Second order decomposition model for image processing : numerical experimentation
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 where a second order image decomposition model to perform denoising and texture extraction has been studied. Here we perform some numerical experimentation to make the behavior of the model as clear as possible. For highly textured images the model gives a two-scale texture decomposition.

Introduction

The Rudin-Osher-Fatemi [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] is the most famous denoising variational model. It involves a total variation regularization term that preserves discontinuities. The image to recover/denoise is split in two parts namely the noise and a smooth part (here a function of bounded variation [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Attouch | Variational analysis in Sobolev and BV spaces[END_REF][START_REF] Evans | Measure theory and fine properties of functions[END_REF]). A lot of people have investigated such decomposition models based on variational formulation, considering that an image can be decomposed into many components, each component describing a particular property of the image ( [START_REF] Aubert | Modeling very oscillating signals. Application to image processing[END_REF][START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Osher | Image decomposition and restoration using total variation minimization and the h 1 norm[END_REF][START_REF] Osher | Modeling textures with total variation minimization and oscillating patterns in image processing[END_REF][START_REF] Osher | Image denoising and decomposition with total variation minimization and oscillatory functions. special issue on mathematics and image analysis[END_REF][START_REF] Yin | A comparison of three total variation based texture extraction models[END_REF]] and references therein for example).

In [START_REF] Bergounioux | A full second order variational model for multiscale texture analysis[END_REF] we have presented a second order model where the first order classical total variation term and a second order total variation one are involved. The suitable functional framework is the space of functions with bounded hessian introduced in [START_REF] Demengel | Fonctions à hessien borné[END_REF] (see also [START_REF] Bergounioux | A second-order model for image denoising[END_REF][START_REF] Bergounioux | A full second order variational model for multiscale texture analysis[END_REF][START_REF] Bergounioux | On poincaré-wirtinger inequalities in bv -spaces[END_REF]). To achieve this goal K. Bredies and al. have recently introduced a second order generalized total variation definition [START_REF] Bredies | Total generalized variation[END_REF][START_REF] Bredies | Properties of l 1 -tgv 2 : the one-dimensional case[END_REF][START_REF] Bredies | Regularization of linear inverse problems with total generalized variation[END_REF] which is a nice compromise/mixture between the first and second order derivatives. In [START_REF] Bergounioux | Mathematical analysis of a inf-convolution model for image processing[END_REF], we have investigated an inf-convolution type model for texture extraction, mixing first and second order regularization terms. This is not more e cient than the Total Generalized Variation approach of [START_REF] Bredies | Total generalized variation[END_REF][START_REF] Bredies | Properties of l 1 -tgv 2 : the one-dimensional case[END_REF][START_REF] Bredies | Regularization of linear inverse problems with total generalized variation[END_REF] for denoising. However, it provides a decomposition of the image at di erent scales what the other model does not a priori. We focused on this decomposition that provides a multiscale description of textured images and gave a rough mathematical analysis of this model in [START_REF] Bergounioux | Mathematical analysis of a inf-convolution model for image processing[END_REF].

More precisely, we assumed that an image (in L 2 ( )) can be split in three components: a smooth (continuous) part v, a cartoon (piecewise constant) part u and an oscillating part w that should involve noise and/or fine textures. The oscillating part of the image is included in the remainder term w = u d ≠ u ≠ v, while v is the smooth part (in BH( )) and u belongs to BV ( ): we hope u to be piecewise constant so that its jump set gives the image contours. For highly textured images, the model provides a two-scale texture decomposition: u can be viewed as a macro-texture (large scale) whose oscillations are not too large and w is the micro-texture ( much more oscillating) that contains the noise. The same model has been considered in [START_REF] Benning | Higher-order tv methods enhancement via bregman iteration[END_REF] from a di erent point of view and the numerical realization has been performed with Bregman-type algorithms.

In this paper, we perform numerical experimentations to check the behavior of the method that we do not completely understand. Preliminary results et conjectures have been set in [START_REF] Bergounioux | Mathematical analysis of a inf-convolution model for image processing[END_REF]. The aim of these numerical tests is to validate some theoretical results (as uniqueness in particular cases) and reinforce conjectures. From that point of view, the numerical method to compute the solutions is far to be optimal. In particular, the methods we used to compute the di erent projections are not the most e cient with respect to the Chambolle-Pock algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] or Bregman-type algorithms.

Presentation of the model

We now assume that u d belongs to L 2 ( ) and that the image we want to recover can be decomposed as u d = w + u + v where u, v and w are functions that characterize di erent parts of u d . Components belong to di erent functional spaces: v is the (smooth) second order part and belongs to BH( ), u is a BV ( ) component and w oe L 2 ( ) is the remainder term. We consider the following cost functional defined on BV ( ) ◊ BH( ):

F ⁄,µ (u, v) = 1 2 Îu d ≠ u ≠ vÎ 2 L 2 ( ) + ⁄T V (u) + µT V 2 (v), (1) 
where ⁄, µ > 0. We are looking for a solution to the optimization problem

inf{ F ⁄,µ (u, v) | (u, v) oe BV ( ) ◊ BH 0 ( ) } (P ⁄,µ )
We refer to [START_REF] Bergounioux | Mathematical analysis of a inf-convolution model for image processing[END_REF] and the references therein for the di erent spaces definition.

We expect v to be the smooth part of the image, u to be a BV ( )\BH( ) function which derivative is a measure supported by the contours and w := u d ≠ u ≠ v oe L 2 is the noise and/or small textures (we shall detail this point later). We have proved in [START_REF] Bergounioux | Mathematical analysis of a inf-convolution model for image processing[END_REF] that problem (P ⁄,µ ) has at least an optimal solution (u ú , v ú ) in BV ( ) ◊ BH 0 ( ). Moreover the dual problem to (P ⁄,µ ) writes

inf woe⁄K1flµK2 1 2 Îu d ≠ wÎ 2 2 . ( 2 
)
where where

K 1 = K 1 is the L 2 -closure of K 1 := ) › = div Ï | Ï oe C 1 c ( ), ÎÏÎ OE AE 1 * . ( 3 
)
and and

K 2 ∏ K 2 with K 2 is the L 2 -closure of K 2 := ) › = div 2 Â |Â oe C 2 c ( , R d◊d ), ÎÂÎ OE AE 1 * . ( 4 
)
The unique solution w ú is the L 2 -projection of u d on the closed convex set ⁄K 1 fl µK 2 :

w ú = ⁄K1flµK2 (u d ) .
Next we have a relation between the solutions to (P ⁄,µ ) and the (unique) solution of the dual problem.

Theorem 2.1. 1. Let w ú be the (unique) solution to the dual problem (P ⁄,µ ) ú :

w ú = ⁄K1flµK2 (u d ) .
Then there exists (ū, v) oe BV ( ) ◊ BH 0 ( ) an optimal solution to (P ⁄,µ ) such that

w ú = u d ≠ ū ≠ v and w ú oe ˆ 2 µ (v) fl ˆ 1 ⁄ (ū) . 2. Conversely, if (ū, v) oe BV ( ) ◊ BH 0 ( ) is any solution to (P ⁄,µ ) then w = u d ≠ ū ≠ v = ⁄K1flµK2 (u d ) . ( 5 
)
Here

1 ⁄ (u) = ; ⁄T V (u) if u oe BV ( ) +OE else. and 2 µ (v) = ; µT V 2 (v) if v oe BH 0 ( ) +OE else.
This theorem is useful from many points of view. First, we have a necessary and su cient condition for a pair (u, v) to be a solution. As we explain in the sequel, this theorem is the key theorem for a fixed point method to compute a solution.

Moreover, solutions (u, v) are not unique but we get uniqueness for the remainder part w = u d ≠ u ≠ v. In addition, we have (partial) results in [START_REF] Bergounioux | Mathematical analysis of a inf-convolution model for image processing[END_REF]. We expect numerical results to be consistent and give hints for uniqueness open cases. Let us recall these results thereafter. Theorem 2.2 ([8] Section 4.2). 1. Assume (u 1 , v 1 ) and (u 2 , v 2 ) are two optimal solutions of (P ⁄,µ ). Then, there exists Ï oe BV ( ) fl BH 0 ( ) such that u 2 = u 1 ≠ Ï and v 2 = v 1 + Ï.

2. Let (⁄, µ) be nonnegative real numbers such that ⁄ Ø Îu d Î G and µ >> ⁄, where ΕΠis the Meyer-norm [START_REF] Meyer | Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[END_REF]. Then the C( ) functions are the only solutions to (P ⁄,µ ),where

C( ) := {(u, v) oe BV ( ) ◊ BH 0 ( ) : ÷c oe R u = c and v = ≠c a.e on }.
3 Numerical aspects

Discretized problem and algorithm

We assume that the image is rectangular with size N ◊ M . We note X := R N ◊M ƒ R NM endowed with the usual (normalized) inner product and the associated Euclidean norm

Èu, vÍ X := 1 NM ÿ 1AEiAEN ÿ 1AEjAEM u i,j v i,j , ÎuÎ X := Û 1 NM ÿ 1AEiAEN ÿ 1AEjAEM u 2 i,j . (6) We set Y = X ◊ X.
It is classical to define the discrete total variation with finite di erence schemes as following (see for example [START_REF] Aubert | Mathematical Problems in Image Processing, Partial Di erential Equations and the Calculus of Variations[END_REF]): the discrete gradient of the numerical image u oe X is Òu oe Y and may be computed by the following forward scheme for instance:

(Òu) i,j = 1 (Òu) 1 i,j , (Òu) 2 i,j 2 , ( 7 
)
where

(Òu) 1 i,j = ; u i+1,j ≠ u i,j if 1 < i < N 0 if i = 1, N, and (Òu) 2 i,j = ; u i,j+1 ≠ u i,j if 1 < j < M 0 if j = 1, M.
Note that the constraint ˆu ˆn = 0 is involved in the discretization process of the gradient. Therefore, in a discrete setting, the sets K 2 and K 2 coincide. The (discrete) total variation corresponding to 1 (u) is given by

J 1 (u) = 1 NM ÿ 1AEiAEN ÿ 1AEjAEM . . (Òu) i,j . . R 2 , ( 8 
)
where .

.

(Òu) i,j . . R 2 = . . ! Òu 1 i,j , Òu 2 i,j ". . R 2 = Ú 1 Òu 1 i,j 2 2 + 1 Òu 2 i,j 2 2 .
The discrete divergence operator -div is the adjoint operator of the gradient operator:

'(p, u) oe Y ◊ X, È≠div p, uÍ X = Èp, ÒuÍ Y .
To define a discrete version of the second order total variation 2 we have to introduce the discrete Hessian operator. For any v oe X, the Hessian matrix of v, denoted Hv is identified to a X 4 vector: " .

(Hv) i,j = ! (Hv)
We refer to [START_REF] Bergounioux | A full second order variational model for multiscale texture analysis[END_REF][START_REF] Bergounioux | A second-order model for image denoising[END_REF] for the detailed expressions of these quantities. The discrete second order total variation corresponding to 2 (v) writes 

J 2 (v) = 1 NM ÿ 1AEiAEN ÿ 1AEjAEM Î(Hv) i,j Î R 4 , (9) with Î 
F ⁄,µ := 1 2 Îu d ≠ u ≠ vÎ 2 X + ⁄J 1 (u) + µJ 2 (v). (10) 
Problem [START_REF] Bergounioux | A full second order variational model for multiscale texture analysis[END_REF] has obviously a solution ũ and ṽ that satisfies the following necessary and su cient optimality conditions

ũ = u d ≠ ṽ ≠ ⁄K1 (u d ≠ ṽ) , ( 11a 
) ṽ = u d ≠ ũ ≠ µK2 (u d ≠ ũ) , ( 11b 
)
where K 1 and K 2 are the following convex closed subsets :

K 1 = {div p | p oe X 2 , Îp i,j Î R 2 AE 1 'i = 1, . . . , N, j = 1, . . . , M}, ( 12a 
)
K 2 = {H ú p | p oe X 4 , Îp i,j Î R 4 AE 1, 'i = 1, . . . , N, j = 1, . . . , M}, (12b) 
and Ki denotes the orthogonal projection on K i . These projections are computed with a Nesterov-type scheme as in [START_REF] Weiss | E cient schemes for total variation minimization under constraints in image processing[END_REF] where the maximal number of (inner) iterations has been set to 30 and the accuracy to 10 ≠7 . We refer to [START_REF] Bergounioux | A second-order model for image denoising[END_REF] for more details. As already mentioned our main concern is to check the relevance of the model and highlight some results and/or conjectures about uniqueness or the structure of solutions. Thus, our numerical method is far to be optimal.

The numerical implementation could be widely improved using methods as the ones described in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF] for example. This leads to the following fixed-point algorithm:

Algorithm -Initialization step. Choose u 0 , v 0 , set 0 < -< 1/2 and n = 1. -Iteration. Define the sequences ((u n , v n )) n as I u n+1 = u n + -(u d ≠ u n ≠ v n ≠ ⁄K1 (u d ≠ v n )) v n+1 = v n + -(u d ≠ u n ≠ v n ≠ µK2 (u d ≠ u n )) . -Stopping test. If max(Îu n+1 ≠ u n Î L 2 , Îv n+1 ≠ v n Î L 2 ) AE Á ( 13 
)
where Á > 0 is a prescribed tolerance, or if the iterations number is larger than a prescribed maximum number itmax, then STOP.

We have proved in [START_REF] Bergounioux | A full second order variational model for multiscale texture analysis[END_REF] that for anyoe (0, 1/2), the sequence generated by the algorithm converges to a stationary point, solution of (11) that we generically denote (u ú , v ú ) in the sequel. The tolerance was set to Á = 10 ≠2 so that the stopping criterion is de facto the maximum number of iterations itmax. In the sequel, we have set itmax=10 000 for the 1D case and itmax = 400 for the 2D case.

We do not report on CPU time since all tests have been done with MATLAB © and the code is not optimized. A parallelled C ++ is version is written that reduces the computational time significantly. Moreover, as explained before, the projections can be computed more e ciently with recent algorithms to spare computation time and improve accuracy; nevertheless, we are interested in the behavior of the model and the optimization of projections computation is not our main concern here.

Examples

We use 1D and 2D examples.

For the first (1D) example we set s = s 0 + s 1 + s 2 on [0,1] with s 0 a white gaussian noise with standard deviation ‡ = 0.02 and The second example is a 2D picture of a butterfly and the third one an highly textured image (old wall). We used geometrical images as well but we do not report on them. 1 We present some results and comments in the next subsections. 

s 1 = ; 0.4 on [ 3 10 , 6 10 ] 0 elsewhere , s 2 (x) = ; 0.8 x + 0.2 on [0, 1 2 ] ≠1.2 (x ≠ 1) elsewhere.

Initialization process

We have tested many initialization choices for algorithm. Indeed, we have not proved uniqueness (though we conjecture it). So the computed solution is only a stationary point. As we may have many, we may think that the initialization process has a significant influence on the generated sequence.

More precisely, we used u 0 = 0, v 0 = u d , that we call initialization (a) in the sequel, -u 0 = u d , v 0 = 0 that we call initialization (a') in the sequel, -u 0 = 0, v 0 = 0 : initialization (b), -randomized initializations around u d mean value.

Initialization (a) (resp. (a')) provides a stationary pair (u ú , v ú ) such that u ú (resp. v ú ) has null mean value. given by the algorithm satisfies

⁄ u ú = 0. Similarly, if u 0 = u d and v 0 = 0, the pair (u ú , v ú )
given by the algorithm satisfies

⁄ v ú = 0.
Proof. Though we consider a discrete setting we use a continuous setting notation (using for example a piecewise a ne approximation). We first note that

w oe K 1 fi K 2 =∆ ⁄ w = 0 .
We prove the first assertion. Assume that u 0 = 0 and v 0 = u d . It is easy to see by induction that

'n oe N ⁄ u n = 0 and ⁄ (v n ≠ u d ) = 0 . ( 14 
) using I u n+1 = u n + -(u d ≠ u n ≠ v n ≠ ⁄K1 (u d ≠ v n )) v n+1 = v n + -(u d ≠ u n ≠ v n ≠ µK2 (u d ≠ u n )) .
Passing to the limit we get ⁄ u ú = 0 and

⁄ (v ú ≠ u d ) = 0 .
The second assertion is proved similarly.

Proposition 3.1 yields that the BV -part u ú (or the BHpart v ú ) belongs to the discrete Meyer space G (see [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF]) if we perform the appropriate initialization step. This means it is an oscillating function. More precisely, choosing u 0 = u d , v 0 = 0 gives a BHpart that belongs to G. This is not what we want, since the BHpart should not be oscillating. Therefore, we shall never use such an initialization. Initializations (a) and (a') seem to give di erent results from initialization (b). We shall see in the sequel that the di erence is small if the iteration number is large enough. Therefore, we think that the initial guess has no influence on the result, but only on the convergence speed. , µ = 1 u 0 = 0, v 0 = u d 1.716468e-04 6.577422e-03 6.381764e-04 8.619797e-05

Initialization F ,µ (u ⇤ , v ⇤ ) kw ⇤ k L 2 T V (u ⇤ ) T V 2 (v ⇤ ) = 10 3 , µ = 10 2 u 0 = 0, v 0 =
u 0 = 0, v 0 = 0 1.144536e-
u 0 = u d , v 0 = 1.
716467e-04 6.577421e-03 6.381750e-04 8.619794e-05 

u 0 = 0, v 0 = 0 1.
ú = u d ≠ u ú ≠ v ú .
-The number of inner iterations (in the projections) has been set to 100, to achieve the best accuracy as possible.

We can see on Figure 3 (1D) the oscillating e ect of initialization u 0 = 0, v 0 = u d : 2 give the computed pairs with initializations (a) (a') (b) and a randomized initialization around the mean value of u d for a 2D example. 

(a) Original signal (without noise) - F ⁄,µ (u ú , v ú ) = 8.19e ≠ 07 (b) Initialization u0 = 0, v0 = u d (a) - F ⁄,µ (u ú , v ú ) = 1.65e ≠ 06 (c) Initialization u0 = u d , v0 = 0 (a') - F ⁄,µ (u ú , v ú ) = 1.43e ≠ 06 (d) Initialization u0 = 0, v0 = 0 (b) - F ⁄,µ (u ú , v ú ) = 8.95 ≠ 07
Initialization F ,µ (u ⇤ , v ⇤ ) kw ⇤ k L 2 T V (u ⇤ ) T V 2 (v ⇤ ) Error # it. = 1, µ = 10 u 0 = 0, v 0 = u d 23.
ú = u d ≠ u ú ≠ v ú .
The error reported in column 5 is defined as in (13) (and should be less that 10 ≠2 ). The blue (grey) lines of Table 2 show what we call the optimal solution, that is the computed pair whose cost functional value is the lowest. We observed that -the randomized initialization gives the same result as initialization (b), -the component w ú = u d ≠ u ú ≠ v ú is always the same, which is consistent with the theoretical result of uniqueness, -the values of the cost functional may be quite close and the computed pairs quite di erent: see for example ⁄ = 5, µ = 7 (and figure 4), -initialization (b) gives a pair (u b , v b ) such that neither u b nor v b has null mean value.

In the sequel, (u a , v a ) denotes the pair given by the algorithm with initialization (a) and (u b , v b ) the one given by the algorithm with initialization (b). Moreover, we set the signed relative error as

"F ⁄,µ = F ⁄,µ (u a , v a ) ≠ F ⁄,µ (u b , v b ) min(F ⁄,µ (u a , v a ), F ⁄,µ (u b , v b )) . ( 15 
)
Figures 5 and6 show the behavior of "F ⁄,µ with respect to ⁄ and µ. and (b) for ⁄ = 7, µ = 9, as the number of iterations increases. We observe convergence : the cost functional is exponentially decreasing. 4. First and second order total variations T V and T V 2 of pairs given by initializations (a) and (b) for ⁄ = 7, µ = 9, as the number of iterations increases. Here Ï = u b ≠ ua = v b ≠ va and the error is given by the stopping criterion (13) of Algorithm.

# it. T V (ua) T V (u b ) T V (') T V 2 (va) T V 2 (v b ) T V 2 (')
Though F ⁄,µ (u a , v a ) ƒ F ⁄,µ (u b , v b ) the pairs (u a , v a )
and (u b , v b ) may be very di erent. More precisely, we have u b = u a ≠ Ï and v b = v a + Ï. Though the computed function Ï k at iteration k is not a constant function (see Figure 7), we infer that Ï k converges to a constant function as the iteration number increases. Indeed, we have numerically observed (see Table 4) that both T V (Ï) and T V 2 (Ï) decreases to 0 as the iteration number increases. Nevertheless, we can perform only a limited number of iterations. So the computed solutions di er from a (small) piecewise constant function (see Figure 7). In addition, it is numerically confirmed that w a = u d ≠ u a ≠ v a = w b (what was theoretically proved). 

Convergence

We chose -= 0.25 in the fixed point algorithm and we always observed convergence. We set the maximal number of iterations quite large but we noticed that the solution is satisfactory with less iterations (400 for 2D case and 1000 for 1D case). 

# it. F ,µ (ua, va) F ,µ (u b , v b ) | F ,µ | = 1, µ =
# it. T V (ua ) T V (u b ) T V (') T V 2 (va ) T V 2 (v b ) T V 2 (') Error (a) Error (b) = 1, µ =

Sensitivity with respect to sampling and quantification

We first investigate the sensitivity with respect to sampling. Table 7, figures 13 and 14 show that the model is robust with respect to sampling. Here, we have discretized the analogical signal of example 1D with 10 3 , 10 4 and 10 5 points respectively. 

µ F ,µ (u b , v b ) kw b k L 2 T V (u b ) T V 2 (v b ) 10 
⁄,µ (u ⁄,µ , v ⁄,µ ) = 1 2 Îu d ≠ u ⁄,µ ≠ v ⁄,µ Î 2 + ⁄T V (u ⁄,µ ) + µT V 2 (v ⁄,µ ) = 1 2-2 Î-u d ≠ -u ⁄,µ ≠ -v ⁄,µ Î 2 + ⁄ - T V (-u ⁄,µ ) + µ - T V 2 (-v ⁄,µ ) = 1 -2 3 1 2 Î-u d ≠ u ⁄,μ ≠ v ⁄,μ Î 2 + -⁄T V (u ⁄,μ ) + -µT V 2 (v ⁄,μ ) 4 = 1 -2 F ⁄,μ (u ⁄,μ , v ⁄,μ
) with ⁄ = -⁄ and μ = -µ. Table 8. Sensitivity with respect to quantification-Initialization (b) -itmax = 400. The model is robust with respect to quantifications as expected.

Sensitivity with respect to parameters

As mentioned before the computed stationary pair depends on the initialization guess via the convergence speed. We consider three cases and we illustrate them on test 2D (Butterfly).

-If µ << ⁄, then initialization (a) : u 0 = 0 and v 0 = u d is the best choice to make the algorithm converge quickly. So we use this initialization to get the solution (u ú , v ú ). In this case, the BV part is close to 0. However, we note that if we fix µ then T V (u ú (⁄, µ)) decreases to 0 and T V 2 (v ú (⁄, µ)) increases to become constant (see Figure 15) when ⁄ ae +OE. This means that if ⁄ is large then u ú is constant. As we know that u ú has a null mean value, then u ú = 0. [START_REF] Bredies | Properties of l 1 -tgv 2 : the one-dimensional case[END_REF]. In this case the cartoon part tends to a constant function as ⁄ = µ increases (the total variation tends to 0) while the second order total variation of the smooth part converges to a limit (not equal to 0, a priori) (Butterfly test) -If ⁄ << µ, then we choose initialization (b) : u 0 = 0 and v 0 = 0 to get the solution. The behavior is similar to the case µ < ⁄: if we fix ⁄, then T V (u ú (⁄, µ)) increases to a constant value and T V 2 (v ú (⁄, µ)) converges to 0 as µ ae +OE (see figure 19). This means that if µ is large enough then solution is always the same : v ú is an a ne function. µ 10. Wall-example, initialization u0 = 0, v0 = 0 -800 iterations -The larger ⁄ is, the more the texture information is involved in the L 2 part, w ú .

(a) Îw ú Î L 2 (b) T V (u ú ) (c) T V 2 (v ú )
= µ = 0.5, 1, 2, 3 • • • 25-init (a) - 800 iterations -Butterfly (a) Cost functional (b) Îw ú Î L 2 (c) T V (u ú ) (d) T V 2 (v ú )
(a) T V (u ú ) (b) T V 2 (v ú )
F ,µ (u ⇤ , v ⇤ ) kw ⇤ k L 2 T V (u ⇤ ) T V 2 (v

Conclusion

The model is well adapted to texture extraction. In the case, where the data is noiseless and/or is not too much textured, the decomposition given par ⁄µ and initialization u 0 = v 0 = 0, gives a cartoon part which is piecewise constant as expected. This means that u = q i u i 1 i where t i i is the contour set. In this case, the remainder L 2 term is the texture and/or noise. The decomposition is robust with respect to quantification, sampling and is always the same for any µ >> ⁄, once ⁄ has been chosen.

In the case where the image is highly textured the model provides a twoscale decomposition. The T V part represents the macro-texture and the L 2 part the micro-texture and/or noise. The scaling is tuned via the ratio fl = ⁄ µ .

The notion of highly textured may be quantified par the G-norm. In our 2D examples, the butterfly G norm was ƒ 7.71 and the wall one was ƒ 4.92.

Figure 21 shows the behavior of the di erent components with respect to ⁄ and µ. We have chosen the 1D noiseless case, to see the multi-scale e ect on components u and w when µ < ⁄. Moreover, the initialization process has no influence on the solution (up to a constant function) but rather on the algorithm speed. The choice has to be made with respect to the parameters: roughly speaking, if ⁄ < µ we choose u 0 = 0, v 0 = 0 and if ⁄ Ø µ we choose u 0 = 0, v 0 = u d . Finally, we have observed (numerically) that the L 2 -component w is unique.

Next issue is to speed up the algorithm (using more performant algorithms) and set an automatic parameter tuning with respect to data properties (G norm, Signal to Noise Ratio , and so on.) From the theoretical point of view, we infer that problem (P ⁄,µ ) has a unique solution (up to constant functions) but the question is still open.

Fig. 1 .

 1 Fig. 1. 1D example -1000 points. First line : signal s, second line : BH-part s2, third line : BV -part s1 and last line ; L 2 noise s0.

Fig. 2 .

 2 Fig. 2. 2D examples

Proposition 3 . 1 .

 31 Assume u 0 = 0 and v 0 = u d . Then any solution (u ú , v ú )

  u d 6.401836e-06 1.424060e-03 5.134659e-03 2.532040e-05 u 0 = u d , v 0 = 6.242638e-06 1.434416e-03 5.076678e-03 1.371843e-05 u 0 = 0, v 0 = 0 6.235598e-06 1.437834e-03 5.022263e-03 1.796523e-05 Random 6.226676e-06 1.441939e-03 5.007722e-03 1.793599e-05 = 10 2 , µ = 10 2 u 0 = 0, v 0 = u d 2.230749e-05 4.897618e-03 8.834750e-04 1.479412e-04 u 0 = u d , v 0 = 2.201165e-05 4.972975e-03 8.022872e-04 1.623540e-04 u 0 = 0, v 0 = 0 2.200473e-05 4.977910e-03 7.968618e-04 1.646320e-04 Random 2.200287e-05 4.978969e-03 7.959566e-04 1.648234e-04 = 1, µ = 10 1 u 0 = 0, v 0 = u d 1.144536e-04 1.027027e-02 8.406575e-06 5.330783e-04 u 0 = u d , v 0 = 1.144536e-04 1.027027e-02 8.406575e-06 5.330783e-04

Fig. 3 .

 3 Fig.3. Example 1D without noise (s1 + s2). The number of inner iterations (to compute projections) is 100 and the number of outer iterations is 50 000. We present the case where ⁄ = 10 ≠3 , µ = 10 ≠2 with di erent initializations. Note that both u ú and w ú have null mean value for initialization (a) (u0 = 0, v0 = u d ). We recover the original decomposition with initialization (b) (u0 = 0, v0 = 0). Initialization (a') (u0 = u d , v0 = 0 ) gives a di erent solution : we shall comment in the sequel.

Figure 4

 4 Figure 4 and Table2give the computed pairs with initializations (a) (a') (b) and a randomized initialization around the mean value of u d for a 2D example.

Fig. 4 .

 4 Fig. 4. BH-part v (first line) and BV -part u (second line) given by initializations (a), (a'), (b) and random for ⁄ = 5, µ = 7 -Butterfly example with 400 iterations.

Fig. 5 .

 5 Fig. 5. Behavior of "F ⁄,µ for 400 iterations (Butterfly example) with respect to ⁄ and µ. If ⁄ and µ are large enough (⁄ > 0.1 and µ > 0.1 for example), both optimal values are very close.

Fig. 6 .

 6 Fig. 6. Behavior of "F ⁄,µ for 400 iterations (Butterfly example). Slices ⁄ = 0.1 (red dotted line) and µ = 0.1 (blue solid line) .

Fig. 7 .

 7 Fig. 7. Di erence between the solutions given by initializations (a) and (b) for ⁄ = 7, µ = 9 and 5000 iterations . ÎÏÎ2 = 0.1518, TV (Ï) = 0.1484, TV 2 (Ï) = 0.1803. The function Ï is close to be piecewise constant as we see it on the gradient norm. This is consistent with Theorem 2.2

Fig. 8 .Fig. 9 .Fig. 10 .

 8910 Fig. 8. Behavior of the cost functional for ⁄ = 7, µ = 9, 100 iterations and initialization (a) (u0 = 0, v0 = u d )

2 . 2 Fig. 11 .Fig. 12 .

 221112 Fig. 11. BV component ua and Ï corresponding to Table 6 -800 iterations. Functionn Ï turns to be constant. The choice ⁄ = 10, µ = 15 gives a satisfactory cartoon part.

Fig. 13 .

 13 Fig. 13. Test 1D (with noise) -Pair given by initialization (b) for ⁄ = 0.1, µ = 1, 10 000 iterations and 10 3 points sampling.

Fig. 14 .

 14 Fig. 14. Test 1D (with noise) -Pair given by initialization (b) for ⁄ = 0.1, µ = 1, 10 000 iterations and 10 4 points sampling.

F

  

= 7 , 13 = 10 , µ = 2

 713102 µ = 9 Initialization (a) ku ↵ ,↵µ ↵u ,µ k1/↵ 3.0291e-01 3.0291e-01 kv ↵ ,↵µ ↵v ,µ k1/↵ 3.1291e-01 3.1291e-01 = 7, µ = 9 Initialization (b) ku ↵ ,↵µ ↵u ,µ k1/↵ 1.8006e-01 1.8006e-01 kv ↵ ,↵µ ↵v ,µ k1/↵ 1.7924e-01 1.7924e-01 = 10, µ = 2 Initialization (a) ku ↵ ,↵µ ↵u ,µ k1/↵ 8.0280e-15 8.4421e-15 kv ↵ ,↵µ ↵v ,µ k1/↵ 1.1324e-13 1.4552e-Initialization (b) ku ↵ ,↵µ ↵u ,µ k1/↵ 3.9216e-03 4.5475e-14 kv ↵ ,↵µ ↵v ,µ k1/↵ 1.1324e-13 1.0914e-13

Fig. 15 .

 15 Fig. 15. Generic L 2 -norm, T V and T V 2 behavior (µ fixed ) 400 iterations -Example 2D (Butterfly).

(a) L 2 Fig. 16 .

 216 Fig. 16. ⁄ = 7, µ = 5 -initialization u0 = 0 and v0 = u d , 400 iterations

Fig. 17 .

 17 Fig. 17. Cost functional, L 2 -norm, T V and T V 2 for ⁄ = µ = 0.5, 1, 2, 3 • • • 25 -Dotted (blue) line is initialization (a) and solid (red) line is initialization (b) -800 iterations -Error is given by[START_REF] Bredies | Properties of l 1 -tgv 2 : the one-dimensional case[END_REF]. In this case the cartoon part tends to a constant function as ⁄ = µ increases (the total variation tends to 0) while the second order total variation of the smooth part converges to a limit (not equal to 0, a priori) (Butterfly test)

Fig. 18 .

 18 Fig. 18. T V and T V 2 for ⁄ = µ = 0.5, 1, 2, 3 • • • 25 -Dotted (blue) line is initialization (a) and solid (red) line is initialization (b) -800 iterations -Wall test -The behavior of T V and T V 2 is similar to the previous example.

( a )Fig. 19 . 20 Fig. 20 .

 a192020 Fig. 19. Generic L 2 -norm, T V and T V 2 behavior -400 iterations -Example 2D (Butterfly). Surfaces giving L 2 -norm, T V and T V 2 respectively with respect to ⁄ and µ.

Fig. 21 .

 21 Fig. 21. Test 1D without noise (1000 points)

Table 1 .

 1 Comparison

		716468e-04 6.577422e-03 6.381758e-04 : 8.619796e-05
	Random	1.716468e-04 6.577422e-03 6.381759e-04	8.619796e-05

of di erent initializations -1D case with noise -itmax=50 000 -The stationary pair is denoted (u ú , v ú ) and w

Table 2 .

 2 Comparison of di erent initializations (Butterfly )-The number of outer iterations is limited to itmax=400 -The stationary pair is denoted (u ú , v ú ) and w

		68	1.04	12.70	1.04	2.35
	u 0 = u d , v 0 = 0	18.29	1	13.43	0.43	0.73
	u 0 = 0, v 0 = 0	20.36	1.03	12.87	0.69	0.89
	Random	20.39	1.03	12.88	0.69	0.87
			= 2, µ = 0.1		
	u 0 = 0, v 0 = u d	1.5414	2.24 e-01 3.64 e-04	15.15	8.48 e-03	22
	u 0 = u d , v 0 = 0	8.0239	2.76 e-01	3.31	13.52	4.35
	u 0 = 0, v 0 = 0	3.3335	2.45 e-01	0.92	14.65	3.12
	Random	3.5384	3.18 e-01	1.02	14.62	3.30
			= 5, µ = 7		
	u 0 = 0, v 0 = u d	61.7005	4.22	5.71	3.45	1.67
	u 0 = u d , v 0 = 0	62.7803	4.02	7.29	2.60	3.25
	u 0 = 0, v 0 = 0	61.6248	4.15	6.34	3.04	1.50
	Random	61.6331	4.15	6.35	3.04	1.55
			= 7, µ = 7		
	u 0 = 0, v 0 = u d	69.6775	5.23	2.29	5.69	9.76 e-01
	u 0 = u d , v 0 = 0	72.6262	4.96	4.09	4.51	4.74
	u 0 = 0, v 0 = 0	70.2957	5.13	2.97	5.19	2.45
	Random	70.3114	5.12	2.98	5.18	2.52
			= 7, µ = 9		
	u 0 = 0, v 0 = u d	79.7064	5.42	4.10	4.03	1.33
	u 0 = u d , v 0 = 0	80.1229	5.18	5.40	3.33	4.09
	u 0 = 0, v 0 = 0	79.8224	5.33	4.58	3.72	1.86
	Random	79.8297	5.33	4.58	3.72	1.89
			= 10, µ = 15		
	u 0 = 0, v 0 = u d	116.2130	7.04	3.59	3.69	1.39
	u 0 = u d , v 0 = 0	116.9598	6.79	4.33	3.36	4.67
	u 0 = 0, v 0 = 0	116.0822	6.95	3.83	3.56	2.02
	Random	116.0918	6.95	3.84	3.56	2.10

Table 3 .

 3 Cost functional and relative error (log scale) for pairs given by initializations (a)

	50	82.38439	81.69328	2.072
	100	80.9713	80.9679	4.379
	200	80.18443	80.35509	2.672
	400	79.83481	79.94497	2.860
	600	79.73564	79.80224	3.078
	800	79.68948	79.73411	3.252
	1000	79.66213	79.69571	3.375
	1200	79.64396	79.67121	3.466
	1500	79.62567	79.64659	3.580
	5000	79.5738	79.5718	4.618

) . # it. F ,µ (ua, va) F ,µ (u b , v b )log 10 | F ,µ |

Table 5 .

 5 Sensitivity with respect to number of iterations : cost functional value. On can refer to Table3as well. Figures 8-10 illustrate the generic behavior of the cost-functional F ⁄,µ .

			10	
	50	39.132	25.513	5 e-01
	100	31.727	23.113	3.7 e-01
	200	26.907	21.440	2.5 e-01
	400	23.711	20.377	1.6 e-01
	600	22.410	19.978	1.2 e-01
	800	21.688	19.774	9.6 e-02
		= 10, µ = 15	
	50	119.448	117.102	2 e-02
	100	117.578	116.601	8.3 e-03
	200	116.612	116.257	3 e-03
	400	116.215	116.083	1.1 e-03
	600	116.106	116.031	6.5 e-04
	800	116.052	116.006	4 e-04
		= 10, µ = 2	
	50	25.90989	39.586	5.2 e-01
	100	25.91003	33.501	2.9 e-01
	200	25.91008	29.512	1.4 e-01
	400	25.91009	27.558	6.3 e-02
	600	25.91009	26.986	4.1 e-02
	800	25.91009	26.699	3 e-02

2 

2 One can look at http://maitinebergounioux.net/PagePro/Movies.html to see the convergence process.

Table 6 .

 6 Sensitivity with respect to number of iterations. Here Ï = u b ≠ ua = v b ≠ va and the error is given by the stopping criterion (13) of Algorithm. On can refer to Table4as well.

						10			
	50	10.73	12.12	3.98	2.74	1.27	2.19	14.58	6.51
		11.81	12.51	3.13	1.92	1	1.50	8.30	3.33
		12.39	12.74	2.47	1.39	0.81	1.09	4.39	1.72
		12.70	12.87	1.96	1.04	0.69	0.82	2.37	0. 90
		12.80	12.92	1.70	0.9	0.65	0.70	1.53	0.58
		12.85	12.94	1.53	0.83	0.63	0.63	1.09	0.42
					= 10, µ = 15			
	50	2.59	4.83	2.74	4.42	3.09	3.14	9.04	9.33
		3.19	4.44	1.85	3.98	3.27	2.14	5.29	6.17
		3.48	4.07	1.18	3.77	3.45	1.39	2.49	3.77
		3.59	3.83	0.73	3.69	3.56	0.87	1.39	2.03
		3.61	3.76	0.55	3.67	3.60	0.67	1.08	1.40
		3.62	3.72	0.45	3.67	3.62	0.54	0.87	1.07
					= 10, µ = 2			
	50	8.93 e-03	1.61	1.61	11.21	9.88	1.80	1.1 e-02	18.18
		8.95 e-03	0.89	0.89	11.21	10.56	9.6 e-01	4.7 e-03	12.92
		8.95 e-03	0.41	0.41	11.21	11.01	3.3 e-01	1.9 e-03	8.92
		8.95 e-03	0.18	0.18	11.21	11.18	6.0 e-02	9.3 e-04	4.48
		8.95 e-03	0.11	0.11	11.21	11.20	1.5 e-02	6.2 e-04	2.54
		8.95 e-03	0.08	0.08	11.21	11.21	6.4 e-03	4.2 e-04	1.77

Table 7 .

 7 3 points 10 3 points 10 3 points 10 3 points 10 4 points 10 4 points 10 4 points 10 4 points 10 5 points 10 5 points 10 5 points 10 Test

	5 points

Table 9 .

 9 Cost functional, L 2 -norm, T V and T V 2 for ⁄

	= µ 0.5	F , 6.3577	kwak 2 1.459 e-03	T V (ua) 4.685	T V 2(va) 7.646	Error 4.13 e-01
	1	12.2448	2.655 e-03	4.756	6.853	5.19 e-01
	5	52.4043	9.654 e-03	3.020	5.782	5.83 e-01
	10	93.2718	1.562 e-02	1.733	5.395	5.59 e-01
	13	114.9198 1.835 e-02	1.268	5.237	5.11 e-01
	17	141.3794 2.128 e-02 8.506 e-01	5.066	4.78 e-01
	21	165.9126 2.357 e-02 5.768 e-01	4.940	4.36 e-01
	25	188.8569 2.537 e-02 3.941 e-01	4.840	3.86 e-01

Complete results (text files, movies, other examples) and MATLAB © code, are available at http://maitinebergounioux.net/PagePro/Movies.html.

We now investigate the sensitivity of the model with respect to quantification. Let u d a data (with values in [0, 255] for example). Let (⁄, µ) be chosen parameters and (u ⁄,µ , v ⁄,µ ) the corresponding computed pair (with the appropriate initialization). Let -> 0 and consider the new data -u d . This is the case, for example, if we get 16 bits images and convert them to 8 bits : in this case -= (2 8 ≠ 1)/(2 16 ≠ 1). We may want to normalize the data as well: in this case -= 1/ max(u d ). The question is to know what new parameters ( ⁄, μ) must be chosen to get u ⁄,μ = -u ⁄,µ and v ⁄,μ = -v ⁄,µ . For any (u ⁄,µ , v ⁄,µ ) solution to (P ⁄,µ ), we get