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The relationships of the wavelength dependence of both the electro-optic and second harmonic genera-

tion coefficients are established within the same model applied to nonlinear optical materials. It is dem-

onstrated that the dispersion of these coefficients can be obtained from the own dependence of the

refractive indices only, without any fitted parameter. Solely the measurement of the coefficient at one

wavelength is required within this approach. A very good agreement in the k-dependence of electrooptic

and second harmonic generation coefficients is achieved between calculated values and experimental

data in SBN, DAST, KTP and KNbO3 crystals.

1. Introduction

It is of a prime importance to get the knowledge of the k-

dependence of the nonlinear susceptibility vð2Þ tensor coefficients

to find the best conditions to use nonlinear optical (NLO) materials

in devices, or to optimize the properties of a material. Unfortu-

nately the Pockels electrooptic (EO) and second harmonic genera-

tion (SHG) coefficients are generally measured at one or two

particular wavelengths only. The measurements are time consum-

ing and require special preparation of the crystals, such as cutting

for a particular shape and face polishing. Therefore the prediction

of the values via models is needed. The calculation of the second-

order susceptibility (SOS) has been the object of many studies since

several decades. After the earlier work of Bloembergen [1] who for-

mulates at first the development of the NLO polarization, Kurtz and

Robinson [2] or Garrett and Robinson [3] (see also the textbook of

Boyd [4]) have expressed different formulae of the EO and SHG

coefficients. At that time, experimental data in NLO materials were

relatively rare and numerous results are available since 15 years

only. Surprisingly, just a few studies were so far concerned by

the comparison of the predicted values of NLO coefficients with

the experimental data. Seres [5] reported a model of the wave-

length dependence of the SHG coefficients and his calculations

were compared with data in KTiOPO4 (KTP) and LiNbO3 (LN).

Furthermore, Wang [6] derived, from a model of the quadratic

NLO susceptibility, the values of Pockels EO and SHG coefficients

along c-axis in many ferroelectric materials. The results were in

agreement within a factor 2 with experimental data. These both

models therefore do not afford a completely suitable description

of the k-dependence of vð2Þ coefficients. In addition second-order

susceptibilities have been computed within the framework of den-

sity functional theory. These calculations provided electronic band

structure and optical properties which match the experimental

data, in particular in borate crystals such as lanthanum calcium bo-

rate [7]. However EO coefficients are not given within this ap-

proach. Here we propose a way to calculate in any NLO crystal

the dispersion of both EO and SHG coefficients from the k-depen-

dence of the refractive indices only. For this, by contrast with the

studies of Seres [5] andWang [6], we start from a formulation close

to this used in pioneer works [1–3]. Thus, from an anharmonic-

oscillator model we can derive the SOS and thus both the SHG

and EO coefficients. For this, we successively consider the SOS in

which, either the frequency of both interacting fields are identical

(x) and in the optical range (case of the SHG), and then one fre-

quency (X) of one field is much smaller than the optical field fre-

quency (x) (case of the EO process). We demonstrate that the

wavelength dependence of these coefficients depends only on the

dispersion of the linear refractive indices. We show that solely

one adjustable parameter is required to obtain the behavior of

the EO and SHG coefficients as a function of the laser wavelength,

or as well as the temperature dependence of the EO coefficient. The

validity of our approach is shown by the good agreement which is

achieved between our calculations and experimental data, in dif-

ferent NLO crystals.
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2. Model

2.1. Model description

In the general formulation of second-order NLO process the

mixing between two monochromatic waves with angular frequen-

cies x1 and x2 both in optical range are considered and the in-

duced polarization Pð2ÞðtÞ as due to the second order

susceptibility results [4] from the superposition of signals oscillat-

ing at frequency 0, 2x1, 2x2;x1 þx2, and x1 �x2. Within the

microscopic mechanism generally used, the material is assumed

to consist into independent electronic oscillators and the NLO

polarization arises from an anharmonic cubic potential [2,8].

Therefore this model yields the description of the NLO response,

and thus, the electronic (or direct) EO coefficients in terms of elec-

tronic distortion only. Here we aim to report on a model which

should be able to provide the dispersive behavior of EO and SHG

coefficients as well. As a consequence we afford two changes to

the general formalism. First we consider the EO Pockels effect as

a peculiar NL process where the frequencies are very different

(x2 � x1) by contrast of the SHG effect, which is widely reported

in the literature, for which the frequencies are equal x1 ¼ x2. It is

worth to note that whereas in the SHG process the sole contribu-

tion is electronic, in the EO effect, in addition to the direct elec-

tronic contribution, another contribution arises from indirect

modulation by the external electric field of the outer electrons

via the lattice vibration and mechanical deformation [8,9]. There-

fore we extend the anharmonic model to take into account of the

electron-ion interaction. It is the second change we made with re-

spect to the general formalism. The potential of the electron is thus

rewritten under the form

VðxÞ ¼
mx2

0

2
x2 þ

B

3
x3 þ

C

2
x2X ð1Þ

where x0 is the main electronic resonance frequency, m and x are

respectively the mass and displacement of electron, and X is the

ion displacement. B and C are constants for a material. The first

and the second terms are the harmonic and anharmonic contribu-

tions of the electronic motion whereas the third term arises from

the interaction of the electron with the ionic core. Thus the indirect

EO contribution arising from the modulation via the ionic lattice can

be considered by this last term. This means that we can express the

EO coefficients at any frequency of the modulated applied field. As

reflected by Eq. (1), it is assumed, as usually, that the linear suscep-

tibility or the refractive index has a main contribution arising from

one single oscillator with an angular frequency x0 lying in the vis-

ible (blue–green) or UV range. In a lossless material the SOS is gen-

erally assumed to be independent of the frequencies of the electric

fields, so that the permutation can be done on the indices i, j, k

denoting the field components. This is known as the Kleinman sym-

metry condition, leading to the contracted notation used in the

description of the symmetry properties of the SOS. This assumption

is not taken within our study since essentially the dispersion of the

SOS is aimed, and our formulation explicitly separates the indices i, j

and k. Consistently, we do not suppose that refractive indices have

the same resonances along the principal axes. In our re-formulation

of the dispersion of second-order coefficients we specify as ex-

plained above, the subscripts i, j and k and we stress the quantities

which are depending on the frequency. At last, we do not consider

here any local field correction which is generally needed to insure

the link between microscopic and macroscopic formulations. This

effect is not included in our equations since we are interested to

the calculation of macroscopic linear and nonlinear susceptibilities,

and their comparison with experimental values. Now we will derive

expressions of the SOS susceptibility, and the EO Pockels and SHG

coefficients as well.

2.2. Expression of the SHG coefficients

At first is expressed the dispersion of the SHG coefficients. In

this case, only the two first terms of the potential in Eq. (1) are con-

sidered. From the polarization term at frequency 2x the second or-

der susceptibility and the SHG coefficients d, can be derived as

vSHG
ijk ð2x;x;xÞ ¼

B

ðx2
0 � ð2xÞ2Þ

i

vjðxÞvkðxÞ ð2Þ

or

vSHG
ijk ð2x;x;xÞ ¼ B

ðn2
j ðxÞ � 1Þðn2

kðxÞ � 1Þ

ðx2
0 � ð2xÞ2Þ

i

ð3Þ

where n is the refractive index and v the linear susceptibility, and

dijkðxÞ ¼
1

2
vSHG
ijk ð2x;x;xÞ ð4Þ

Since B is a material constant, Eq. (3) shows that the frequency

dependence of the SHG coefficients depends on the dispersion of

the linear refractive indices only. We can underline that this factor

B introduced in the potential (electronic anharmonic coefficient)

corresponds in fact to the well known Miller constant D [2–4] de-

fined as

vSHG
ijk ð2x;x;xÞ ¼ Dijkð2x;x;xÞvið2xÞvjðxÞvkðxÞ ð5Þ

It is observed in Eq. (3) that the index i plays a different role from

indices j and k. As x2
0 � ð2xÞ2i

� ��1

differs from n2
i ðxÞ � 1, Eq. (2)

therefore does not hold with Kleinman symmetry rule. This means

that even if the invariance between the indices j and k holds, the

permutation between (i, j, k) cannot be applied.

2.3. Expression of EO coefficients

To express the EO Pockels effect in terms of second order pro-

cess, a wave with a frequency x2 much smaller than the other

x1 is considered. Then the NLO polarization and therefore the

SOS can be rewritten in terms of the electrical frequency x2 ¼ X

and the optical frequency x1 ¼ x as

vEO
ijk ðx;XÞ ¼

vjðxÞ

ðx2
0 �x2Þi

BvE
k þ CvI

kðXÞ
� �

ð6Þ

where vðxÞ is the linear susceptibility at optical frequency, vE and

vI are respectively the electronic and ionic contributions of the lin-

ear susceptibility (or permittivity), as determined far from elec-

tronic and ionic resonances. As usually considered, the index k

denotes the direction of the external electric field and i and j corre-

spond to the polarization components of the laser field. It is worth

to note that the second factor in Eq. (6) is independent of the optical

frequency x (or laser wavelength).

The EO Pockels coefficient is then derived from the SOS by

rijkðxÞ ¼ 2
vEO
ijk ðx;XÞ

n2
i ðxÞn2

j ðxÞ
: ð7Þ

The EO coefficient thus depends on both frequencies, i.e. the fre-

quency X of the modulating electric field and the optical frequency

x of the laser field. The dependence of the EO coefficient can be de-

rived separately for each frequency from Eqs. (6) and (7). Thus if X

is fixed we get

vEO
ijk ðxÞ ¼

n2
j ðxÞ � 1

ðx2
0 �x2Þ

i

aEOX;ijk ð8Þ

where aEO
X;ijk is a parameter independent of x derived from the sec-

ond factor of Eq. (6). Eq. (8) therefore provides the dependence of

the EO coefficients on the optical frequency (or laser wavelength)
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from the dispersion of the linear refractive indices only. A second

form can be deduced from Eq. (6), to express the dependence of

the EO coefficient on the second frequency, i.e. the modulation fre-

quency X. Thus if x is fixed, we get

vEO
ijk ðXÞ ¼ ax þ bxDvI

kðXÞ ð9Þ

where ax and bx are parameters independent of X. It is worth to

have a look on the role of the indices i, j, k in all above equations.

We can note that even if the refractive indices vary as

ðx2
0 �x2Þ

�1
the indices i and j are not always equivalent since the

resonance frequencyx0 is not necessarily lying at the same position

for each principal direction. This point is in opposite to the usual

statement for Pockels coefficients, for which i and j generally play

the same role, so that the Voigt rule can be applied and i and j are

thus replaced by a sole contracted index. In fact this holds any time

except for the study of the dispersion of EO coefficients in the vicin-

ity of resonances. Furthermore Eq. (6) can be expressed in terms of

the addition of the electronic and ionic contributions of the EO sus-

ceptibility. The electronic or direct EO effect arises from the modu-

lation of electron clouds directly by the applied electric field

whereas the ionic EO contribution comes from the indirect modula-

tion via the lattice [9]. These contributions are respectively propor-

tional to the electronic and ionic contributions of the linear

susceptibility, and therefore can be responsible for the dispersion

of EO coefficients vs the frequency X. In organic materials it is

known that generally the linear permittivity (or susceptibility) is

nearly constant in a wide frequency range and therefore has a value

close to the refractive index squared, so that Eq. (6) becomes

vEO
ijk ðxÞ ¼

n2
j ðxÞ � 1

ðx2
0 �x2Þ

i

ðBþ CÞn2
k ð10Þ

where B and C are the coefficients defined in Eq. (1). By contrast, in

inorganic materials, the electronic susceptibility (or the refractive

index squared) is generally much smaller than the susceptibility

measured at lower frequency, so that Eq. (10) becomes

vEO
ijk ðxÞ ¼

n2
j ðxÞ � 1

ðx2
0 �x2Þ

i

Cv0
k ð11Þ

where v0
k is the static susceptibility. Therefore the enhancement of

the EO coefficient in inorganic materials is generally attributed to a

larger permittivity. However, this holds only if the coefficient C

introduced in the anharmonic model and reflecting the modulation

of the electronic cloud by the ionic motion is sufficiently large. For

any material the electronic contribution of the EO susceptibility can

be expressed from Eq. (6) as

vEO;E
ijk ðxÞ ¼

n2
j ðxÞ � 1

ðx2
0 �x2Þ

i

BvE
k: ð12Þ

Since it is due to electronic processes, the electronic EO coeffi-

cient rEijk can be linked to the NL susceptibility appearing to the

SHG given by Eq. (3). If vE
k is no longer assumed to be constant,

we find

rEO;Eijk ðxÞ ¼
d
SHG
ijk ðxÞ

n2
i ðxÞn2

j ðxÞ

4 x2
0 � ð2xÞ2

� �

i

ðx2
0 �x2Þ

i

: ð13Þ

We can pay attention to the fact that ðx2
0 � ð2xÞ2Þ and

ðx2
0 �x2Þ are equal for frequencyx very far from resonances. Only

in this case, Eq. (11) is equivalent to the usual form given in the lit-

erature [9] rEO;Eijk ¼
4dijk
n2
i
n2
j

.

3. Results

3.1. Calculations of the EO coefficients

We apply Eqs. (2) and (6) to various NLO crystals, to describe

the wavelength dispersion of the second order coefficients and

even the temperature dependence of the EO coefficient. It was

shown above that the dispersion of SHG and EO coefficients are

simply expressed as function of the dependence of the refractive

indices. So we consider this dispersion of the refractive indices to

be included in Eqs. (2) and (6), under the usual Sellmeier form

nðkÞ ¼ aþ
b

k2 � k20
� ck2 ð14Þ

where a;b and c are constants as determined from the fit of nðkÞ.

Then we can successively calculate the wavelength dependence of

the EO and SHG coefficients in several crystals. The EO coefficient

given by Eqs. (7) and (8), can be re-expressed as function of the

wavelength, instead of the angular frequency, as

r
TðSÞ

ijk ¼ �
1

2p2c2
n2
j ðkÞ � 1

n2
i ðkÞn

2
j ðkÞ

k20ik
2

k2 � k20i
a
TðSÞ

k ð15Þ

where the superscripts T and S denote the constant strain and con-

stant stress coefficients, respectively, and a
TðSÞ

k
is a parameter related
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Fig. 1. Dispersion of the effective EO coefficient rSc and rTc in SBN:60 single crystal.

The dots correspond to the measured values obtained by our group [10] and Trivedi

et al. [11], and the line is the calculated dispersion obtained via our model.
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Fig. 2. Dispersion of the effective EO coefficient rSc1 and rTc1 in KTP crystal. The dots

correspond to the measured values obtained by our group [12] and Boulanger et al.

[13] and the line is the calculated dispersion obtained via our model.
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to the constants B and C appearing in the anharmonic potential. In

fact, as we are interested to describe the relative change of the EO

coefficients versus k, this parameter aTðSÞ
k

at constant X, can be easily

calculated from experimental value of the EO coefficient obtained at

any wavelength k0. The dispersion of the EO coefficient can be thus

calculated via Eq. (15) from the dispersion of the refractive indices

as given by experimental data and Eq. (14). This means that within

our approach, only the measurement of the EO coefficient at one

wavelength is necessary and the dependence of the EO coefficient

on the wavelength in a wide range can be deduced from this value

and the corresponding dependence of the indices. It was proved

that the results are independent of the choice of k0 since the same

dispersion was indeed provided by calculations via Eq. (15) for dif-

ferent k0. It is worth to be noted that Eq. (15) is valid at low and high

frequency X of the external electric field. As a consequence the

clamped (or constant strain) rS and unclamped (or constant stress)

rT EO coefficients can be expressed as function of k. It is reminded

that the coefficient rS comes from the addition of the electronic

and ionic contributions of the EO process discussed above, whereas

rT contains an additional contribution coming from the crystal

deformation via the piezo-optic effect [9,8]. It is thus remarkable

that the high frequency rS and low frequency rT EO coefficients

can be described by the same k-dependence. Only the fitted param-

eter aTðSÞk differs (aT
–aS) and should be determined at a peculiar k0.

This calculation procedure was applied to three different and well

known EO crystals. These materials are completely different from

the point of view of the chemical structure and the crystal symme-

try. The fact that our model can be successfully applied to them

reinforces its validity.

At first the dispersions of the EO coefficient rc ¼ r33 �
n3
0

n3e
r13 in

SBN and KTP are calculated and plotted in Figs. 1 and 2 respec-

tively. The parameter values used in our study are reported in Ta-

ble 1. In SBN (Fig. 1), both rTc and rSc values are well described within

our model, in the whole wavelength range, even in the vicinity of

the absorption edge. The agreement between experimental

data and our calculations is achieved as well in KTP (Fig. 2). In this

last case the clamped and unclamped coefficients do not differ

notably.

In addition to the dispersion on the modulation frequency, Eq.

(9) can be exploited for describing the temperature dependence

of the EO coefficient. Since vEO and thus r are linked via Eq. (9) to

the linear electric susceptibility v, at same frequencies x and X,

any change of the value of this susceptibility, due to the tempera-

ture by example, will be reflected by a corresponding similar var-

iation of the EO coefficient. As a consequence we get the

temperature dependence of the EO coefficient as

r
TðSÞ

ijk ðTÞ ¼ aT þ bT�kðTÞ ð16Þ

Table 1

Values of the parameters used in our study. a, b, c, and k0i are the Sellmeier coefficients given in Refs. [14,15] for SBN and KTP crystals, respectively. The terms aT
ijk and aS

ijk are the

parameter values calculated from experimental value of the EO coefficient in the SBN:60 and KTP single crystals.

Crystal Polarization direction a b (lm2) c (lm�2) k0i (lm) aTijk (mV�1 s�2) aSijk (mV�1 s�2)

SBN X 5.002 0.1272 0.0520 0.352 1:4� 1022 1:03� 1022

Z 4.8866 0.1187 0.0480 0.342

KTP X 2.9971 0.0410 0.0125 0.1958 2� 1021 2� 1021

Y 3.0197 0.0440 0.0120 0.2050

Z 3.3055 0.0632 0.0139 0.2116
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Fig. 3. Temperature dependence of the EO coefficient r42 in KNbO3 crystal given by

our model using the temperature dependence of the dielectric permittivity �2 from

reference [16]. The parameter values used are: aT ¼ 0:535 pm=V and

bT ¼ �100:72 pm=V.

Fig. 4. Calculated dispersion of the second-order nonlinear optical coefficients

d33 ;d32 and d24 of KTP and the measured values reported in literature according to

references [13,17].
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Fig. 5. Calculated dispersion of the second-order nonlinear optical coefficients

d111; d122 and d212 of DAST compared with the measured values reported in Ref. [18].
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where � is the dielectric permittivity. The close link between r and �
can be especially pointed out by the respective temperature depen-

dencies of these quantities, on approaching the phase transitions. In

Fig. 3 is plotted the EO coefficient r42 of the tetragonal KNbO3 versus

the temperature, on approaching the tetragonal – orthorhombic

transition (488 K). Calculated values derived via Eq. (16) from the

dependence of � (reported in the insert) are found in the good

agreement with the experimental data in the whole temperature

range.

3.2. Calculations of the SHG coefficients

The wavelength dependence of SHG coefficients is deduced

from Eq. (3) as

dijk ¼
Aijk

4p2c2
ðn2

j ðkÞ � 1Þðn2
kðkÞ � 1Þ

k2 � 4k20i
k20ik

2: ð17Þ

It is demonstrated that the wavelength dependence of the SHG

coefficients depend on the dispersion of the linear indices only and

Aijk is the solely needed parameter which is determined at a partic-

ular wavelength. This dependence is calculated and plotted in two

well known nonlinear optical (NLO) materials: inorganic KTP, and

organic DAST. Results are reported in Figs. 4 and 5 respectively. A

fairly good agreement is obtained between calculated and experi-

mental data for both materials, and for the different considered

coefficients. In KTP, d33 (d333) and d24 (d223) exhibit a different

behavior as function of k, reflecting respectively the difference in

the dispersion of n1 and n3, and n2 and n3 respectively. Moreover

the slight difference between the coefficients d24 and d32 shows

the limits of the Kleinmann rule which assumes the equality of

these coefficients.

In DAST, d111 is much larger than d122 and d212, which are differ-

ent only on approaching the resonance frequency.

In Table 2 are reported the parameter values used to obtain the

wavelength dispersion of the different NLO coefficients presented

in Figs. 4 and 5.

4. Conclusion

The expressions of the dispersion of the EO and SHG coefficients

have been derived from a simple model based upon the anhar-

monic electronic potential. It was underlined that our formulation

can be applied to each component of the second-order susceptibil-

ity without any assumption on the dependence of the refractive

indices. In the earlier studies it was indeed assumed that (i) the

dispersion of the refractive indices is not very large and therefore

independent of the axis and (ii) Kleinman rules hold so that permu-

tation relation on the subscripts can be used.

We show that the dispersion of the second order susceptibility

depends on the frequency of the linear susceptibility only. Our cal-

culations describe the behavior of SHG and EO coefficients, with

only one adjustable parameter. In other terms this means that

the complete k-dependence can be derived from the value of the

coefficient measured at one wavelength only, and the available dis-

persion of the appropriate refractive index. A good agreement was

achieved between our calculations and experimental data in sev-

eral NLO materials. It was pointed out that the frequency disper-

sion of unclamped, clamped and electronic EO coefficients can be

satisfactorily described by the model. This reinforces the validity

and interest of our approach.

Acknowledgment

Wewould like to thank Prof. Germano Montemezzani for useful

discussions.

References

[1] N. Bloembergen, Nonlinear Optics, New York, 1965.
[2] S.K. Kurtz, F.N.H. Robinson, A physical model of the electrooptic effect, Appl.

Phys. Lett. 10 (1967) 62.
[3] C.G.B. Garrett, F.N.H. Robinson, Miller’s phenomenological rule for computing

nonlinear susceptibilities, J. Quant. Electron. QE-2 (1966) 328.
[4] R. Boyd, Nonlinear Optics, Academic Press, New York, 2003.
[5] J. Seres, Dispersion of second-order nonlinear optical coefficient, Appl. Phys. B

73 (2001) 705.
[6] F. Wang, Calculation of the electro-optical and nonlinear optical coefficients of

ferroelectric materials from their linear properties, Phys. Rev. B 59 (15) (1999)
9733.

[7] A.H. Reshak, S. Auluck, I.V. Kityk, Specific features in the band structure and
linear and nonlinear optical susceptibilities of la2cab10o19 crystals, Phys. Rev. B
70 (2007) 245120.

[8] J.P. Salvestrini, M.D. Fontana, B. Wyncke, F. Brehat, Comparative measurements
of the frequency dependence of the electrooptical and dielectric coefficient in
inorganic crystals, Nonlinear Opt. 17 (1996) 271.

[9] P. Günter, Electro-optic and Photorefractive Materials, Springer-Verlag, 1987.
[10] M. Abarkan, J.P. Salvestrini, M.D. Fontana, M. Cuniot-Ponsard, Frequency and

wavelength dependencies of the electro-optic coefficients in SBN:60 single
crystal, Appl. Phys. B 91 (2008) 489–492.

[11] D. Trivedi, P. Tayebati, M. Tabat, Measurement of large electroelectro-optic
coefficients in thin films of strontium barium niobate (sr0.6ba0.4nb2o6), Appl.
Phys. Lett. 68 (1996) 3227.

[12] M. Abarkan, J.P. Salvestrini, M.D. Fontana, M. Aillerie, Frequency and
wavelength dependencies of electro-optic coefficients in inorganic crystals,
Appl. Phys. B 76 (2003) 765–769.

[13] B. Boulanger, J. Fève, G. Marnier, B. Ménaert, X. Cabirol, P. Villeval, C. Bonnin,
Relative sign and absolute magnitude of d(2) nonlinear coefficients of KTP
from second-harmonic-generation measurements, J. Opt. Soc. Am. B 11 (5)
(1994) 750.

[14] C. David, A. Tunyagi, K. Betzler, M. Wöhlecke, Compositional dependence of
optical and vibrational properties of strontium barium niobate (srxba1�xnb2o6),
Phys. Stat. Sol. B 244 (2007) 2127.

[15] D.Y. Zhang, H.Y. Shen, W. Liu, G.F. Zhang, W.Z. Chen, G. Zhang, R.R. Zeng, C.H.
Huang, W.X. Lin, J.K. Liang, Crystal growth X-ray diffraction and nonlinear
optical properties of nb:KTiOPO4 crystal, J. Cryst. Growth 218 (2000) 98.

[16] P. Günter, Ferroelectrics 75 (1987) 5.
[17] I. Shoji, T. Kongo, A. Kitamoto, M. Shirane, R. Ito, Absolute scale of second-order

nonlinear-optical coefficients, J. Opt. Soc. Am. B 14 (1997) 2268.
[18] U. Meier, M. Bösch, C. Bosshard, P. Günter, Dast a high optical nonlinearity

organic crystal, Syn. Met. 109 (2000) 19–22.
[19] J. Mangin, G. Gadret, S. Fossier, P. Strimer, Phase-modulated temperature

scanning interferometry for measurements of electrooptic coefficients:
application to KTiOPO4, IEEE J. Quant. Electron. 41 (7) (2005) 1002.

[20] M. Jazbinsek, L. Mutter, P. Günter, Photonic applications with the organic
nonlinear optical crystal DAST, IEEE J. Sel. Top. Quant. Electron. 14 (5) (2008)
1298.

Table 2

Values of the parameters used in our study. a; b; c, and k0i are the Sellmeier coefficients given in Refs. [19] for KTP crystal and [20] for DAST crystal. The term Aijk is the parameter

value of the model used to fit the wavelength dispersion of the second-order nonlinear optical coefficient dijk .

Crystal Polarization direction a b (lm2) c (lm�2) k0i (lm) dijk (pm V�1) Aijk (mV�1 s�2)

KTP X 2.9971 0.0410 0.0125 0.1958 – –

Y 3.0197 0.0440 0.0120 0.2050 d223 (d24) 4:3� 1019

d322 (d32) 4:4� 1019

Z 3.3055 0.0632 0.0139 0.2116 d333 (d33) 16� 1019

DAST X 4.3180 0.046732 0 0.533 d111 7:5� 1019

Y 2.5122 0.11913 0 0.504 d122 6:5� 1019

Z 2.4492 0.05873 0 0.501 d212 3:12� 1019
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