooth equidimensional algebraic set of
codimension m+ 2 in Cn+m.

By this, we conclude that if w ∈ W , the system fw(A, u) satisfies G. �

Example 11 Consider the linear matrix

A(x) =





1 x1 x2

x1 1 x3

x2 x3 1





whose real determinantal variety is the Cayley cubic surface with its four singular points
(x1, x2, x3) ∈ {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}, see Example 2 and Figure 3
in [37]. When evaluated at these points, A has rank one. The following Macaulay2 code
shows that the incidence variety is smooth.

MyRand = () -> (((-1)^(random(ZZ)))*(random(QQ)))

R = QQ[x_1,x_2,x_3]

A = matrix{{1,x_1,x_2},{x_1,1,x_3},{x_2,x_3,1}}

D = ideal det A

dim D, degree D

SingD = ideal singularLocus D

dim SingD, degree SingD

S = QQ[x_1,x_2,x_3,y_1,y_2,y_3]

Y = matrix{{y_1},{y_2},{y_3}}

V = ideal(sub(A,S)*Y) + ideal(1-sum(3,i->MyRand()*(y_(i+1))))

dim V, degree V

SingV = ideal singularLocus V

dim SingV, degree SingV

The incidence variety in this example has dimension 2 and degree 7.

Example 12 Consider the linear matrix

A(x) =









1 + x1 x2 0 0
x2 1− x1 x2 0
0 x2 2 + x1 x2

0 0 x2 2− x1









whose real determinantal variety is a smooth quartic curve, the union of two nested ovals,
see Figure 2. Here the incidence variety is a smooth variety of dimension 6 and degree
10.
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Figure 2: The smooth quartic curve of Example 12 with its two nested ovals.

4 Dimension properties of Lagrange systems

The aim of this Section is to prove Proposition 2.

There is some similarity between the statement of Proposition 2 and some properties of
Lagrange systems given in [42, Chap. 8 and 9]. The main difference with [42] comes from
the fact that here we ensure the finiteness of Z(A ◦ M,u, v) with a change of variables
that acts only on the x-coordinates. Consequently, this preserves the bilinear structure
of the system f(A ◦M,u).

Proof of Proposition 2: Since A ∈ A , the polynomial system f = f(A◦M,u) satisfies
G for all M ∈ GLn(C) and u ∈ Cm

∗ . We deduce that the m+1 by n+m Jacobian matrix
Df has maximal rank at all points (x, y) ∈ V(A ◦M,u).

In the sequel, we denote by Dxf (resp. Dyf) the submatrix of Df obtained by removing
all partial derivatives with respect to y (resp. x).

Let z = (z1, . . . , zm+2) and w = (w1, . . . , wn), and denote by g = (g1, . . . , gn) (resp.
h = (h1, . . . , hm)) the first n (resp. last m) coordinates of the row vector

z′
(

Dxf Dyf
w1, . . . , wn 0 · · · 0

)

.

Remark that h does not depend on w or zm+2. Remark also that since f satisfies G, the
polynomial system f, g, h defines the critical points of the projection map

πw : (x, y) 7→ w1x1 + . . .+ wnxn.

Now, consider the map

p : Cn × Cm × Cm+2 × C× Cn −→ Cm+1 × Cn × Cm × C

(x, y, z, v, w) 7−→ (f, g, h, vzm+1 − 1)
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and the map
q : Cn × Cm × Cm+2

∗ × Cn −→ Cm+1 × Cn × Cm

(x, y, z, w) 7−→ (f, g, h)

and, for a given w ∈ Cn
∗ , the set Ww(A, u) = Z(q) ⊂ Cn × Cm × Cm+2

∗ . Finally, for given
v ∈ C and w ∈ Cn

∗ , consider the polynomial map

pv,w : Cn × Cm × Cm+2 −→ Cm+1 × Cn × Cm × C

(x, y, z) 7−→ (f, g, h, vzm+1 − 1)

and the corresponding algebraic variety Wv,w(A, u) := Z(pv,w).

Assume for the moment the following result whose proof is given later on.

Lemma 13 Under the above notations and assumptions, there exist non-empty Zariski
open sets V ⊂ C and W ⊂ Cn such that for all v ∈ V and w ∈ W , the following
properties hold:

(a) Wv,w is a finite set;

(b) the Jacobian matrix associated to pv,w has maximal rank at any point of Wv,w;

(b’) the Jacobian matrix associated to q has maximal rank at any point of Ww;

(c) the projection of Wv,w on the (x, y)-space contains the set of critical points of the
restriction of the projection πw : (x1, . . . , xn) → w1x1 + · · ·+ wnxn to V.

Now, let M1 ⊂ GLn(C) be the set of invertible matrices M such that the first row w′

of M−1 lies in the set W given in Lemma 13. This is a non-empty Zariski open set of
GLn(C) since the entries of M−1 are rational functions of the entries of M . Let V ⊂ C

be the non-empty Zariski open set given by Lemma 13 and let v ∈ V .

Let e′1 = (1, 0, . . . , 0) ∈ Qn and for all M ∈ GLn(C), let

M̃ :=

(

M 0

0 Ik

)

.

Remark that for any M ∈ M1 the following identity holds:

(

Df(A ◦M,u)
e′1 0 · · · 0

)

=

(

Df(A, u)
w′ 0 · · · 0

)

M̃.

We conclude that the set of solutions of the system

(

f(A, u), z′
(

Dxf Dyf
w′ 0 · · · 0

)

, vzm+1 − 1

)

(4)

is the image by the map (x, y) 7→ M̃−1(x, y) of the set S of solutions of the system

(

f(A ◦M,u), z′
(

Df(A ◦M,u)
e′1 0 · · · 0

)

, vzm+1 − 1

)

. (5)
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Now, let π be the projection that forgets the coordinate zm+2. Remark that π(S) =
Z(A ◦ M,u, v) and that π is a bijection. Moreover, it is an isomorphism of affine alge-
braic varieties, since if (x, y, z) ∈ S, then its zm+2-coordinate is obtained by evaluating a
polynomial at (x, y, z1 . . . zm+1).

Thus, Property (a) of Lemma 13 implies that S and π(S) = Z(A ◦ M,u, v) are finite
which proves Assertion (1) of Proposition 2.

Property (b) of Lemma 13 implies that the Jacobian matrix associated to (5) has maximal
rank at any point of S. Since we already observed that π(S) = Z(A ◦M,u, v) and that
the map is an isomorphism, Assertion (2) follows.

Assertion (3) is a straightforward consequence of Property (c) of Lemma 13. �

To end this section, it remains to prove Lemma 13.

Proof of Lemma 13: Assume first that Z(p) = ∅. Then, for all v ∈ C and w ∈ Cn
∗ the

algebraic set Wv,w is empty; this implies Assertion (a) and (b).

To prove (c), it is sufficient to prove that the set of critical points of the restriction of
the projection πw to V(A, u) is empty. Assume by contradiction that there exists such a
critical point (x, y). By definition, we conclude that the matrix

(

Dxf Dyf
w′ 0 · · · 0

)

is rank defective. This implies that there is non-zero vector in its left kernel which
contradicts emptyness of Z(p) and proves that Assertion (c) holds.

Now, assume that Z(p) is non-empty and take (x, y, z, v, w) ∈ Z(p). We claim that zero
is a regular value for p. Indeed, by Thom’s Algebraic Weak Transversality theorem [42,
Sect. 4.2] there exist two non-empty Zariski open sets V ⊂ C and W ⊂ Cn such that if
v ∈ V and w ∈ W , the zero vector is a regular value of the map pv,w.

This implies that the Jacobian matrix associated to pv,w has maximal rank at any point
of Wv,w(A, u); this is assertion (b). By the Jacobian criterion [15, Theorem 16.19], we
also deduce assertion (a), i.e. that Wv,w(A, u) is finite since here the rank of the Jacobian
matrix equals the dimension of the ambient space.

We prove now the announced claim: zero is a regular value for p. To do that it is sufficient
to prove that there exists a maximal minor of the Jacobian matrix of p which is non-zero
at (x, y, z, v, w). Note that the following properties hold:

• polynomials of f(A, u) vanish at (x, y) and thus (x, y) ∈ V(A, u);

• since A ∈ A , by Proposition 1 the Jacobian matrix D(f) has maximal rank at
(x, y);

• by the previous point, zm+2 6= 0: in fact, if zm+2 = 0, we would obtain that
(x, y, z1 . . . zm+1) is a solution of

(z1, . . . , zm+1) Df(A ◦M,u) = 0,

that is Df has a rank defect at (x, y), which is a contradiction.
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• since vzm+1 − 1 = 0, one obtains zm+1 6= 0.

We can isolate the submatrix of Dp built with the following matrices:

• the non-singular submatrix of Df given by Proposition 1;

• the partial derivatives with respect to w1, . . . , wn;

• the partial derivatives with respect to u1, . . . , um;

• the partial derivative with respect to v.

This matrix is full rank because:

• the submatrix of Df has full rank;

• the partial derivatives of g with respect to w1, . . . , wn produce a diagonal matrix,
with zm+2 6= 0 on the diagonal;

• the partial derivatives of h with respect to u1, . . . , um produce a diagonal matrix,
with zm+1 6= 0 on the diagonal;

• the partial derivative of vzm+1 − 1 with respect to v is zm+1 6= 0.

Thus, up to reordering the columns of this submatrix, and to applying row-columns
operations, it is triangular with non-zero entries on the diagonal. Finally, we conclude
that zero is a regular value of p as claimed.

The proof of Assertion (b’) follows the same argumentation as the one of (b), distin-
guishing the cases where Z(q) is empty or not and, in the latter case, using mutatis
mutandis the matricial constructions and tools based on the use of Thom’s Algebraic
Weak Transversality theorem.

It remains to prove Assertion (c) when Z(p) is non-empty. Let w ∈ W . We claim that
the set of critical points of the restriction of πw to V(A, u) is finite. Indeed, by [42, Sect.
3.2], this set is the projection on the (x, y)-space of the solution set S of the polynomial
system

(

f, z′
(

Dxf Dyf
w′ 0 · · · 0

))

where z 6= 0. Let (x, y, z) be in S (note that this implies that (x, y) is a critical point of
the restriction of πw to V(A, u)). Then, Assertion (b’) implies that the Jacobian matrix
associated to the above polynomial equations has maximal rank at (x, y, z). By the
Jacobian criterion, we deduce that S has dimension 1. Now, remark that the homogeneity
of the equations in the z-variables implies that for all λ 6= 0, (x, y, λz) lies in S. Using
the Theorem on the Dimension of Fibers [43, Sect. 6.3, Theorem 7] we deduce that the
projection on the (x, y)-space of S is finite as claimed and that for any critical point (x, y)
of the restriction of πw to V(A, u), Ex,y := {z | (x, y, z) ∈ S} has dimension 1.
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Now, recall that, by assumption, f satisfies G which implies that the matrix [Dxf Dyf ]
has maximal rank at any point of V(A, u). This implies that the zm+2-coordinates of the
vectors z in Ex,y are non-zero.

Now, the set of v ∈ C such that the hyperplane defined by vzm+1 = 1 has a transversal
intersection with Ex,y is non-empty and Zariski open. In fact, suppose to consider the set
V of (x, y, z, w) defined by the polynomial equations

z′Df = [w, 0] zm+1 = 0 f = 0.

The image of the projection of V on x is the determinantal variety, and so it has dimension
n−1. At a generic point x ∈ D the rank of A(x) ism−1. We straightforwardly deduce that
there exists a unique y ∈ Cm such that f(x, y) = 0. Similarly, using rankA(x) = m − 1,
we deduce that there exists a unique z, w such that

z′Df(x, y) = [w, 0] zm+1 = 0 f(x, y) = 0.

Hence, the fiber has dimension 0 and the set V has dimension n−1. Projecting this set in
the space Cn of w, one obtains a constructible set of dimension ≤ n− 1: this means that
there exists a polynomial in C[w1, . . . , wn] which vanishes on the image of the projection.
This proves that for generic choices of w ∈ Cn, the coordinate zm+1 is different from 0.

Now, define by Vx,y ⊂ C the non-empty Zariski open set such that if v ∈ Vx,y then the
hyperplane defined by vzm+1 = 1 has a transversal intersection with Ex,y. Defining V

as the finite intersection of all Vx,y when (x, y) runs over the set of critical point of the
restriction of πw to V(A, u) ends the proof. �

5 Closure properties of projection maps

The goal of this section is to prove Proposition 3. We start by introducing some notations.

Notations 14 For an algebraic set Z ⊂ Cn of dimension d, we denote by Ωi(Z) the
i-equidimensional component of Z, for i = 0, 1, . . . , d.

We denote by S (Z) the union of the following sets:

• Ω0(Z) ∪ · · · ∪ Ωd−1(Z)

• the set sing (Ωd(Z)) of singular points of Ωd(Z)

and by C (πi,Z) the Zariski closure of the union of the following sets:

• Ω0(Z) ∪ · · · ∪ Ωi−1(Z);

• the union for r ≥ i of the sets crit(πi, reg(Ωr(Z))) of critical points of the restriction
of πi to the regular locus of Ωr(Z).
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Now, take M ∈ GLn(C) and fix Z ⊂ Cn algebraic set of dimension d. We define the
collection of algebraic sets {Oi(M

−1Z)}0≤i≤d with

• Od(M
−1Z) = M−1Z;

• Oi(M
−1Z) = S (Oi+1(M

−1Z)) ∪ C (πi+1,Oi+1(M
−1Z)) ∪ C (πi+1,M

−1Z) for i =
0, . . . , d− 1.

Property P(Z). Let Z ⊂ Cn be an algebraic set of dimension d. We say that M ∈
GLn(C) satisfies P(Z) when for all i = 0, 1, . . . , d

1. Oi(M
−1Z) has dimension ≤ i;

2. Oi(M
−1Z) is in Noether position with respect to X1, . . . , Xi.

Note that Point (2) of P(Z) implies Point (1) (this is an immediate consequence of [43,
Chap. 1.5.3]). The following result shows that Property P(Z) holds for a generic choice
of the matrix M and it will be proved later on.

Proposition 15 Let Z ⊂ Cn be an algebraic set of dimension d. There exists a non-
empty Zariski open set M2 ⊂ GLn(C) such that for all M ∈ M2, M satisfies P(Z).

Property Q(Z). Let Z be an algebraic set of dimension d and 1 ≤ i ≤ d. We say
that Qi(Z) holds if for any connected component C of Z ∩ Rn the boundary of πi(C) is
contained in πi(Oi−1(Z)∩C). When there is no ambiguity on Z, we simply write that Qi

holds.

The following result describes properties of projections of the connected components of
the real counterpart of an algebraic set when property P(Z) holds.

Proposition 16 Let Z ⊂ Cn be an algebraic set of dimension d and M ∈ GLn(C)∩Q
n×n.

If M satisfies P(Z), then Q1(M
−1Z), . . . ,Qd(M

−1Z) hold.

The relationship of Noether position with closedness properties of connected components
of real counterparts in algebraic sets and critical points is already exhibited and exploited
in [41]. Actually, Propositions 15 and 16 are already proved in [41] under the assumption
that Z is smooth and equidimensional. We cannot make this assumption in our context
to prove Proposition 3 since D is generically singular. Thus, this Section can be seen as
a strict generalization of [41].

As in [41], we use the notion of proper map. A map p : U ⊂ Cn → Ci is proper at y ∈ Ci

if and only if there exists a neighbourhood B of y such that p−1(B) ∩ U is closed and
bounded where B is the closure of B for the strong topology. We simply say that p is
proper when it is proper at any point of Ci.
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Proof of Proposition 16: To keep notations simple, we suppose that In satisfies P(Z).
Our reasoning is by decreasing induction on the index i. In the whole proof we also define
the following function on Z: we associate to y ∈ Z the value

J(y) = min
{

j | y ∈ Oj

}

.

We start by establishing that Qd holds. Let x ∈ Rd be on the boundary of πd(C). By
[30, Lemma 3.10], Property P(Z) implies that the map πd restricted to Od(Z) is proper,
and so closed. We deduce that the restriction of πd to Od(Z) ∩ C ∩ Z = Od(Z) ∩ C
is closed and that x ∈ πd(Od(Z) ∩ C). Let y ∈ Od(Z) ∩ C such that πd(y) = x. If
J(y) ≤ d − 1 our conclusion follows immediately. Suppose now that J(y) = d. This
implies that y ∈ reg Ωd(Z). By the Implicit Function Theorem we conclude that y is a
critical point of πd and that y ∈ crit (πd, reg (Ωd(Z))) ⊂ C (πd,Z) ⊂ Od−1(Z), which is a
contradiction since we assumed J(y) = d.

Suppose now that Qi+1 holds. We proceed in two steps:

1. First, we prove that the boundary of πi(C) is included in πi(Oi(Z) ∩ C). Indeed,
let x ∈ Ri be on the boundary of πi(C). Let p : Ri+1 → Ri be the map sending
(x1, . . . xi+1) to (x1, . . . xi), so that πi = p ◦ πi+1. For r > 0, let Br be the ball of
center x and radius r in Ri and B′

r = p−1(Br). We claim that B′
r meets both πi+1(C)

and its complementary in Ri+1.

Indeed this is a consequence of the following immediate equalities

π−1
i (Br) ∩ C = π−1

i+1 ◦ p
−1(Br) ∩ C = π−1

i+1(B
′
r) ∩ C

and π−1
i (Br)∩C 6= ∅ and Br ∩{Ri \πi(C)} 6= ∅. Since B′

r is connected, B
′
r meets also

the boundary of πi+1(C). Since Qi+1 holds, for every r > 0 there exists yr ∈ Oi(Z)∩C
such that πi+1(yr) ∈ B′

r, and so πi(yr) ∈ Br. Thus, x lies in the closure of the image
by πi of the set Oi(Z) ∩ C. This image is closed and our claim follows.

2. Second, we prove that Qi holds. Let x ∈ Ri be on the boundary of πi(C). From
(1), we deduce that there exists y ∈ Oi(Z) ∩ C such that πi(y) = x. Suppose by
contradiction that for all y as above, J(y) = i. Fix y ∈ Oi(Z) \ Oi−1(Z) such
that πi(y) = x. In particular, y ∈ Oi(Z) \ S (Oi(Z)), and thus, we deduce that
y ∈ reg (Ωi(Oi)). Next, since x ∈ πi(Ωi(Oi) ∩ C) and lies on the boundary of πi(C),
we deduce that x lies on the boundary of πi(Ωi(Oi) ∩ C). Finally, by the Implicit
Function Theorem, we deduce that y ∈ crit (πi, reg Oi) ⊂ C (πi,Oi) ⊂ Oi−1, which
is a contradiction since we assumed that J(y) = i.

We conclude that Qi holds, and so all statements Q1, . . . ,Qd hold. �

Lemma 17 Let Z ⊂ Cn be an algebraic set. Let M ∈ GLn(C) be such that M satisfies
P(Z). Let M−1C be a connected component of M−1Z ∩Rn and w ∈ R be on the boundary
of π1(M

−1C). Then π−1
1 (w) ∩M−1C is a non-empty finite set contained in O0(M

−1Z) ∩
M−1C.
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Proof of Lemma 17: By Proposition 16 we deduce that if w ∈ R belongs to the
boundary of π1(C), there exists x ∈ O0(M

−1Z) ∩ M−1C such that π1(x) = w. So
(O0(M

−1Z) ∩ M−1C) ∩ (π−1
1 (w) ∩ M−1C) 6= ∅. Now, we prove that π−1

1 (w) ∩ M−1C ⊂
O0(M

−1Z)∩M−1C. Since M satisfies P(Z), O0(M
−1Z) is finite and we also deduce that

π−1
1 (w) ∩M−1C is finite.

We use again the definition of the function x 7→ J(x) over Z used in the proof of Proposi-
tion 16. Suppose that there exists x ∈ π−1

1 (w)∩M−1C such that J(x) = j > 0; this implies
that x ∈ Oj(Z) \ Oj−1(Z). In particular, we deduce that x ∈ reg (Ωj(Oj(Z))) ∩M−1C.
Since w = π1(x) is on the boundary of π1(M

−1C), we conclude that πj(x) is on the bound-
ary of πj(Ωj(Oj(M

−1Z)) ∩M−1C). Moreover, since x ∈ reg Ωj(Oj(M
−1Z)) ∩M−1C, we

conclude by the Implicit Function Theorem that x is a critical point of the restriction of
πj to Oj(M

−1Z). So x ∈ crit (πj,Oj(M
−1Z)) ⊂ C (πj,Oj(M

−1Z)) ⊂ Oj−1(M
−1Z). We

conclude that contradiction J(x) ≤ j − 1 which is a contradiction. �

We are now able to prove Proposition 3.

Proof of Proposition 3: Let M2 ⊂ GLn(C) be the non-empty Zariski open set of
matrices satisfying Property P(Z) defined in Proposition 15, and let M ∈ M2. Let M

−1C
be a connected component of M−1D ∩Rn, and let 1 ≤ i ≤ n− 1. Then, applying Propo-
sition 16, we conclude that Qi(M

−1D) holds. In particular the boundary of πi(M
−1C) is

contained in πi(Oi−1(D
M) ∩M−1C) ⊂ πi(M

−1C) which implies that πi(M
−1C) is closed.

This proves Assertion (1).

We prove now Assertion (2). Take w ∈ R that lies in the frontier of π1(M
−1C). By

Lemma 17, π−1
1 (w) ∩ M−1C is a finite set, and thus there exists x ∈ M−1D ∩ Rn such

that x ∈ M−1C and π1(x) = w. For all such x, the matrix A(x) is rank defective. Fix
x ∈ π−1

1 (w) ∩M−1C and let r ≤ m − 1 be the rank of A(x). Consider the linear system
y 7→ f(A, u) parametrized by the vector u. This system has at least one solution y if and
only if

rank

[

A(x)
u1 · · · um

]

= rank

[

A(x) 0

u1 · · · um 1

]

.

Now, the second matrix has rank r+1, and the first matrix has rank r+1 if and only if u
does not lie in the space generated by the rows of A. So there exists a non-empty Zariski
open set Ux such that if u ∈ Ux the linear system has at least one solution.

We conclude the proof by taking

U =
⋂

C⊂D∩Rn

⋂

x∈π−1

1
(w)∩M−1C

Ux

which is non-empty and Zariski open because of the finiteness of π−1
1 (w) ∩M−1C and of

the number of connected components of D ∩ Rn. �

The remainder of this Section is dedicated to the proof of Proposition 15. We start by
introducing some notations.

Notations 18 Let B be an n-by-n matrix of indeterminates. For f ∈ Q[x1, . . . , xn], let
f ◦ B ∈ Q(B)[x1, . . . , xn] denote the polynomial such that (f ◦ B)(x) = f(Bx), and if
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V ⊂ Cn is defined by the ideal I = 〈f1, . . . , fs〉, let B
−1V be the algebraic set defined by

I ◦B = 〈f1 ◦B, . . . , fs ◦B〉 ⊂ Q(B)[x1, . . . , xn].

For all i = 0, 1, . . . , d, we denote by Ii, Ii ◦ M and Ii ◦ B the ideals associated to the
algebraic sets Oi(Z),Oi(M

−1Z) and Oi(B
−1Z), see Notations 14.

Lemma 19 Let Z ⊂ Cn be an algebraic set of dimension d and 0 ≤ i ≤ d. Let P be one
of the components of the prime decomposition of I ◦ Bi and let r = dimP. Then r ≤ i
and the ring extension Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /P is integral.

This Lemma is a generalization of [41, Prop.1] to the non-equidimensional case. Its
proof shares similar techniques than those used for proving [41, Prop.1]. It exploits the
properties of the geometric objects defined in Notations 14 to retrieve an equidimensional
situation. We sketch below the main differences and will refer to the proof of [41, Prop.
1] for the steps that are identical.

Proof of Lemma 19: Our reasoning is by decreasing induction on the index i.

Suppose first that i = d, so that Id ◦B = I(B−1Z) (recall that by definition Od(B
−1Z) =

B−1Z). Let P be a prime ideal of the prime decomposition of Id ◦B, and let r = dimP .
Thus, the algebraic set defined by P is an irreducible component of dimension r ≤ d
and then Z(P) ⊂ Ωr(B

−1Z). By the Noether normalization lemma [34], the statement
follows.

Suppose now that the statement is true for i+1. To simplify notations we write Oi instead
of Oi(B

−1Z). In particular, we assume that Oi+1 has dimension ≤ i + 1. Consider the
ideal Ii ◦B; using the definitions of the geometric objects introduced in Notations 14 one
obtains the following equalities:

Ii ◦B = I(S (Oi+1)) ∩ I(C (πi+1,Oi+1)) ∩ I(C (πi+1, B
−1Z)).

Now, let P be a prime ideal associated to Ii ◦ B. Then, P is a prime ideal associated to
one of the three ideals in the above intersection. We investigate below the three possible
cases:

1. I(S (Oi+1)) ⊂ P . Let r = dimP . In this case, we obtain

P ⊃ I(Ω0(Oi+1)) ∩ · · · ∩ I(Ωi(Oi+1)) ∩ I(sing (Ωi+1(Oi+1))).

Combined with the fact that P is prime, this implies that

• either I(Ωj(Oi+1)) ⊂ P , for some 0 ≤ j ≤ i ; then one gets r ≤ i and by the in-

duction assumption that the extension Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /P
is integral ;

• or I(sing (Ωi+1(Oi+1))) ⊂ P .

Assume that I(sing (Ωi+1(Oi+1))) ⊂ P . We deduce that

dim(P) ≤ dim(sing (Ωi+1(Oi+1))).
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Since dim(Ωi+1(Oi+1)) = i+1 by definition, it follows that dim(sing(Ωi+1(Oi+1))) ≤
i and we deduce that dim(P) ≤ i. Let f ◦ B = (f1 ◦ B, . . . , fs ◦ B) be a set of
generators of the ideal associated to Ωi+1(Oi+1). Then

I(sing (Ωi+1(Oi+1))) =
√

〈f ◦B, g1, . . . , gN〉

where g1, . . . , gN are the minors of size (n − i − 1) × (n − i − 1) of the Jacobian
matrix Df ◦B. We prove below by induction on t that for any prime Q associated
to 〈f ◦B, g1, . . . , gt〉, the extension

Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /Q

is integral. Taking t = N will conclude the proof.

For t = 0, the induction assumption implies that for any prime Q associated to
〈f ◦B〉, the extension Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /Q is integral.

Assume now that for any prime Q′ associated to 〈f ◦B, g1, . . . , gt〉, the extension

Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /Q′

is integral.

We prove below that for any primeQ associated to 〈f◦B, g1, . . . , gt+1〉, the extension

Q(B)[x1 . . . xr] −→ Q(B)[x1 . . . xn] /Q

is integral.

Remark that any prime Q associated to 〈f ◦B, g1, . . . , gt+1〉 is a prime associated to
Q′+ 〈gt+1〉. Suppose that gt+1 /∈ Q′ (otherwise, the conclusion follows immediately)
and let r′ be the Krull dimension of Q′.

By Krull’s Principal Ideal Theorem, Q′ + 〈gt+1〉 is equidimensional of dimension
r′ − 1. Following mutatis mutandis the same argumentation as in the proof of [41,
Prop. 1], the ideal Q′ + 〈gt+1〉 contains a monic polynomial in xr′ , so that the
extension

Q(B)[x1 . . . xr′−1] −→ Q(B)[x1 . . . xn]
/

Q′ + 〈gt+1〉

is integral. Our claim follows.

2. I(C (πi+1,Oi+1(B
−1Z))) ⊂ P .

Recall that C (πi+1,Oi+1(B
−1Z)) is the union of crit (πi+1, reg (Ωi+1(Oi+1))) and the

sets Ωj(B
−1Z) for 0 ≤ j ≤ i. When I(Ωj(B

−1Z)) ⊂ P , one can apply the induction
assumption.

Thus, we focus on the case where I(crit (πi+1, reg (Ωi+1(Oi+1)))) ⊂ P .

The ideal I(crit (πi+1, reg (Ωi+1(Oi+1)))) is built as follows. Suppose that f ◦ B =
(f1 ◦ B, . . . , fs ◦ B) defines I(Ωi+1(Oi+1)), that g1, . . . , gN are the square minors of
size n− i−1 of the jacobian matrix of f ◦B where the first i columns are eliminated,
and that J is the ideal I(sing (Ωi+1(Oi+1))). The following equality is immediate:

I(crit (πi+1, reg (Ωi+1(Oi+1)))) =
√

f ◦B + 〈g1, . . . , gN〉 : J
∞,
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where, if K,L are two ideals in the same ring R, then K : L∞ = {p ∈ R |
LNp ⊂ K, ∃N ∈ N}. We deduce that the ideal P is a prime component of
√

f ◦B + 〈g1, . . . , gN〉 whose zero locus is not included in sing(Ωi+1(Oi+1)). The in-
tegral ring extension property is already proved (by induction) for every component
of the ideal 〈f ◦B〉; so we proceed as in the first point.

3. I(C (πi+1, B
−1Z)) ⊂ P .

Again, recall that C (πi+1, B
−1Z) is the union of Ωj(B

−1Z) for 0 ≤ j ≤ i and the
union for r′ ≥ i of the sets crit (πi, reg (Ωr′(Z))) of critical points of the restriction
of πi to the regular locus of Ωr′(B

1Z).

Let r′ ≥ i+ 1, and Ωr′(Z) be the equidimensional component of Z of dimension r′.
So we can assume I(crit (πi+1, reg (Ωr′(B

−1Z)))) ⊂ P . The proof follows exactly
the same argumentation as the one in the second point.

�

The following lemma plays the same role as the one in [41, Prop. 2]. It shows that there
exists the integral extension property in Lemma 19 is maintained when specializing B to
a generic matrix M of GLn(C). The proof of the lemma below is exactly the same as the
one of [41, Prop. 2].

Lemma 20 Let Z ⊂ Cn be an algebraic set of dimension d. There exists a non-empty
Zariski open set M2 ⊂ GLn(C) such that if M ∈ M2 ∩ Qn×n, the following holds. Let
i ∈ {0, 1, . . . , d} and P be a prime component of Ii ◦M and let r = dim(P). Then r ≤ i
and the ring extension C[x1 . . . xr] −→ C[x1 . . . xn] /P is integral.

Now we can prove Proposition 15.

Proof of Proposition 15: Let M2 ⊂ GLn(C) be the non-empty Zariski open set defined
in Lemma 20. By Lemma 20, for M ∈ M2 and 0 ≤ i ≤ d, any irreducible component
of the algebraic set Oi(M

−1Z) is in Noether position with respect to x1, . . . , xi. This
proves Point (2) of P(Z). Now, remark that [43, Chap. 1.5.3] implies that any irreducible
component of Oi(M

−1Z) has dimension ≤ i. This proves Point (1) of P(Z). �

6 Practical experiments

In this section, we report on practical experiments done with a computer implementation
of our algorithm.

We have implemented the algorithm RealDet under Maple. The computation of rational
parametrizations is done using Gröbner bases, see [16, 17, 26, 25, 19]. We use the Gröbner
basis library FGb [18] implemented in C by J.-C. Faugère and its interface with Maple.

We compare our implementation of RealDet with the Real Algebraic Geometry Library
RAGlib [39] implemented by the second author. RAGlib is also a Maple library
implementing algorithms based on the critical point method. It also uses Gröbner bases
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and the library FGb for solving polynomial systems of dimension 0. We use its command
PointsPerComponents to compute sample points in each connected component of the
real counterpart of the hypersurface defined by the vanishing of the determinant of the
matrix under consideration.

The computations that we report on have been performed on an Intel(R) Xeon(R) CPU
E7540@2.00GHz 256 Gb of RAM. The symbol ∞ means that the computation did not
end after 24 hours.

6.1 Simple example

We first illustrate the behavior of our algorithm on the simple planar determinantal quartic
of Example 12. We would like to find at least one point (x1, x2) ∈ R2 in each connected
component of the real variety defined by the equation

det









1 + x1 x2 0 0
x2 1− x1 x2 0
0 x2 2 + x1 x2

0 0 x2 2− x1









=

x4
1 + 3x2

1x
2
2 + x4

2 − x1x
2
2 − 5x2

1 − 7x2
2 + 4 = 0.

With input the previous linear matrix, the algorithm checks that the associated incidence
variety V verifies the regularity properties. This is done by computing a Gröbner basis
of the ideal generated by the polynomials defining V and by the maximal minors of the
jacobian matrix, and verifying that this Gröbner basis is 1.

Then, the algorithm recursively computes rational parametrizations of the zero-dimen-
sional Lagrange systems encoding critical points of the projection on the first variable,
restricted to the incidence varieties (or its sections). To obtain this parametrization, we
use the functions implemented in the Maple package fgbrs given in input a Gröbner basis
of a zero-dimensional ideal, gives in output a rational parametrization of its solution set.

Once a rational parametrization of the desired output is given, we isolate the real roots
which are given by isolating intervals, each of one guaranteed to contain a point on the
curve. To give an idea of the output, we reproduce here one of these points, together with
its approximation to 10 certified digits:

x1 ∈ [122156404883928000480132795924333
256536504662931063109335249846272

, 355364086934036023530184499052519
746288013564890365408975272280064

] ≈ 0.4761755254

x2 ∈ [−10810534239
4294967296

,−345937095647
137438953472

] ≈ −2.517023645

The eight points are represented on the curve on Figure 3.

6.2 Timings

Table 1 reports on timings obtained with n-variate linear matrices of size m with rational
coefficients chosen randomly. Thus, all matrices satisfy the genericity Assumption G.
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Figure 3: The determinantal quartic curve of Example 12 (black) and eight of its points
(red) as returned by RealDet.

m n RealDet RAGlib m n RealDet RAGlib

2 4 0.22 s 2.25 s 4 3 4.16 s 2.15 s
2 10 0.63 s 25.6 s 4 4 110 s 835 s
2 20 1.99 s ≃ 1 h 4 8 1824 s ∞
3 3 0.49 s 2.8 s 4 16 4736 s ∞
3 9 2.24 s 195 s 4 20 7420 s ∞
3 20 10.5 s ≃ 7 h 5 2 0.9 s 0.23 s
4 2 0.35 s 0.35 s 5 3 10.2 s 59 s

Table 1: Timings for RealDet applied to random linear matrices

We can observe that our implementation RealDet reflects the complexity gain since, for
example, we are able to solve the problem for dense determinants of degree m = 4 and
with n = 16 variables in less than one hour and a half; the same problem cannot be solved
within a day by RAGlib.

Also, when the size m of the matrix is fixed, we observe that the increase of time needed
to perform the computation is well-controlled. Figures 4 and 5 illustrate this: the black
(resp. red) curve represents how the computation time of our implementation (resp.
RAGlib) increases with respect to the number of variables when m is fixed to 3 and 4.
Note that our implementation has the ability to solve problems with 20 variables which
are unreachable by RAGlib.
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Figure 4: Timings for m = 3 and n ≤ 20
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Figure 5: Timings for m = 4 and n ≤ 20

6.3 Degree of the output

In Table 2, we report some data on the degrees of the rational parametrizations computed
by RealDet. Recall that we have provided degree bounds in Section 2.3.

We conjectured that these bounds are not sharp; these experiments support this state-
ment. In the column “degree” we report the sum of the degrees of the rational parametriza-
tions computed by our algorithm for generic n-variate linear matrices of sizem. We remark
that if m is fixed, this value is constant when n ≥ 2m− 1. The same property holds for
the multi-linear bound for the degree of the output.
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m n degree bound m n degree bound m n degree bound

2 2 4 5 3 4 33 43 4 3 52 74
2 3 6 7 3 5 39 49 4 4 120 169
2 4 6 7 3 6 39 49 4 6 264 347
2 8 6 7 3 8 39 49 4 7 284 367
2 20 6 7 3 15 39 49 4 15 284 367
3 3 21 28 3 20 39 49 4 20 284 367

Table 2: Degree of the output for the generic case

Example 21 Consider the matrix

A(x) =











x11 x12 . . . x1m

x21
. . .

...
...

xm1 xmm











.

We remark that, in the context of this paper, A(x) is a linear matrix of size m, with m2

variables, and it is expressed as a linear combination of m2 matrices of rank 1. Allowing
x ∈ Qm2

to vary, the matrix A(x) describes all matrices of size m with entries in Q.

Let b = (b11 . . . bmm) ∈ Qm2

be a vector of rational numbers. We add the affine constraint
b′x = 1, i.e. we solve the previous linear equation with respect to x11 and we substitute
this value to x11 into A(x).

b all ones m = 2 m = 3 m = 4

degree 5 35 244

b generic m = 2 m = 3 m = 4

degree 6 36 245

Table 3: Matrices with an affine constraint on the entries

In Table 3 we report on some numerical experiments. The two subtables contains the
degree of the output of RealDet and the computational times respectively when b is the
vector of all ones, and when the coordinates of b are random values in Q. We remark that
the values of the degree are smaller than the corresponding values for the “dense” cases
(m,n) = (2, 3), (3, 8) and (4, 15) that are respectively 6, 39 and 284, as shown in Table 2.

Example 22 Consider the symmetric matrix

A(x) =











2x11 x12 . . . x1k

x12
. . .

...
...

x1k 2xkk











.

Matrix A(x) has size m with m(m + 1)/2 variables and it parametrizes all symmetric
matrices. It is expressed as a linear combination of matrices of rank 1 or 2.
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b all ones m = 2 m = 3 m = 4

degree 2 16 122

b generic m = 2 m = 3 m = 4

degree 3 21 136

Table 4: Symmetric matrices with an affine constraint on the entries

We add as above a linear relation b′x = 1 where b ∈ Qm(m+1)/2, and in Table 4 we report
on experimental data. We observe the same behavior as in the previous example.

6.4 Complexity

In Figures 6 and 7, we consider two fundamental subclasses of the problem: when n = m2

(non-symmetric case) and when n = m(m+ 1)/2 (symmetric case). We estimate in both
cases the order of complexity

C(m,n) = n2m2(n+m)5
(

m+ n

n

)6

of RealDet as computed in Proposition 5. We recall that standard complexity bounds for
these classes of problems are in mO(n).

0 100 200 300 400
10−3,397

10−2,469

10−1,541

10−613

10315

m: matrix size

C(m,n)/m10
√
n

Figure 6: Complexity bound for n = m2.

On Figure 6 we represent in logarithmic scale the ratio of C(m,n) with m10
√
n (where the

relation n = m2 is fixed) as a function of the matrix size m. We remark that we obtain a
bound which is strictly contained in mO(

√
n) since this ratio tends to zero. This numerical

test shows that our complexity bound, significantly improves the previous one.

The same conclusion holds for the second case (Figure 7) where n = (m2 +m)/2, which
includes the fundamental family of symmetric linear matrices), where our complexity is
compared with m5n. We also remark that similar results – not reported here for concise-
ness – have been obtained by imposing a linear relation between m and n, for example
n = 2m or n = 3m, and allowing m to vary.
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Figure 7: Complexity bound for n = m2+m
2

.

To summarize, the complexity of RealDet given by Proposition 5 is such that:

• when m is fixed, the complexity n 7→ C(m,n) is polynomial;

• when n = m2 or n = (m2+m)/2 or n = αm, its asymptotic behavior when m grows
is well-controlled and improves the state-of-the-art.
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