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Here we show an electromagnetic method for blocking the action of external neutrons, α-
particles, β-particles and γ-rays upon atomic nuclei. This method can be very useful for 
stopping nuclear fissions, as the chain reactions that occur inside a nuclear fission reactor, 
and also those nuclear fissions that continue occurring, and generating heat (decay heat) ,  
even after the shut down of the reactor.   
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1. Introduction 
 
           Nuclear fission is the splitting of an 
atomic nucleus into smaller parts (lighter 
nuclei). The fission process often produces 
free neutrons and gamma rays, and releases a 
very large amount of energy.  
          Nuclear fission chain reactions 
produce energy in the nuclear fission reactors 
of the nuclear power plants, and drive the 
explosion of nuclear weapons.   
        The chain reactions occur due to the 
interactions between neutrons and fissionable 
isotopes (usually — uranium-235 and 
plutonium-239.). When an atom undergoes 
nuclear fission, a few neutrons are ejected 
from the reaction. These neutrons will then 
interact with the surrounding medium, and if 
more fissionable fuel is present, some may be 
absorbed and cause more fissions. This 
makes possible a self-sustaining nuclear 
chain reaction that releases energy at a 
controlled rate in a nuclear reactor or at a 
very rapid uncontrolled rate in a nuclear 
weapon.           
          The thermal energy generated by a 
nuclear fission reactor come from the chain 
reactions produced inside the reactor. An 
important fact is that the nuclear reactor 
continues generating heat even after the 
stopping of the nuclear chain reactions 
(decay heat [1]). The heat is released as a 
result of radioactive decay   produced as an 
effect of radiation on materials: the energy of 
the alpha, beta or gamma radiation is 
converted into the thermal movement of 
atoms. This heat requires the cooling of the 
reactor during long time. It is believed that is  
 

 
 
 
impossible quickly stop this phenomenon * [2].   
          Here we show an electromagnetic 
method for blocking the action of external 
neutrons, α-particles, β-particles and γ-rays 
upon atomic nuclei. It was developed starting 
from a process patented in July, 31 2008 (BR 
Patent Number: PI0805046-5) [3]. This non 
invasive method can be very useful for 
stopping nuclear fissions, as the chain 
reactions that occur inside a nuclear fission 
reactor, and also those nuclear fissions that 
continue occurring even after the shut down 
of the reactor. These nuclear reactions 
produce a significant decay heat, which 
requires the permanent cooling of the reactor, 
and have been the cause of some nuclear 
disasters, as the occurred in the Nuclear 
Power Plant of Fukushima [4].   
                
2. Theory      
     
          The contemporary greatest challenge 
of the Theoretical Physics was to prove that, 
Gravity    is   a   quantum   phenomenon. The 
quantization of gravity shows that the 
gravitational mass mg and inertial mass mi 
are correlated by means of the following 
factor 
[5]:
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* After one year offline, used fuel still emits about 10 
kilowatts of decay heat energy per ton. After 10 years, 
it emits 1 kW of heat per ton. 
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where  is the rest inertial mass of the 
particle and  is the variation in the 
particle’s kinetic momentum;  is the speed 
of light.   

0im
pΔ

c

      In general, the momentum variation pΔ  
is expressed by tFp ΔΔ =  where  is the   
applied force during a time interval

F
tΔ . Note 

that there is no restriction concerning the 
nature of the force , i.e., it can be 
mechanical, electromagnetic, etc. 

F

          For example, we can look on the 
momentum variation pΔ   as due to 
absorption or emission of electromagnetic 
energy. In this case, by substitution of 

( )( ) cEnvvccvEvEp rΔ=Δ=Δ=Δ  into 
Eq. (1), we get 
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By dividing EΔ  and  in Eq. (2) by the 
volume of the particle, and remembering 
that,

0im
V

WVE =Δ , we obtain 
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where ρ  is the matter density ( )3mkg . 
          Another important equations obtained 
in the quantization theory of gravity is the 
new expression for the momentum  and 
energy of a particle with gravitational mass 

 and velocity , which is given by [

q

gM v 6]  
 

( )4vMq g
rr

=

( )52cME gg =  

where 221 cvmM gg −= ;  is given by 

Eq.(1), i.e., . Thus, we can write 
gm

ig mm χ=

( )6
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ubstitution of Eq. (6) into Eq. (5) and Eq. (4) 
gives 
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For cv = , the momentum and the energy of the 
particle become infinite. This means that a 
particle with non-null mass cannot travel with the 
light speed. However, in Relativistic Mechanics 
there are particles with null mass that travel with 
the light speed. For these particles, Eq. (8) gives 
 

( )9
λ

χ hq =

 
Note that only for 1=χ  the Eq. (9) is reduced to 
the well=known expressions of DeBroglie 
( )λhq = . 
          Since the factor χ  can be strongly 
reduced under certain circumstances (See 
Eq.(1)), then according to the Eqs. (7) and 
(9), the energy and momentum of a particle 
can also be strongly reduced. Based on this 
possibility, we have developed an 
electromagnetic method for blocking the 
action of external neutrons, α-particles, β-
particles and γ-rays upon atomic nuclei. In 
order to describe this method we start  
considering an atom subjected to a static 
magnetic field , and an oscillating 
magnetic with frequency  (Fig.1). If this 
frequency is equal to the electrons’ 
precession frequency , they absorb 
energy from the magnetic field  
(Electronic Magnetic Resonance). The 
frequency , is given by [

eB

Boscf

( )eprf

eB

( )eprf 6, 7] 
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where 002322.2=eg  is the electron g-factor.  
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Fig.1 – In this method, an oscillating magnetic field
Bosc , with small intensity, is applied perpendicularly
to a static magnetic field  Be. 

Bosc 

Be 

 
Thus, under theses conditions, the energy 
absorbed by one electron, is given by [8] 

( )11eee BE hγ=Δ
          The electrons are often described as 
moving around the nucleus as the planets 
move around the sun. This picture, however, 
is misleading. The quantum theory has 
shown that due to the size of the electrons, 
they cannot be pictured in an atom as 
localized in space, but rather should be 
viewed as smeared out over the entire orbit 
so that they form a cloud of charge. Thus, the 
region around the nucleus represents a cloud 
of charges, in which the electrons are most 
likely to be found. However, this cloud is 
sub-divided into shells. Each shell can 
contain only a fixed number of electrons: The 
closest shell to the nucleus is called the 
"K shell" (also called "1 shell"). Heavy atoms 
as Uranium, has 7 shells (K, L, M, N, O, P, 
Q). The K shell can hold up to two electrons. 
The numbers of electrons that can occupy 
each shell are: L = 8, M =18, N =32, O = 21, 
P = 9, Q = 2 [9, 10].               
          According to Eq. (11), the energy 
absorbed by each one of the shells are 
respectively, given by  

( )12eeee BNE hγ=Δ
where  is the number of electrons in the shell.  eN
          Dividing the Eqs. (12) by the 
correspondent volume of the shell, we get  

( )13
s

eee

V
BNW hγ

=

 Substitution of Eq. (13) into Eq. (3) gives 
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 Substitution of eiee meg 02=γ (See Eq. 
(10)) into Eq. (13) gives 
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In order to calculate sρ  we start considering the 
hydrogen gas. If we remove the hydrogen nuclei 
what remains is an electron gas with density 
equal to sρ . Thus, we can calculate this density 
by multiplying the density of the Hydrogen gas 
by the factor ( )eipiei mmm 000 + . However, in 
the case of heavy atoms this factor must be, 
obviously, ( )pieieinipiei mmZmZmZmZm 000000 2≅++ . 
Thus, in this case, we can write that 

( )
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          The values of the , can be easily 
calculated starting from the thickness, l , and the 
inner radii, 

sV

r , of the shells. The thicknesses l  , 
are given by  
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where  is the electron’s radius. It can be 
calculated starting from the Compton sized 
electron, which gives  , and 
from the standardized result recently 
obtained of  [

eR

mRe
1310862.3 −×=

mRe
1310156.5 −×= 11]. Based on 

these values, the average value is 
. mRe

1310509.4 −×=
          The inner radii of the shells, are given 
by
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Note that ( ) mrlr KQQ

101081.0 −×=−+ . 
However, in the case of the Uranium, 

. 
Thus, there is a difference of  

.This value 
must be added in the values of  , in order 

to obtain the corrected values of  . The 
result is 

mrr innerouter
101010 1003.11053.01056.1 −−− ×≅×−×=−
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Finally, we obtain 
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Fig.2 – The 7 Atomic Gravitational Shieldings 
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          The mobility of the orbital electrons 
confers an electrical conductivity σ  for each 
shell, i.e.,  

( )18ees μρσ =
where eρ  expresses the concentrations  of 
electrons ( )3mC  and eμ  is the mobility of 
the electrons. The expression of eρ  is  
 

( )19see VeN=ρ
          
          On the other hand, since by definition 

Evde =μ  and esed mrevv 04πε== [12] 

and 2
04 srZeE πε= , we obtain 

( )20
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Substitution of Eqs. (19) and (20) into Eq. 
(18),gives
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The values of sr , in the case of the Uranium, 
are given by 
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Therefore, according to Eq. (21), the values 
of the sσ  are the followings 

( )22/1036.110976.6
/1045.110757.7
/1065.110019.1
/1006.210694.1
/1012.210402.2

/1007.210874.2
/1039.210044.6
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From Electrodynamics we know that the 
index of refraction, , of a material with 
relative  permittivity 

rn

rε , relative magnetic 
permeability rμ  and electrical conductivity 
σ  is given by  [13]   
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Substitution of  given by, Eq. (10) 
into Eq. (24) yields 

Boscff =

( )25566.0
e

s
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Substitution of the sσ  given by Eq. (22) into 
Eq. (25) yields 
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Substitution of the values of the sρ  given by 
Eq. (16) into Eq. (15) gives  
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Now, by considering the values of , (Eq. 

17) and   (Eq. 26), we can calculate the 
values of 

eN sV
22
ers Bn

χ  for each shell, i.e.,  
 

[ ]{ } ( )281107.0121 −+−= eK Bχ

[ ]{ } ( )2911009.2121 3 −×+−= −
eL Bχ

[ ]{ } ( )3011049.1121 3 −×+−= −
eM Bχ

[ ]{ } ( )3111024.7121 4 −×+−= −
eN Bχ

[ ]{ } ( )3211010.2121 4 −×+−= −
eO Bχ

[ ]{ } ( )3311007.1121 4 −×+−= −
eP Bχ

[ ]{ } ( )3411081.0121 4 −×+−= −
eQ Bχ

 
In the particular case of  TBe 68.11=  , the 
Eqs. (28) … (34), yields 
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          In a previous paper [14] it was shown that, 
if the weight of a particle in a side of  a lamina is 

gmP g=  then the weight of the same particle, in 

the other side of the lamina is gmP gχ=′ , 

where 0ig mm=χ  (  and  are 
respectively, the gravitational mass and the 
inertial mass of the lamina). Only when

gm 0im

1=χ , 
the weight is equal in both sides of the lamina. 
The lamina works as a Gravitational Shielding. 
This is the Gravitational Shielding effect. Since 

( ) ( gmgmPP gg )χχχ ===′ , we can 

consider that gg mm χ=′  or that gg χ=′ .  
          If we take two parallel gravitational 
shieldings, with 1χ  and 2χ  respectively, then 
the gravitational masses become: gg mm 11 χ= , 

ggg mmm 21122 χχχ == , and the  gravity will 

be given by gg 11 χ=  , ggg
21122 χχχ == . 

                              gm  
 
 
                         gg mm χ=′  

(a) 
                                 
                                 gm  
                                                                         
                                χ                                  
         
                            gg mm χ=′                          
 
 
 
 
 

(b) 
 Fig. 3 – Plane and Spherical Gravitationa
Shieldings. When the radius of the gravitational 
shielding (b) is very small, any particle inside the 
spherical crust will have its gravitational mass give

l 

n 
by gg mm χ=′ , where gm is its gravitational mass out 
of the crust. 

χ  
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                               gg χ=′  
 
 
                               g     
 

(a) 
                                                                
                                 g                                     
                                χ                                  
         
                              gg χ=′                           
 
 
 
 
 

(b) 
 Fig. 4 – The gravity acceleration in both sides of the
gravitational shielding.  

χ  

 
 
 
          In the case of multiples gravitational 
shieldings, with nχχχ ...,,2,1 , we can write 
that, after the nth gravitational shielding the 
gravitational mass, , and the gravity, , 
will be given by 

gnm ng

 
( )36...,... 321321 ggmm nngngn χχχχχχχχ ==

  
This means that, n  superposed gravitational 
shieldings with different 1χ , 2χ , 3χ ,…, nχ are 
equivalent to a single gravitational shielding with 

nχχχχχ ...321= . Since the atomic shells K, L, 
M, N, O, P and Q , work as gravitational 
shieldings, then they are equivalent to a 
single gravitational shielding with 

QPONMLK χχχχχχχχ= . Thus, in the case of 
Uranium, which is simultaneously subjected to a 
magnetic field with intensity  TBe 68.11= , and 
an oscillating magnetic field with frequency 

( ) GHzBff eeprBosc 8.32610798.2 10 =×==
, the values given by Eq. (35), yield the 
following value for χ :     

( )37104.1 4−×≅= QPONMLK χχχχχχχχ  
 

Consequently, according to Eq. (9), when a 
ray−γ  crosses the atomic shells of 

Uranium, subjected to the above mentioned 
conditions, the momentum of the ray−γ , 
after it leaves the K atomic shell†  is given by  

( )38
c
hfhq χ

λ
χ ==

where 4104.1 −×≅= QPONMLK χχχχχχχχ . 
Under these conditions, the effect of this 

ray−γ  upon the nucleus becomes 
equivalent to the effect produced by and 
photon with energy hfχ . Thus, if 

MeVhf 1<<χ ‡ [15], the photon will not 
have sufficient energy to excite the nucleus. 
          The energy of a photon with , 
after crossing the K atomic shell, becomes just 

. 
Under these circumstances, we can say that 

Hzf 2310=

joulesMeVjoules 1315 106.11103.9 −− ×=<<×

rays−γ  with , after crossing the 
K atomic shell, do not are able to excite the 
Uranium’s nucleus.  

Hzf 2310≤

          The effect also extends to particles of 
matter as neutrons, α-particles, β-particles, etc.  
          For example, consider a faster neutron 
through a Uranium atom. After crossing the 
K atomic shell its momentum, according to 
Eq. (8), becomes vMq iχ=  and, according to 
Eq. (5) its total relativistic energy is 

. Thus, the gravitational kinetic 
energy is 

2cME gg =

( ) ( ) iiiggg KcmMcmMK χχχ =−=−= 22

  
                                           
† Due to the atom’s radius be very small,  any particle 
inside the intermediate region between the shells and 
the nucleus will have its gravitational mass given by 

gg mm χ=′ , where is its gravitational mass out of 
the crust (See Fig.3)). Similarly, if the energy of a 
photon, out of the atom is  then, inside the 
intermediate region, its energy becomes

gm

hf
hfχ . 

‡ A heavy nucleus undergoes fission  when acquires 
energy >5MeV. Some nucleus as the  undergo 
fission when absorbs just a neutron. Others as the 

needs to absorbs faster neutrons with kinetic 
energy >1MeV.  However, in all cases if the total 
energy of the incident particle is  <<1MeV, the fission 
does not occurs.   

235
92U

238
92U
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          According to this equation, the 
gravitational kinetic energy of a neutron, 
inside the intermediate region between the 
shells and the nucleus of Uranium, is given 
by . For  we 
obtain . This means that, 
neutrons with kinetic energy  
(and also particles such as α-particles, β-
particles, protons, etc.) are not able to 
produce the fission of an atomic nucleus of 
Uranium, subjected to the previously 
mentioned conditions.  

ig KK 4104.1 −×≅ GeVKi 14.7<<

MeVK g 1<<

GeVKi 14.7<<

          It is also necessary consider the case of 
some nuclei, as the nuclei of , which 
undergo fission by the simple absorption of a 
neutron neighboring the nucleus. Also, we 
must consider the case of electrons capture 
by the nuclei, ( ). In these 
cases, if the Uranium atom is subjected to the 
previously mentioned conditions, both 
neutrons and the electrons will have their 
total energy, according to Eq. (5), given by 

235
92U

ν+→+ − nep

joulescmE nign
142

0 101.2 −×≅= χ  
and  

joulescmE eige
172

0 101.1 −×≅= χ
          These energies are very smaller than 

 and therefore, the neutron cannot 
excitate the nuclei of to produce 
fission, and the electron does not have 
sufficient energy to interact with a nuclear 
proton to produce a neutron and a neutrino.  

MeV1
235

92U

          The method here described requires 
TBe 68.11= , and an oscillating magnetic field 

with frequency GHzf Bosc 8.326= . 
          The spectrometers used in the Nuclear 
magnetic resonance spectroscopy, most 
commonly known as NMR spectroscopy,  
works with up to 1GHz, 23.5 T (AVANCE 
1000 MHz NMR spectrometer, launched by 
Bruker BioSpin). Figure 5 shows a 0.9GHz, 
21.1T NMR spectrometer.  
          By comparing the values required by 
the method here described with these values, 
we can conclude that the necessary 
technology is coming soon. 
 

 
Fig.5 - A 0.9GHz, 21.1 T NMR spectrometer at 
HWB-NMR, Birmingham, UK.  
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Here we show an electromagnetic method for blocking the action of external neutrons, (-particles, (-particles and (-rays upon atomic nuclei. This method can be very useful for stopping nuclear fissions, as the chain reactions that occur inside a nuclear fission reactor, and also those nuclear fissions that continue occurring, and generating heat (decay heat) ,  even after the shut down of the reactor.  

Key words: Quantum Gravity, Gravitational Mass, Nuclear Physics, Nuclear Chain Reactions, Decay heat.

1. Introduction

           Nuclear fission is the splitting of an atomic nucleus into smaller parts (lighter nuclei). The fission process often produces free neutrons and gamma rays, and releases a very large amount of energy. 

          Nuclear fission chain reactions produce energy in the nuclear fission reactors of the nuclear power plants, and drive the explosion of nuclear weapons.  


        The chain reactions occur due to the interactions between neutrons and fissionable isotopes (usually — uranium-235 and plutonium-239.). When an atom undergoes nuclear fission, a few neutrons are ejected from the reaction. These neutrons will then interact with the surrounding medium, and if more fissionable fuel is present, some may be absorbed and cause more fissions. This makes possible a self-sustaining nuclear chain reaction that releases energy at a controlled rate in a nuclear reactor or at a very rapid uncontrolled rate in a nuclear weapon.          

          The thermal energy generated by a nuclear fission reactor come from the chain reactions produced inside the reactor. An important fact is that the nuclear reactor continues generating heat even after the stopping of the nuclear chain reactions (decay heat [1]). The heat is released as a result of radioactive decay   produced as an effect of radiation on materials: the energy of the alpha, beta or gamma radiation is converted into the thermal movement of atoms. This heat requires the cooling of the reactor during long time. It is believed that is 

impossible quickly stop this phenomenon 
 [2].  

          Here we show an electromagnetic method for blocking the action of external neutrons, (-particles, (-particles and (-rays upon atomic nuclei. It was developed starting from a process patented in July, 31 2008 (BR Patent Number: PI0805046-5) [3]. This non invasive method can be very useful for stopping nuclear fissions, as the chain reactions that occur inside a nuclear fission reactor, and also those nuclear fissions that continue occurring even after the shut down of the reactor. These nuclear reactions produce a significant decay heat, which requires the permanent cooling of the reactor, and have been the cause of some nuclear disasters, as the occurred in the Nuclear Power Plant of Fukushima [4].  

2. Theory     

          The contemporary greatest challenge of the Theoretical Physics was to prove that, Gravity    is   a   quantum   phenomenon. The quantization of gravity shows that the gravitational mass mg and inertial mass mi are correlated by means of the following factor [5]:
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      In general, the momentum variation 
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 is the   applied force during a time interval
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. Note that there is no restriction concerning the nature of the force
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          For example, we can look on the momentum variation 
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  as due to absorption or emission of electromagnetic energy. In this case, by substitution of 
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 into Eq. (1), we get
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By dividing 
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where 
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 is the matter density 
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          Another important equations obtained in the quantization theory of gravity is the new expression for the momentum 
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 and energy of a particle with gravitational mass 
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where
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. Thus, we can write 
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Substitution of Eq. (6) into Eq. (5) and Eq. (4) gives
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For 
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, the momentum and the energy of the particle become infinite. This means that a particle with non-null mass cannot travel with the light speed. However, in Relativistic Mechanics there are particles with null mass that travel with the light speed. For these particles, Eq. (8) gives
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Note that only for 
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 the Eq. (9) is reduced to the well=known expressions of DeBroglie 
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          Since the factor 
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 can be strongly reduced under certain circumstances (See Eq.(1)), then according to the Eqs. (7) and (9), the energy and momentum of a particle can also be strongly reduced. Based on this possibility, we have developed an electromagnetic method for blocking the action of external neutrons, (-particles, (-particles and (-rays upon atomic nuclei. In order to describe this method we start  considering an atom subjected to a static magnetic field 
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 (Fig.1). If this frequency is equal to the electrons’ precession frequency 
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where
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 is the electron g-factor. 



[image: image43.emf]                            Fig.1  –   In this method ,  an oscillating magnetic field   B osc   ,  with small intensity,  is applied  perpendicularly  to a static magnetic field     B e .  
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 Thus, under theses conditions, the energy absorbed by one electron, is given by [8]
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          The electrons are often described as moving around the nucleus as the planets move around the sun. This picture, however, is misleading. The quantum theory has shown that due to the size of the electrons, they cannot be pictured in an atom as localized in space, but rather should be viewed as smeared out over the entire orbit so that they form a cloud of charge. Thus, the region around the nucleus represents a cloud of charges, in which the electrons are most likely to be found. However, this cloud is sub-divided into shells. Each shell can contain only a fixed number of electrons: The closest shell to the nucleus is called the "K shell" (also called "1 shell"). Heavy atoms as Uranium, has 7 shells (K, L, M, N, O, P, Q). The K shell can hold up to two electrons. The numbers of electrons that can occupy each shell are: L = 8, M =18, N =32, O = 21, P = 9, Q = 2 [9, 10].              

          According to Eq. (11), the energy absorbed by each one of the shells are respectively, given by 
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where 
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 is the number of electrons in the shell. 

          Dividing the Eqs. (12) by the correspondent volume of the shell, we get 
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 Substitution of Eq. (13) into Eq. (3) gives
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 Substitution of 
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(See Eq. (10)) into Eq. (13) gives
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In order to calculate 
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 we start considering the hydrogen gas. If we remove the hydrogen nuclei what remains is an electron gas with density equal to
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. Thus, we can calculate this density by multiplying the density of the Hydrogen gas by the factor
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. However, in the case of heavy atoms this factor must be, obviously, 
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. Thus, in this case, we can write that
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          The values of the 
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, can be easily calculated starting from the thickness,
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, and the inner radii, 

[image: image58.wmf]r


, of the shells. The thicknesses 
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 , are given by 
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where
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 is the electron’s radius. It can be calculated starting from the Compton sized electron, which gives  
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 [11]. Based on these values, the average value is 
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          The inner radii of the shells, are given by
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Note that 
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. Thus, there is a difference of  
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Finally, we obtain
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[image: image73.emf]                                  Fig.2   –   The 7 Atomic Gravitational Shieldings  
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          The mobility of the orbital electrons confers an electrical conductivity 
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 for each shell, i.e., 
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          On the other hand, since by definition 
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Substitution of Eqs. (19) and (20) into Eq. (18),gives
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The values of 
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, in the case of the Uranium, are given by
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Therefore, according to Eq. (21), the values of the 

[image: image88.wmf]s


s


 are the followings




[image: image89.wmf](


)


22


/


10


36


.


1


10


976


.


6


/


10


45


.


1


10


757


.


7


/


10


65


.


1


10


019


.


1


/


10


06


.


2


10


694


.


1


/


10


12


.


2


10


402


.


2


/


10


07


.


2


10


874


.


2


/


10


39


.


2


10


044


.


6


5


3


19


5


3


19


5


3


20


5


3


20


5


3


20


5


3


20


5


3


20


m


S


r


m


S


r


m


S


r


m


S


r


m


S


r


m


S


r


m


S


r


Q


Q


P


P


O


O


N


N


M


M


L


L


K


K


´


=


´


=


´


=


´


=


´


=


´


=


´


=


´


=


´


=


´


=


´


=


´


=


´


=


´


=


s


s


s


s


s


s


s


From Electrodynamics we know that the index of refraction,
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Substitution of the values of the 
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Now, by considering the values of 
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In the particular case of  
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          In a previous paper [14] it was shown that, if the weight of a particle in a side of  a lamina is 
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                                      (b)     Fig. 4   –  The gravity acceleration in both sides of the  gravitational shielding.   
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, the values given by Eq. (35), yield the following value for 
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Consequently, according to Eq. (9), when a 
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          The effect also extends to particles of matter as neutrons, (-particles, (-particles, etc. 

          For example, consider a faster neutron through a Uranium atom. After crossing the K atomic shell its momentum, according to Eq. (8), becomes 
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          According to this equation, the gravitational kinetic energy of a neutron, inside the intermediate region between the shells and the nucleus of Uranium, is given by 
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 (and also particles such as (-particles, (-particles, protons, etc.) are not able to produce the fission of an atomic nucleus of Uranium, subjected to the previously mentioned conditions. 

          It is also necessary consider the case of some nuclei, as the nuclei of 
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          These energies are very smaller than 
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          The method here described requires 
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          The spectrometers used in the Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy,  works with up to 1GHz, 23.5 T (AVANCE 1000 MHz NMR spectrometer, launched by Bruker BioSpin). Figure 5 shows a 0.9GHz, 21.1T NMR spectrometer. 

          By comparing the values required by the method here described with these values, we can conclude that the necessary technology is coming soon.




[image: image175.emf]    Fig.5  -   A 0.9G Hz , 21.1 T  NMR  spectrometer  at  HWB - NMR, Birmingham, UK .   




References 

[1] Ragheb, M. (2011). Decay Heat Generation in Fission 

      Reactors. University of Illinois at Urbana-Champaign. 

      Retrieved 26 January 2013.

[2] DOE fundamentals handbook – Decay heat, 

      Nuclear physics and reactor theory, Vol. 2, module 

      4, p. 61. 

[3] De Aquino, F. (2008) Process and Device for 

     Controlling the Locally the Gravitational Mass and the 

      Gravity Acceleration, BR Patent Number: PI0805046-5, 


      July 31, 2008.


[4] Lipscy, P, et al., (2013) The Fukushima Disaster and 

      Japan’s Nuclear Plant Vulnerability in Comparative 

      Perspective. Environmental Science and Technology 47 

      (May), 6082-6088.

[5] De Aquino, F. (2010) Mathematical Foundations of 


       the Relativistic Theory of Quantum Gravity, Pacific  

       Journal of Science and Technology, 11 (1), pp. 173-232.

[6] Levitt, M. H. (2001) Spin Dynamics, Wiley.


[7] Hand, L. N. and Finch, J. D. (1998). Analytical 

      mechanics. Cambridge, England: Cambridge University 

      Press,  p.192. 

[8] Gil, V.M.S. and Geraldes, C.F.G.C. (1987) Ressonância  


      Magnética Nuclear: Fundamentos, Métodos e 

      Aplicações, Fundação Calouste Gulbenkian, Lisboa.  

[9] Beiser, A. (1967) Concepts of Modern Physics, McGraw-Hill,


     Portuguese version (1969) Ed. Polígono, S.Paulo, p. 213-


     219.

[10] Jolly, W. L. (1991). Modern Inorganic Chemistry (2nd 

      ed.). New York: McGraw-Hill.

[11] Mac Gregor. M. H., (1992) The Enigmatic Electron. 


      Boston: Klurer Academic, 1992, pp. 4-5.


[12] Beiser, A. (1967)Concepts of Modern Physics, McGraw-Hill,


        Portuguese version (1969) Ed. Polígono, S.Paulo, p.132.


[13] Quevedo, C. P. (1977) Eletromagnetismo, McGraw-

        Hill, p. 270.


[14] De Aquino, F. (2010) Gravity Control by means of

      Electromagnetic   Field through Gas at Ultra-Low

      Pressure, Pacific Journal of Science and Technology,

      11(2) November 2010, pp.178-247, Physics/0701091.


[15] Beiser, A. (1967)Concepts of Modern Physics, McGraw-Hill,


        Portuguese version (1969) Ed. Polígono, S.Paulo,  p.404.














� After one year offline, used fuel still emits about 10 kilowatts of decay heat energy per ton. After 10 years, it emits 1 kW of heat per ton.



 



� Due to the atom’s radius be very small,  any particle inside the intermediate region between the shells and the nucleus will have its gravitational mass given by � EMBED Equation.3  ���, where� EMBED Equation.3  ���is its gravitational mass out of the crust (See Fig.3)). Similarly, if the energy of a photon, out of the atom is � EMBED Equation.3  ��� then, inside the intermediate region, its energy becomes� EMBED Equation.3  ���.



� A heavy nucleus undergoes fission  when acquires energy >5MeV. Some nucleus as the � EMBED Equation.3  ��� undergo fission when absorbs just a neutron. Others as the � EMBED Equation.3  ���needs to absorbs faster neutrons with kinetic energy >1MeV.  However, in all cases if the total energy of the incident particle is  <<1MeV, the fission does not occurs.  
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Fig.1 – In this method, an oscillating magnetic field Bosc , with small intensity, is applied perpendicularly to a static magnetic field  Be.
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Fig.5 - A 0.9GHz, 21.1 T NMR spectrometer at HWB-NMR, Birmingham, UK. 
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 Fig. 4 – The gravity acceleration in both sides of the gravitational shielding. 
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 Fig. 3 – Plane and Spherical Gravitational Shieldings. When the radius of the gravitational shielding (b) is very small, any particle inside the spherical crust will have its gravitational mass given by 
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is its gravitational mass out of the crust.
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Fig.2 – The 7 Atomic Gravitational Shieldings
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