
HAL Id: hal-01077648
https://hal.science/hal-01077648v2

Submitted on 2 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Second order decomposition model for image
processing : numerical experimentation

Maïtine Bergounioux

To cite this version:
Maïtine Bergounioux. Second order decomposition model for image processing : numerical experi-
mentation. Radon series -Variational Methods: In Imaging and Geometric Control, 18, DeGruyter,
pp.5-35, 2017, 978-3-11-043923-6. �hal-01077648v2�

https://hal.science/hal-01077648v2
https://hal.archives-ouvertes.fr

Maïtine Bergounioux

Second order decomposition model for

image processing : numerical

experimentation

Abstract: This paper is a companion paper of [8] where a second order im-
age decomposition model to perform denoising and texture extraction has been
studied. Here we perform some numerical experimentation to make the behavior
of the model as clear as possible. For highly textured images the model gives a
two-scale texture decomposition.

Keywords: Second order total variation, image decomposition, variational
method, inf-convolution, texture extraction

Classification: 65D18, 68U10, 65K10

1 Introduction

The Rudin-Osher-Fatemi [23] is the most famous denoising variational model. It
involves a total variation regularization term that preserves discontinuities. The
image to recover/denoise is split in two parts namely the noise and a smooth part
(here a function of bounded variation [1, 2, 18]). A lot of people have investigated
such decomposition models based on variational formulation, considering that
an image can be decomposed into many components, each component describing
a particular property of the image ([3, 5, 20, 21, 22, 25] and references therein
for example).

In [10] we have presented a second order model where the first order classi-
cal total variation term and a second order total variation one are involved. The
suitable functional framework is the space of functions with bounded hessian
introduced in [17] (see also [9, 10, 7]). To achieve this goal K. Bredies and al.
have recently introduced a second order generalized total variation definition
[12, 13, 11] which is a nice compromise/mixture between the first and second
order derivatives. In [8], we have investigated an inf-convolution type model for
texture extraction, mixing first and second order regularization terms. This is

Maïtine Bergounioux: Université d’Orléans , UFR Sciences, Math., Labo.
MAPMO, UMR 7349, Route de Chartres, BP 6759, 45067 Orléans cedex 2, France,
maitine.bergounioux@univ-orleans.fr

2 M. Bergounioux

not more e�cient than the Total Generalized Variation approach of [12, 13, 11]
for denoising. However, it provides a decomposition of the image at di�erent
scales what the other model does not a priori. We focused on this decomposi-
tion that provides a multiscale description of textured images and gave a rough
mathematical analysis of this model in [8].

More precisely, we assumed that an image (in L2(�)) can be split in three
components: a smooth (continuous) part v, a cartoon (piecewise constant) part
u and an oscillating part w that should involve noise and/or fine textures. The
oscillating part of the image is included in the remainder term w = ud ≠ u ≠ v,
while v is the smooth part (in BH(�)) and u belongs to BV (�): we hope u to
be piecewise constant so that its jump set gives the image contours. For highly
textured images, the model provides a two-scale texture decomposition: u can
be viewed as a macro-texture (large scale) whose oscillations are not too large
and w is the micro-texture (much more oscillating) that contains the noise. The
same model has been considered in [6] from a di�erent point of view and the
numerical realization has been performed with Bregman-type algorithms.

In this paper, we perform numerical experimentations to check the behavior
of the method that we do not completely understand. Preliminary results et
conjectures have been set in [8]. The aim of these numerical tests is to validate
some theoretical results (as uniqueness in particular cases) and reinforce conjec-
tures. From that point of view, the numerical method to compute the solutions
is far to be optimal. In particular, the methods we used to compute the di�er-
ent projections are not the most e�cient with respect to the Chambolle- Pock
algorithm [14] or Bregman-type algorithms.

2 Presentation of the model

We now assume that ud belongs to L2(�) and that the image we want to recover
can be decomposed as ud = w + u + v where u, v and w are functions that
characterize di�erent parts of ud. Components belong to di�erent functional
spaces: v is the (smooth) second order part and belongs to BH(�), u is a BV (�)
component and w œ L2(�) is the remainder term. We consider the following cost
functional defined on BV (�) ◊ BH(�):

F⁄,µ(u, v) = 1
2Îud ≠ u ≠ vÎ2

L2(�) + ⁄TV (u) + µTV 2(v), (1)

where ⁄, µ > 0. We are looking for a solution to the optimization problem

inf{ F⁄,µ(u, v) | (u, v) œ BV (�) ◊ BH0(�) } (P⁄,µ)

Numerical experimentation 3

We refer to [8] and the references therein for the di�erent spaces definition.
We expect v to be the smooth part of the image, u to be a BV (�)\BH(�)

function which derivative is a measure supported by the contours and w :=
ud ≠ u ≠ v œ L2 is the noise and/or small textures (we shall detail this point
later). We have proved in [8] that problem (P⁄,µ) has at least an optimal solution
(uú, vú) in BV (�) ◊ BH0(�). Moreover the dual problem to (P⁄,µ) writes

inf
wœ⁄K1flµK2

1
2Îud ≠ wÎ2

2. (2)

where where K1 = K1 is the L2-closure of

K1 :=
)

› = div Ï | Ï œ C1
c (�), ÎÏÎŒ Æ 1

*
. (3)

and and K2 ∏ K2 with K2 is the L2-closure of

K2 :=
)

› = div2Â |Â œ C2
c (�,Rd◊d), ÎÂÎŒ Æ 1

*
. (4)

The unique solution wú is the L2-projection of ud on the closed convex set
⁄K1 fl µK2:

wú = �⁄K1flµK2(ud) .

Next we have a relation between the solutions to (P⁄,µ) and the (unique)
solution of the dual problem.

Theorem 2.1. 1. Let wú
be the (unique) solution to the dual problem (P⁄,µ)ú

:

wú = �⁄K1flµK2(ud) .

Then there exists (ū, v̄) œ BV (�) ◊ BH0(�) an optimal solution to (P⁄,µ) such

that

wú = ud ≠ ū ≠ v̄ and wú œ ˆ�2
µ(v̄) fl ˆ�1

⁄(ū) .

2. Conversely, if (ū, v̄) œ BV (�) ◊ BH0(�) is any solution to (P⁄,µ) then

w̄ = ud ≠ ū ≠ v̄ = �⁄K1flµK2(ud) . (5)

Here

�1
⁄(u) =

;
⁄TV (u) if u œ BV (�)
+Œ else.

and �2
µ(v) =

;
µTV 2(v) if v œ BH0(�)
+Œ else.

This theorem is useful from many points of view. First, we have a necessary and
su�cient condition for a pair (u, v) to be a solution. As we explain in the sequel,
this theorem is the key theorem for a fixed point method to compute a solution.

4 M. Bergounioux

Moreover, solutions (u, v) are not unique but we get uniqueness for the
remainder part w = ud ≠ u ≠ v. In addition, we have (partial) results in [8].
We expect numerical results to be consistent and give hints for uniqueness open
cases. Let us recall these results thereafter.

Theorem 2.2 ([8] Section 4.2). 1. Assume (u1, v1) and (u2, v2) are two optimal

solutions of (P⁄,µ). Then, there exists Ï œ BV (�) fl BH0(�) such that u2 =
u1 ≠ Ï and v2 = v1 + Ï.

2. Let (⁄, µ) be nonnegative real numbers such that ⁄ Ø ÎudÎG and µ >> ⁄,

where Î·Î is the Meyer-norm [19]. Then the C(�) functions are the only solutions

to (P⁄,µ),where

C(�) := {(u, v) œ BV (�) ◊ BH0(�) : ÷c œ R u = c and v = ≠c a.e on � }.

3 Numerical aspects

3.1 Discretized problem and algorithm

We assume that the image is rectangular with size N ◊ M . We note X :=
RN◊M ƒ RNM endowed with the usual (normalized) inner product and the
associated Euclidean norm

Èu, vÍX := 1
NM

ÿ

1ÆiÆN

ÿ

1ÆjÆM

ui,jvi,j , ÎuÎX :=
Û

1
NM

ÿ

1ÆiÆN

ÿ

1ÆjÆM

u2
i,j .

(6)
We set Y = X ◊ X. It is classical to define the discrete total variation with

finite di�erence schemes as following (see for example [4]): the discrete gradient
of the numerical image u œ X is Òu œ Y and may be computed by the following
forward scheme for instance:

(Òu)i,j =
1

(Òu)1
i,j , (Òu)2

i,j

2
, (7)

where
(Òu)1

i,j =
;

ui+1,j ≠ ui,j if 1 < i < N

0 if i = 1, N,

and
(Òu)2

i,j =
;

ui,j+1 ≠ ui,j if 1 < j < M

0 if j = 1, M.

Note that the constraint ˆu

ˆn
= 0 is involved in the discretization process of the

gradient. Therefore, in a discrete setting, the sets K2 and K2 coincide. The

Numerical experimentation 5

(discrete) total variation corresponding to �1(u) is given by

J1(u) = 1
NM

ÿ

1ÆiÆN

ÿ

1ÆjÆM

..(Òu)i,j

..
R2 , (8)

where
..(Òu)i,j

..
R2 =

..!
Òu1

i,j , Òu2
i,j

"..
R2 =

Ú1
Òu1

i,j

22
+

1
Òu2

i,j

22
.

The discrete divergence operator -div is the adjoint operator of the gradient
operator:

’(p, u) œ Y ◊ X, È≠div p, uÍX = Èp, ÒuÍY .

To define a discrete version of the second order total variation �2 we have
to introduce the discrete Hessian operator. For any v œ X, the Hessian matrix
of v, denoted Hv is identified to a X4 vector:

(Hv)i,j =
!
(Hv)11

i,j , (Hv)12
i,j , (Hv)21

i,j , (Hv)22
i,j

"
.

We refer to [10, 9] for the detailed expressions of these quantities. The discrete
second order total variation corresponding to �2(v) writes

J2(v) = 1
NM

ÿ

1ÆiÆN

ÿ

1ÆjÆM

Î(Hv)i,jÎR4 , (9)

with
Î(Hv)i,jÎR4 =

Ò
(Hv11

i,j)2 + (Hv12
i,j)2 + (Hv21

i,j)2 + (Hv22
i,j)2 .

The discretized problem stands

inf
(u,v)œX◊X

F⁄,µ := 1
2Îud ≠ u ≠ vÎ2

X + ⁄J1(u) + µJ2(v). (10)

Problem (10) has obviously a solution ũ and ṽ that satisfies the following nec-
essary and su�cient optimality conditions

ũ = ud ≠ ṽ ≠ ⁄K1 (ud ≠ ṽ) , (11a)

ṽ = ud ≠ ũ ≠ µK2 (ud ≠ ũ) , (11b)

where K1 and K2 are the following convex closed subsets :

K1 = {div p | p œ X2, Îpi,jÎR2 Æ 1 ’i = 1, . . . , N, j = 1, . . . , M}, (12a)

K2 = {Húp | p œ X4, Îpi,jÎR4 Æ 1, ’i = 1, . . . , N, j = 1, . . . , M}, (12b)

and Ki denotes the orthogonal projection on Ki. These projections are com-
puted with a Nesterov-type scheme as in [24] where the maximal number of
(inner) iterations has been set to 30 and the accuracy to 10≠7. We refer to [9]

6 M. Bergounioux

for more details. As already mentioned our main concern is to check the relevance
of the model and highlight some results and/or conjectures about uniqueness or
the structure of solutions. Thus, our numerical method is far to be optimal.
The numerical implementation could be widely improved using methods as the
ones described in [14, 15, 16] for example. This leads to the following fixed-point
algorithm:

Algorithm

– Initialization step. Choose u0, v0, set 0 < – < 1/2 and n = 1.
– Iteration. Define the sequences ((un, vn))n as

I
un+1 = un + – (ud ≠ un ≠ vn ≠ ⁄K1 (ud ≠ vn))

vn+1 = vn + – (ud ≠ un ≠ vn ≠ µK2 (ud ≠ un)) .

– Stopping test. If

max(Îun+1 ≠ unÎL2 , Îvn+1 ≠ vnÎL2) Æ Á (13)

where Á > 0 is a prescribed tolerance, or if the iterations number is larger
than a prescribed maximum number itmax, then STOP.

We have proved in [10] that for any – œ (0, 1/2), the sequence generated by the
algorithm converges to a stationary point, solution of (11) that we generically
denote (uú, vú) in the sequel. The tolerance was set to Á = 10≠2 so that the
stopping criterion is de facto the maximum number of iterations itmax. In the
sequel, we have set itmax=10 000 for the 1D case and itmax = 400 for the 2D
case.
We do not report on CPU time since all tests have been done with MATLAB©

and the code is not optimized. A parallelled C++ is version is written that
reduces the computational time significantly. Moreover, as explained before, the
projections can be computed more e�ciently with recent algorithms to spare
computation time and improve accuracy; nevertheless, we are interested in the
behavior of the model and the optimization of projections computation is not
our main concern here.

3.2 Examples

We use 1D and 2D examples.
For the first (1D) example we set s = s0 + s1 + s2 on [0,1] with s0 a white

Numerical experimentation 7

gaussian noise with standard deviation ‡ = 0.02 and

s1 =
;

0.4 on [3
10 , 6

10]
0 elsewhere

, s2(x) =
;

0.8 x + 0.2 on [0, 1
2]

≠1.2 (x ≠ 1) elsewhere.

Fig. 1. 1D example - 1000 points. First line : signal s, second line : BH-part s2, third line :
BV -part s1 and last line ; L2 noise s0.

The second example is a 2D picture of a butterfly and the third one an
highly textured image (old wall). We used geometrical images as well but we
do not report on them.1 We present some results and comments in the next
subsections.

1 Complete results (text files, movies, other examples) and MATLAB© code, are available
at http://maitinebergounioux.net/PagePro/Movies.html.

http://maitinebergounioux.net/PagePro/Movies.html

8 M. Bergounioux

(a) Test 2D - Butterfly (b) Test 2D - Wall

Fig. 2. 2D examples

3.3 Initialization process

We have tested many initialization choices for algorithm. Indeed, we have not
proved uniqueness (though we conjecture it). So the computed solution is only
a stationary point. As we may have many, we may think that the initialization
process has a significant influence on the generated sequence.
More precisely, we used
– u0 = 0, v0 = ud, that we call initialization (a) in the sequel,
– u0 = ud, v0 = 0 that we call initialization (a’) in the sequel,
– u0 = 0, v0 = 0 : initialization (b),
– randomized initializations around ud mean value.

Initialization (a) (resp. (a’)) provides a stationary pair (uú, vú) such that uú

(resp. vú) has null mean value.

Proposition 3.1. Assume u0 = 0 and v0 = ud. Then any solution (uú, vú)

given by the algorithm satisfies

⁄

�

uú = 0. Similarly, if u0 = ud and v0 = 0, the

pair (uú, vú) given by the algorithm satisfies

⁄

�

vú = 0.

Numerical experimentation 9

Proof. Though we consider a discrete setting we use a continuous setting nota-
tion (using for example a piecewise a�ne approximation). We first note that

w œ K1 fi K2 =∆
⁄

�

w = 0 .

We prove the first assertion. Assume that u0 = 0 and v0 = ud. It is easy to see
by induction that

’n œ N
⁄

�

un = 0 and
⁄

�

(vn ≠ ud) = 0 . (14)

using I
un+1 = un + – (ud ≠ un ≠ vn ≠ ⁄K1 (ud ≠ vn))

vn+1 = vn + – (ud ≠ un ≠ vn ≠ µK2 (ud ≠ un)) .

Passing to the limit we get
⁄

�

uú = 0 and
⁄

�

(vú ≠ ud) = 0 .

The second assertion is proved similarly.

Proposition 3.1 yields that the BV - part uú (or the BH- part vú) belongs to
the discrete Meyer space G (see [5]) if we perform the appropriate initializa-
tion step. This means it is an oscillating function. More precisely, choosing
u0 = ud, v0 = 0 gives a BH- part that belongs to G. This is not what we want,
since the BH- part should not be oscillating. Therefore, we shall never use such
an initialization.
Initializations (a) and (a’) seem to give di�erent results from initialization (b).
We shall see in the sequel that the di�erence is small if the iteration number is
large enough. Therefore, we think that the initial guess has no influence on the
result, but only on the convergence speed.

10 M. Bergounioux

Initialization F�,µ(u⇤
, v

⇤) kw⇤kL2 TV (u⇤) TV

2(v⇤)

� = 10�3
, µ = 10�2

u0 = 0, v0 = ud 6.401836e-06 1.424060e-03 5.134659e-03 2.532040e-05
u0 = ud, v0 = 0 6.242638e-06 1.434416e-03 5.076678e-03 1.371843e-05
u0 = 0, v0 = 0 6.235598e-06 1.437834e-03 5.022263e-03 1.796523e-05

Random 6.226676e-06 1.441939e-03 5.007722e-03 1.793599e-05
� = 10�2

, µ = 10�2

u0 = 0, v0 = ud 2.230749e-05 4.897618e-03 8.834750e-04 1.479412e-04
u0 = ud, v0 = 0 2.201165e-05 4.972975e-03 8.022872e-04 1.623540e-04
u0 = 0, v0 = 0 2.200473e-05 4.977910e-03 7.968618e-04 1.646320e-04

Random 2.200287e-05 4.978969e-03 7.959566e-04 1.648234e-04
� = 1, µ = 10�1

u0 = 0, v0 = ud 1.144536e-04 1.027027e-02 8.406575e-06 5.330783e-04
u0 = ud, v0 = 0 1.144536e-04 1.027027e-02 8.406575e-06 5.330783e-04
u0 = 0, v0 = 0 1.144536e-04 1.027027e-02 8.406575e-06 5.330783e-04

Random 1.144536e-04 1.027027e-02 8.406575e-06 5.330783e-04
� = 10�1

, µ = 1

u0 = 0, v0 = ud 1.716468e-04 6.577422e-03 6.381764e-04 8.619797e-05
u0 = ud, v0 = 0 1.716467e-04 6.577421e-03 6.381750e-04 8.619794e-05
u0 = 0, v0 = 0 1.716468e-04 6.577422e-03 6.381758e-04 : 8.619796e-05

Random 1.716468e-04 6.577422e-03 6.381759e-04 8.619796e-05

Table 1. Comparison of di�erent initializations - 1D case with noise - itmax=50 000 -The
stationary pair is denoted (uú, vú) and wú = ud ≠ uú ≠ vú. - The number of inner iterations
(in the projections) has been set to 100, to achieve the best accuracy as possible.

We can see on Figure 3 (1D) the oscillating e�ect of initialization u0 = 0,

v0 = ud:

Numerical experimentation 11

(a) Original signal (without noise) -
F⁄,µ(uú, vú) = 8.19e ≠ 07

(b) Initialization u0 = 0, v0 = ud (a) -
F⁄,µ(uú, vú) = 1.65e ≠ 06

(c) Initialization u0 = ud, v0 = 0 (a’) -
F⁄,µ(uú, vú) = 1.43e ≠ 06

(d) Initialization u0 = 0, v0 = 0 (b) -
F⁄,µ(uú, vú) = 8.95 ≠ 07

Fig. 3. Example 1D without noise (s1 + s2). The number of inner iterations (to compute
projections) is 100 and the number of outer iterations is 50 000. We present the case where
⁄ = 10≠3, µ = 10≠2 with di�erent initializations. Note that both uú and wú have null
mean value for initialization (a) (u0 = 0, v0 = ud). We recover the original decomposition
with initialization (b) (u0 = 0, v0 = 0). Initialization (a’) (u0 = ud, v0 = 0) gives a
di�erent solution : we shall comment in the sequel.

Figure 4 and Table 2 give the computed pairs with initializations (a) (a’) (b)
and a randomized initialization around the mean value of ud for a 2D example.

12 M. Bergounioux

Initialization F�,µ(u⇤
, v

⇤) kw⇤kL2 TV (u⇤) TV

2(v⇤) Error # it.
� = 1, µ = 10

u0 = 0, v0 = ud 23.68 1.04 12.70 1.04 2.35 400
u0 = ud, v0 = 0 18.29 1 13.43 0.43 0.73 400
u0 = 0, v0 = 0 20.36 1.03 12.87 0.69 0.89 400

Random 20.39 1.03 12.88 0.69 0.87 400
� = 2, µ = 0.1

u0 = 0, v0 = ud 1.5414 2.24 e-01 3.64 e-04 15.15 8.48 e-03 22
u0 = ud, v0 = 0 8.0239 2.76 e-01 3.31 13.52 4.35 400
u0 = 0, v0 = 0 3.3335 2.45 e-01 0.92 14.65 3.12 400

Random 3.5384 3.18 e-01 1.02 14.62 3.30 400
� = 5, µ = 7

u0 = 0, v0 = ud 61.7005 4.22 5.71 3.45 1.67 400
u0 = ud, v0 = 0 62.7803 4.02 7.29 2.60 3.25 400
u0 = 0, v0 = 0 61.6248 4.15 6.34 3.04 1.50 400

Random 61.6331 4.15 6.35 3.04 1.55 400
� = 7, µ = 7

u0 = 0, v0 = ud 69.6775 5.23 2.29 5.69 9.76 e-01 400
u0 = ud, v0 = 0 72.6262 4.96 4.09 4.51 4.74 400
u0 = 0, v0 = 0 70.2957 5.13 2.97 5.19 2.45 400

Random 70.3114 5.12 2.98 5.18 2.52 400
� = 7, µ = 9

u0 = 0, v0 = ud 79.7064 5.42 4.10 4.03 1.33 400
u0 = ud, v0 = 0 80.1229 5.18 5.40 3.33 4.09 400
u0 = 0, v0 = 0 79.8224 5.33 4.58 3.72 1.86 400

Random 79.8297 5.33 4.58 3.72 1.89 400
� = 10, µ = 15

u0 = 0, v0 = ud 116.2130 7.04 3.59 3.69 1.39 400
u0 = ud, v0 = 0 116.9598 6.79 4.33 3.36 4.67 400
u0 = 0, v0 = 0 116.0822 6.95 3.83 3.56 2.02 400

Random 116.0918 6.95 3.84 3.56 2.10 400

Table 2. Comparison of di�erent initializations (Butterfly)- The number of outer iterations
is limited to itmax=400 -The stationary pair is denoted (uú, vú) and wú = ud ≠ uú ≠ vú.
The error reported in column 5 is defined as in (13) (and should be less that 10≠2).

Numerical experimentation 13

(a) u0 = 0, v0 = ud (b) u0 = ud, v0 = 0 (c) u0 = 0, v0 = 0 (d) Random

(e) u0 = 0, v0 = ud (f) u0 = ud, v0 = 0 (g) u0 = 0, v0 = 0 (h) Random

Fig. 4. BH-part v (first line) and BV -part u (second line) given by initializations (a), (a’),
(b) and random for ⁄ = 5, µ = 7 - Butterfly example with 400 iterations.

The blue (grey) lines of Table 2 show what we call the optimal solution, that
is the computed pair whose cost functional value is the lowest. We observed that
– the randomized initialization gives the same result as initialization (b),
– the component wú = ud ≠ uú ≠ vú is always the same, which is consistent

with the theoretical result of uniqueness,
– the values of the cost functional may be quite close and the computed pairs

quite di�erent: see for example ⁄ = 5, µ = 7 (and figure 4),
– initialization (b) gives a pair (ub, vb) such that neither ub nor vb has null

mean value.

In the sequel, (ua, va) denotes the pair given by the algorithm with initialization
(a) and (ub, vb) the one given by the algorithm with initialization (b). Moreover,
we set the signed relative error as

”F⁄,µ =
F⁄,µ(ua, va) ≠ F⁄,µ(ub, vb)

min(F⁄,µ(ua, va), F⁄,µ(ub, vb)) . (15)

Figures 5 and 6 show the behavior of ”F⁄,µ with respect to ⁄ and µ.

14 M. Bergounioux

Fig. 5. Behavior of ”F⁄,µ for 400 iterations (Butterfly example) with respect to ⁄ and µ. If
⁄ and µ are large enough (⁄ > 0.1 and µ > 0.1 for example), both optimal values are very
close.

Fig. 6. Behavior of ”F⁄,µ for 400 iterations (Butterfly example). Slices ⁄ = 0.1 (red dotted
line) and µ = 0.1 (blue solid line) .

Numerical experimentation 15

it. F�,µ(ua, va) F�,µ(ub, vb) - log10
�
|�F�,µ|

�

50 82.38439 81.69328 2.072
100 80.9713 80.9679 4.379
200 80.18443 80.35509 2.672
400 79.83481 79.94497 2.860
600 79.73564 79.80224 3.078
800 79.68948 79.73411 3.252
1000 79.66213 79.69571 3.375
1200 79.64396 79.67121 3.466
1500 79.62567 79.64659 3.580
5000 79.5738 79.5718 4.618

Table 3. Cost functional and relative error (log scale) for pairs given by initializations (a)
and (b) for ⁄ = 7, µ = 9, as the number of iterations increases. We observe convergence :
the cost functional is exponentially decreasing.

it. TV (ua) TV (ub) TV (') TV

2(va) TV

2(vb) TV

2(') Error (a) Error (b)

50 2.45 5.62 3.57 5.40 3.20 4.05 7.41 7.14
100 3.29 5.31 2.53 4.69 3.33 2.82 4.88 5.03
200 3.85 4.93 1.66 4.23 3.52 1.87 2.87 3.26
400 4.12 4.60 1.03 4.01 3.70 1.18 1.34 1.87
600 4.19 4.47 0.771 3.95 3.77 0.896 1.02 1.32
800 4.22 4.40 0.628 3.93 3.81 0.736 0.855 1.03
1000 4.23 4.37 0.536 3.92 3.83 0.632 0.735 0.845
1200 4.24 4.35 0.470 3.91 3.84 0.556 0.642 0.723
1500 4.24 4.33 0.396 3.90 3.86 0.472 0.535 0.595
5000 4.28 4.26 0.148 3.88 3.89 0.180 0.207 0.208

Table 4. First and second order total variations T V and T V 2 of pairs given by initial-
izations (a) and (b) for ⁄ = 7, µ = 9, as the number of iterations increases. Here
Ï = ub ≠ ua = vb ≠ va and the error is given by the stopping criterion (13) of Algorithm.

Though F⁄,µ(ua, va) ƒ F⁄,µ(ub, vb) the pairs (ua, va) and (ub, vb) may be
very di�erent. More precisely, we have ub = ua ≠ Ï and vb = va + Ï. Though
the computed function Ïk at iteration k is not a constant function (see Figure
7), we infer that Ïk converges to a constant function as the iteration number
increases. Indeed, we have numerically observed (see Table 4) that both TV (Ï)
and TV 2(Ï) decreases to 0 as the iteration number increases. Nevertheless, we
can perform only a limited number of iterations. So the computed solutions
di�er from a (small) piecewise constant function (see Figure 7). In addition, it
is numerically confirmed that wa = ud ≠ ua ≠ va = wb (what was theoretically
proved).

16 M. Bergounioux

(a) va - init : u0 = 0, v0 = ud (b) ua - init : u0 = 0, v0 = ud

(c) vb - init : u0 = 0, v0 = 0 (d) ub - init : u0 = 0, v0 = 0

(e) Norm of ub gradient (f) wb = wa

(g) Ï = ub ≠ ua = va ≠ vb (h) Norm of Ï gradient

Fig. 7. Di�erence between the solutions given by initializations (a) and (b) for ⁄ = 7, µ = 9
and 5000 iterations . ÎÏÎ2 = 0.1518, T V (Ï) = 0.1484, T V 2(Ï) = 0.1803. The function Ï

is close to be piecewise constant as we see it on the gradient norm. This is consistent with
Theorem 2.2

Numerical experimentation 17

3.4 Convergence

We chose – = 0.25 in the fixed point algorithm and we always observed conver-
gence. We set the maximal number of iterations quite large but we noticed that
the solution is satisfactory with less iterations (400 for 2D case and 1000 for 1D
case).

it. F�,µ(ua, va) F�,µ(ub, vb) |�F�,µ|
� = 1, µ = 10

50 39.132 25.513 5 e-01
100 31.727 23.113 3.7 e-01
200 26.907 21.440 2.5 e-01
400 23.711 20.377 1.6 e-01
600 22.410 19.978 1.2 e-01
800 21.688 19.774 9.6 e-02

� = 10, µ = 15

50 119.448 117.102 2 e-02
100 117.578 116.601 8.3 e-03
200 116.612 116.257 3 e-03
400 116.215 116.083 1.1 e-03
600 116.106 116.031 6.5 e-04
800 116.052 116.006 4 e-04

� = 10, µ = 2

50 25.90989 39.586 5.2 e-01
100 25.91003 33.501 2.9 e-01
200 25.91008 29.512 1.4 e-01
400 25.91009 27.558 6.3 e-02
600 25.91009 26.986 4.1 e-02
800 25.91009 26.699 3 e-02

Table 5. Sensitivity with respect to number of iterations : cost functional value. On can
refer to Table 3 as well.

Figures 8-10 illustrate the generic behavior of the cost-functional F⁄,µ.2

2 One can look at http://maitinebergounioux.net/PagePro/Movies.html to see the con-
vergence process.

18 M. Bergounioux

Fig. 8. Behavior of the cost functional for ⁄ = 7, µ = 9, 100 iterations and initialization (a)
(u0 = 0, v0 = ud)

Fig. 9. Behavior of the cost functional for ⁄ = 7, µ = 9, 100 iterations and initialization (b)
(u0 = 0, v0 = 0)

Numerical experimentation 19

Fig. 10. Behavior of the cost functional for ⁄ = 7, µ = 9, 100 iterations- Dotted (blue) line
is initialization (a) and solid (red) line is initialization (b) . Zoom around 75-100 iterations

it. TV (ua) TV (ub) TV (') TV 2(va) TV 2(vb) TV 2(') Error (a) Error (b)

� = 1, µ = 10

50 10.73 12.12 3.98 2.74 1.27 2.19 14.58 6.51
100 11.81 12.51 3.13 1.92 1 1.50 8.30 3.33
200 12.39 12.74 2.47 1.39 0.81 1.09 4.39 1.72
400 12.70 12.87 1.96 1.04 0.69 0.82 2.37 0. 90
600 12.80 12.92 1.70 0.9 0.65 0.70 1.53 0.58
800 12.85 12.94 1.53 0.83 0.63 0.63 1.09 0.42

� = 10, µ = 15

50 2.59 4.83 2.74 4.42 3.09 3.14 9.04 9.33
100 3.19 4.44 1.85 3.98 3.27 2.14 5.29 6.17
200 3.48 4.07 1.18 3.77 3.45 1.39 2.49 3.77
400 3.59 3.83 0.73 3.69 3.56 0.87 1.39 2.03
600 3.61 3.76 0.55 3.67 3.60 0.67 1.08 1.40
800 3.62 3.72 0.45 3.67 3.62 0.54 0.87 1.07

� = 10, µ = 2

50 8.93 e-03 1.61 1.61 11.21 9.88 1.80 1.1 e-02 18.18
100 8.95 e-03 0.89 0.89 11.21 10.56 9.6 e-01 4.7 e-03 12.92
200 8.95 e-03 0.41 0.41 11.21 11.01 3.3 e-01 1.9 e-03 8.92
400 8.95 e-03 0.18 0.18 11.21 11.18 6.0 e-02 9.3 e-04 4.48
600 8.95 e-03 0.11 0.11 11.21 11.20 1.5 e-02 6.2 e-04 2.54
800 8.95 e-03 0.08 0.08 11.21 11.21 6.4 e-03 4.2 e-04 1.77

Table 6. Sensitivity with respect to number of iterations. Here Ï = ub ≠ ua = vb ≠ va

and the error is given by the stopping criterion (13) of Algorithm. On can refer to Table 4
as well.

20 M. Bergounioux

(a) BV part - ⁄ = 1, µ =
10

(b) Ï - ⁄ = 1, µ = 10

(c) BV part - ⁄ = 10, µ =
15

(d) Ï - ⁄ = 10, µ = 15

(e) BV part -⁄ = 10, µ =
2. In this case u ƒ 0

(f) Ï -⁄ = 10, µ = 2

Fig. 11. BV component ua and Ï corresponding to Table 6 - 800 iterations. Functionn Ï

turns to be constant. The choice ⁄ = 10, µ = 15 gives a satisfactory cartoon part.

Numerical experimentation 21

(a) BV part u - 800 iterations (b) Absolute di�erence of BV parts
between it 400 and it 800

(c) BH part v - 800 iterations (d) Absolute di�erence of BH parts
between it 400 and it 800

(e) L2- part w - 800 iterations (f) Absolute di�erence of L2- parts
between it 400 and it 800

Fig. 12. Test 2D - Initialization (b) for ⁄ = 10, µ = 15- Di�erence between the computed
pairs at iteration 400 and iteration 800.

22 M. Bergounioux

3.5 Sensitivity with respect to sampling and quantification

We first investigate the sensitivity with respect to sampling. Table 7, figures 13
and 14 show that the model is robust with respect to sampling. Here, we have
discretized the analogical signal of example 1D with 103, 104 and 105 points
respectively.

� µ F�,µ(ub, vb) kwbkL2 TV (ub) TV

2(vb)

103 points 103 points 103 points 103 points
104 points 104 points 104 points 104 points
105 points 105 points 105 points 105 points

1e -03 1 e-02 6.47 e-06 1.43 e-03 5.01 e-03 4.28 e-05
5.78 e-06 1.47e-03 4.37 e-03 3.19 e-05
5.73 e-06 1.5 e-03 4.34 e-03 3.09 e-05

1e-03 1 4.86 e-05 1.43 e-03 5.01 e-03 4.25 e-05
3.73 e-05 1.47 e-03 4.37 e-03 3.18 e-05
3.63 e-05 1.47 e-03 4.34 e-03 3.09 e-05

1e -02 1e-01 3.27 e-05 5.07 e-03 8.80 e-04 1.10 e-04
2.62 e-05 5.16 e-03 1.81 e-04 1.10 e-04
2.52 e-05 5.24 e-03 7.26 e-05 1.08 e-04

1e -02 1 1.32 e-04 5.07 e-03 8.80 e-04 1.10 e-04
1.26 e-04 5.16 e-03 1.81 e-04 1.10 e-04
1.22 e-04 5.24 e-03 7.26 e-05 1.08 e-04

1e-01 1e-01 1.01 e-04 6.90 e-03 5.43 e-04 2.32 e-04
3.71 e-05 5.53 e-03 8.74 e-05 1.30 e-04
2.73 e-05 5.38 e-03 1.20 e-05 1.16 e-04

Table 7. Test 1D (with noise) - sensitivity with respect to sampling - Initialization (b)
(u0 = v0 = 0) and 10 000 iterations

Numerical experimentation 23

Fig. 13. Test 1D (with noise) - Pair given by initialization (b) for ⁄ = 0.1, µ = 1, 10 000
iterations and 103 points sampling.

Fig. 14. Test 1D (with noise) - Pair given by initialization (b) for ⁄ = 0.1, µ = 1, 10 000
iterations and 104 points sampling.

We now investigate the sensitivity of the model with respect to quantifica-
tion. Let ud a data (with values in [0, 255] for example). Let (⁄, µ) be chosen
parameters and (u⁄,µ, v⁄,µ) the corresponding computed pair (with the appro-
priate initialization). Let – > 0 and consider the new data –ud. This is the case,
for example, if we get 16 bits images and convert them to 8 bits : in this case
– = (28 ≠ 1)/(216 ≠ 1). We may want to normalize the data as well: in this case
– = 1/ max(ud). The question is to know what new parameters (⁄̃, µ̃) must be
chosen to get u⁄̃,µ̃ = –u⁄,µ and v⁄̃,µ̃ = –v⁄,µ . For any (u⁄,µ, v⁄,µ) solution to
(P⁄,µ), we get

24 M. Bergounioux

F⁄,µ(u⁄,µ, v⁄,µ) = 1
2Îud ≠ u⁄,µ ≠ v⁄,µÎ2 + ⁄TV (u⁄,µ) + µTV 2(v⁄,µ)

= 1
2–2 Î–ud ≠ –u⁄,µ ≠ –v⁄,µÎ2 + ⁄

–
TV (–u⁄,µ) + µ

–
TV 2(–v⁄,µ)

= 1
–2

3
1
2Î–ud ≠ u⁄̃,µ̃ ≠ v⁄̃,µ̃Î2 + –⁄TV (u⁄̃,µ̃) + –µTV 2(v⁄̃,µ̃)

4

= 1
–2 F⁄̃,µ̃(u⁄̃,µ̃, v⁄̃,µ̃) with ⁄̃ = –⁄ and µ̃ = –µ.

↵ 1/255 100
� = 7, µ = 9 Initialization (a)

ku↵�,↵µ � ↵u�,µk1/↵ 3.0291e-01 3.0291e-01

kv↵�,↵µ � ↵v�,µk1/↵ 3.1291e-01 3.1291e-01

� = 7, µ = 9 Initialization (b)
ku↵�,↵µ � ↵u�,µk1/↵ 1.8006e-01 1.8006e-01

kv↵�,↵µ � ↵v�,µk1/↵ 1.7924e-01 1.7924e-01

� = 10, µ = 2 Initialization (a)
ku↵�,↵µ � ↵u�,µk1/↵ 8.0280e-15 8.4421e-15

kv↵�,↵µ � ↵v�,µk1/↵ 1.1324e-13 1.4552e-13

� = 10, µ = 2 Initialization (b)
ku↵�,↵µ � ↵u�,µk1/↵ 3.9216e-03 4.5475e-14

kv↵�,↵µ � ↵v�,µk1/↵ 1.1324e-13 1.0914e-13

Table 8. Sensitivity with respect to quantification- Initialization (b) - itmax = 400. The
model is robust with respect to quantifications as expected.

3.6 Sensitivity with respect to parameters

As mentioned before the computed stationary pair depends on the initialization
guess via the convergence speed. We consider three cases and we illustrate them
on test 2D (Butterfly).
– If µ << ⁄, then initialization (a) : u0 = 0 and v0 = ud is the best choice

to make the algorithm converge quickly. So we use this initialization to get
the solution (uú, vú). In this case, the BV part is close to 0. However, we

Numerical experimentation 25

note that if we fix µ then TV (uú(⁄, µ)) decreases to 0 and TV 2(vú(⁄, µ))
increases to become constant (see Figure 15) when ⁄ æ +Œ. This means
that if ⁄ is large then uú is constant. As we know that uú has a null mean
value, then uú = 0.

(a) ÎwúÎL2 (b) T V (uú) (c) T V 2(vú)

Fig. 15. Generic L2- norm, T V and T V 2 behavior (µ fixed) 400 iterations - Example 2D
(Butterfly).

On can see an example on Figure 11 for ⁄ = 10, µ = 2 and Figure 16.

(a) L2 part (b) BV part (c) BH part

Fig. 16. ⁄ = 7, µ = 5 - initialization u0 = 0 and v0 = ud , 400 iterations

– If µ ƒ ⁄, both initializations seem equivalent. For the Butterfly test, init (a)
remains slightly faster (in this case the minimum value of cost functional is
achieved first) while it is the converse for the Wall test and small values of
⁄. Figures 17 and 18 show the behavior of the cost functional, L2- norm, TV

and TV 2 for both initializations and ⁄ = µ œ [0.5, 1, 2, 3 · · · 25]. We report
the behavior of cost functional, L2- norm, TV and TV 2 in Table 9

26 M. Bergounioux

� = µ F�,� kwak2 TV (ua) TV 2(va) Error
0.5 6.3577 1.459 e-03 4.685 7.646 4.13 e-01
1 12.2448 2.655 e-03 4.756 6.853 5.19 e-01
5 52.4043 9.654 e-03 3.020 5.782 5.83 e-01
10 93.2718 1.562 e-02 1.733 5.395 5.59 e-01
13 114.9198 1.835 e-02 1.268 5.237 5.11 e-01
17 141.3794 2.128 e-02 8.506 e-01 5.066 4.78 e-01
21 165.9126 2.357 e-02 5.768 e-01 4.940 4.36 e-01
25 188.8569 2.537 e-02 3.941 e-01 4.840 3.86 e-01

Table 9. Cost functional, L2- norm, T V and T V 2 for ⁄ = µ = 0.5, 1, 2, 3 · · · 25- init (a) -
800 iterations - Butterfly

(a) Cost functional (b) ÎwúÎL2

(c) T V (uú) (d) T V 2(vú)

Fig. 17. Cost functional, L2- norm, T V and T V 2 for ⁄ = µ = 0.5, 1, 2, 3 · · · 25 - Dotted
(blue) line is initialization (a) and solid (red) line is initialization (b) - 800 iterations - Error
is given by (13). In this case the cartoon part tends to a constant function as ⁄ = µ in-
creases (the total variation tends to 0) while the second order total variation of the smooth
part converges to a limit (not equal to 0, a priori) (Butterfly test)

Numerical experimentation 27

(a) T V (uú) (b) T V 2(vú)

Fig. 18. T V and T V 2 for ⁄ = µ = 0.5, 1, 2, 3 · · · 25 - Dotted (blue) line is initialization
(a) and solid (red) line is initialization (b) - 800 iterations - Wall test - The behavior of T V

and T V 2 is similar to the previous example.

– If ⁄ << µ, then we choose initialization (b) : u0 = 0 and v0 = 0 to get
the solution. The behavior is similar to the case µ < ⁄: if we fix ⁄, then
TV (uú(⁄, µ)) increases to a constant value and TV 2(vú(⁄, µ)) converges to
0 as µ æ +Œ (see figure 19). This means that if µ is large enough then
solution is always the same : vú is an a�ne function.

(a) ÎwúÎL2 (b) T V (uú) (c) T V 2(vú)

Fig. 19. Generic L2- norm, T V and T V 2 behavior - 400 iterations - Example 2D (Butter-
fly). Surfaces giving L2- norm, T V and T V 2 respectively with respect to ⁄ and µ.

Examples of solutions are given in Figures 4, 11 and 12. We give another
example below on a textured image:

28 M. Bergounioux

(a) L2- part ⁄ = 1, µ = 5 (b) L2- part ⁄ = 5, µ = 10 (c) L2- part ⁄ = 10, µ = 20

(d) BV part ⁄ = 1, µ = 5 (e) BV part ⁄ = 5, µ = 10 (f) BV part ⁄ = 10, µ = 20

Fig. 20. BV and L2 components with ⁄ < µ - 800 iterations - Wall example - The value of
⁄ (µ > ⁄) gives a texture scaling information.

� µ F�,µ(u⇤
, v

⇤) kw⇤kL2 TV (u⇤) TV

2(v⇤)

1 5 21.6334 4.270 e-03 18.453 3.868 e-01
5 10 87.2937 1.759 e-02 10.402 1.413
10 20 152.5461 2.854 e-02 4.922 2.382

Table 10. Wall- example, initialization u0 = 0, v0 = 0 - 800 iterations - The larger ⁄ is, the
more the texture information is involved in the L2 part, wú.

4 Conclusion

The model is well adapted to texture extraction. In the case, where the data is
noiseless and/or is not too much textured, the decomposition given par ⁄ - µ

Numerical experimentation 29

and initialization u0 = v0 = 0, gives a cartoon part which is piecewise constant
as expected. This means that u =

q
i ui1�i where

t
i �i is the contour set. In

this case, the remainder L2 term is the texture and/or noise. The decomposition
is robust with respect to quantification, sampling and is always the same for any
µ >> ⁄, once ⁄ has been chosen.

In the case where the image is highly textured the model provides a two-
scale decomposition. The TV part represents the macro-texture and the L2 part
the micro-texture and/or noise. The scaling is tuned via the ratio fl = ⁄

µ
.

The notion of highly textured may be quantified par the G-norm. In our 2D
examples, the butterfly G norm was ƒ 7.71 and the wall one was ƒ 4.92.

Figure 21 shows the behavior of the di�erent components with respect to
⁄ and µ. We have chosen the 1D noiseless case, to see the multi-scale e�ect on
components u and w when µ < ⁄.

(a) ⁄ = 5 10≠3, µ = 10≠3- (initialization (a))

(b) ⁄ = 5 10≠3, µ = 10≠2- (initialization (b))

Fig. 21. Test 1D without noise (1000 points)

30 M. Bergounioux

Moreover, the initialization process has no influence on the solution (up to
a constant function) but rather on the algorithm speed. The choice has to be
made with respect to the parameters: roughly speaking, if ⁄ < µ we choose
u0 = 0, v0 = 0 and if ⁄ Ø µ we choose u0 = 0, v0 = ud. Finally, we have
observed (numerically) that the L2-component w is unique.

Next issue is to speed up the algorithm (using more performant algorithms)
and set an automatic parameter tuning with respect to data properties (G norm,
Signal to Noise Ratio , and so on.) From the theoretical point of view, we infer
that problem (P⁄,µ) has a unique solution (up to constant functions) but the
question is still open.

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free dis-
continuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford
University Press, New York, 2000.

[2] H. Attouch, G. Buttazzo, and G. Michaille. Variational analysis in Sobolev and BV
spaces, volume 6 of MPS/SIAM Series on Optimization. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2006. Applications to PDEs and
optimization.

[3] G. Aubert and J.-F. Aujol. Modeling very oscillating signals. Application to image
processing. Appl. Math. Optim., 51(2):163–182, 2005.

[4] G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing, Partial
Di�erential Equations and the Calculus of Variations, volume 147 of Applied Mathe-
matical Sciences. Springer Verlag, 2006.

[5] J.-F. Aujol, G. Aubert, L. Blanc-Féraud, and A. Chambolle. Image decomposition
into a bounded variation component and an oscillating component. J. Math. Imaging
Vision, 22(1):71–88, 2005.

[6] M. Benning, C. Brune, M. Burger, and J. Müller. Higher-order tv methods enhance-
ment via bregman iteration. Journal of Scientific Computing, 54(2-3):269–310, 2012.

[7] M. Bergounioux. On poincaré-wirtinger inequalities in bv - spaces. Control & Cyber-
netics, 4(40):921–929, 2011.

[8] M. Bergounioux. Mathematical analysis of a inf-convolution model for image process-
ing. Journal of Optimization Theory and Applications, pages 1–21, 2015.

[9] M. Bergounioux and L. Pi�et. A second-order model for image denoising. Set-Valued
Var. Anal., 18(3-4):277–306, 2010.

[10] M. Bergounioux and L. Pi�et. A full second order variational model for multiscale
texture analysis. Computational Optimization and Applications, 54:215–237, 2013.

[11] K. Bredies and M Holler. Regularization of linear inverse problems with total general-
ized variation. Journal of Inverse and Ill-posed Problems, 68, 2014.

[12] K. Bredies, K. Kunisch, and T. Pock. Total generalized variation. SIAM J. Imaging
Sci., 3(3):492–526, 2010.

Numerical experimentation 31

[13] K. Bredies, K. Kunisch, and T. Valkonen. Properties of l1-tgv2: the one-dimensional
case. J. Math. Anal. Appl., 398(1):438–454, 2013.

[14] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–
145, 2011.

[15] P. L. Combettes and B. C. Vũ. Variable metric forward-backward splitting with appli-
cations to monotone inclusions in duality. Optimization, 63(9):1289–1318, 2014.

[16] L. Condat. A primal-dual splitting method for convex optimization involving Lips-
chitzian, proximable and linear composite terms. J. Optim. Theory Appl., 158(2):460–
479, 2013.

[17] F. Demengel. Fonctions à hessien borné. Annales de l’institut Fourier, 34(2):155–190,
1984.

[18] L.C. Evans and R. Gariepy. Measure theory and fine properties of functions. CRC
Press, 1992.

[19] Y. Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations,
volume 22 of University Lecture Series. AMS, 2001.

[20] S. Osher, A. Sole, and Vese L. Image decomposition and restoration using total varia-
tion minimization and the h1 norm. SIAM Journal on Multiscale Modeling and Simu-
lation, 1-3(349-370), 2003.

[21] S. Osher and L. Vese. Modeling textures with total variation minimization and oscil-
lating patterns in image processing. Journal of Scientific Computing, 19(1-3):553–572,
2003.

[22] S. Osher and L. Vese. Image denoising and decomposition with total variation mini-
mization and oscillatory functions. special issue on mathematics and image analysis. J.
Math. Imaging Vision,, 20(1-2):7–18, 2004.

[23] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259–268, 1992.

[24] P. Weiss, G. Aubert, and L. Blanc-Féraud. E�cient schemes for total variation mini-
mization under constraints in image processing. SIAM Journal on Scientific Comput-
ing, 31(3):2047–2080, 2009.

[25] W. Yin, D. Goldfarb, and S. Osher. A comparison of three total variation based tex-
ture extraction models. J. Vis. Commun. Image, 18:240–252, 2007.

	Second order decomposition model for image processing : numerical experimentation
	1 Introduction
	2 Presentation of the model
	3 Numerical aspects
	3.1 Discretized problem and algorithm
	3.2 Examples
	3.3 Initialization process
	3.4 Convergence
	3.5 Sensitivity with respect to sampling and quantification
	3.6 Sensitivity with respect to parameters

	4 Conclusion

