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INF-CONVOLUTION MODEL FOR IMAGE PROCESSING -

NUMERICAL EXPERIMENTATION

M. BERGOUNIOUX

Abstract. This paper is a companion paper of [4] where a second order image

decomposition model to perform denoising and texture extraction has been stud-

ied. Here we perform some numerical experimentation to make the behavior of the

model as clear as possible. For highly textured images the model gives a two-scale

texture decomposition

Keywords.- Second order total variation, image decomposition, variational method,

inf-convolution, texture extraction

1. Introduction

In [4] we have investigated a inf-convolution type model for texture extraction.

More precisely, we assumed that an image (in L2(Ω)) can be split in three compo-

nents: a smooth (continuous) part v, a cartoon (piecewise constant) part u and

an oscillating part w that should involve noise and/or fine textures. The oscillating

part of the image is included in the remainder term w = ud − u − v, while v is

the smooth part (in BH(Ω)) and u belongs to BV (Ω): we hope u to be piecewise

constant so that its jump set gives the image contours. For highly textured images,

the model provides a two-scale texture decomposition: u can be viewed as a macro-

texture (large scale) whose oscillations are not too large and w is the micro-texture

(mmuch more oscillating) that contains the noise.

We now assume that ud belongs to L2(Ω) and that the image we want to recover

can be decomposed as ud = w+u+v where u, v and w are functions that characterize

different parts of ud. Components belong to different functional spaces: v is the

(smooth) second order part and belongs to BH(Ω), u is a BV (Ω) component and

w ∈ L2(Ω) is the remainder term. We consider the following cost functional defined

on BV (Ω)× BH(Ω):

(1.1) Fλ,µ(u, v) =
1

2
‖ud − u− v‖2L2(Ω) + λTV (u) + µTV 2(v),

where λ, µ > 0. We are looking for a solution to the optimization problem

(Pλ,µ) inf{ Fλ,µ(u, v) | (u, v) ∈ BV (Ω)× BH0(Ω) }

We refer to [4] and the references therein for the different spaces definition.
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We expect v to be the smooth colored part of the image, u to be a BV (Ω)\BH(Ω)

function which derivative is a measure supported by the contours and w := ud −

u− v ∈ L2 is the noise and/or small textures (we shall detail this point later). We

have proved in [4] that problem (Pλ,µ) has at least an optimal solution (u∗, v∗) in

BV (Ω)× BH0(Ω). Moreover the dual problem to (Pλ,µ) writes

(1.2) inf
w∈λK1∩µK2

1

2
‖ud − w‖22.

where where K1 = K1 is the L2-closure of

(1.3) K1 :=
{

ξ = div ϕ | ϕ ∈ C1
c (Ω), ‖ϕ‖∞ ≤ 1

}

.

and and K2 ⊃ K2 with K2 is the L2-closure of

(1.4) K2 :=
{

ξ = div2ψ |ψ ∈ C2
c (Ω,R

d×d), ‖ψ‖∞ ≤ 1
}

.

The unique solution w∗ is the L2-projection of ud on the closed convex set λK1∩µK2:

w∗ = ΠλK1∩µK2
(ud) .

Next we have a relation between the solutions to (Pλ,µ) and the (unique) solution

of the dual problem.

Theorem 1.1. 1. Let w∗ be the (unique) solution to the dual problem (Pλ,µ)
∗:

w∗ = ΠλK1∩µK2
(ud) .

Then there exists (ū, v̄) ∈ BV (Ω)×BH0(Ω) an optimal solution to (Pλ,µ) such that

w∗ = ud − ū− v̄ and w∗ ∈ ∂Φ2
µ(v̄) ∩ ∂Φ

1
λ(ū) .

2. Conversely, if (ū, v̄) ∈ BV (Ω)× BH0(Ω) is any solution to (Pλ,µ) then

(1.5) w̄ = ud − ū− v̄ = ΠλK1∩µK2
(ud) .

Here

Φ1
λ(u) =

{

λTV (u) if u ∈ BV (Ω)

+∞ else.
and Φ2

µ(v) =

{

µTV 2(v) if v ∈ BH0(Ω)

+∞ else.

2. Numerical aspects

2.1. Discretized problem and algorithm. We assume that the image is rect-

angular with size N ×M . We note X := R
N×M ≃ R

NM endowed with the usual

(normalized) inner product and the associated Euclidean norm

(2.6) 〈u, v〉X :=
1

NM

∑

1≤i≤N

∑

1≤j≤M

ui,jvi,j, ‖u‖X :=

√

1

NM

∑

1≤i≤N

∑

1≤j≤M

u2i,j .

We set Y = X ×X. It is classical to define the discrete total variation with finite

difference schemes as following (see for example [2]): the discrete gradient of the

numerical image u ∈ X is ∇u ∈ Y and may be computed by the following forward

scheme for instance:

(2.7) (∇u)i,j =
(

(∇u)1i,j , (∇u)
2
i,j

)

,
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where

(∇u)1i,j =

{

ui+1,j − ui,j if 1 < i < N

0 if i = 1, N,
and (∇u)2i,j =

{

ui,j+1 − ui,j if 1 < j < M

0 if j = 1,M.

Note that the constraint
∂u

∂n
= 0 is involved in the discretization process of the

gradient. Therefore, in a discrete setting, the setsK2 andK2 coincide. The (discrete)

total variation corresponding to Φ1(u) is given by

(2.8) J1(u) =
1

NM

∑

1≤i≤N

∑

1≤j≤M

∥

∥

∥
(∇u)i,j

∥

∥

∥

R2

,

where
∥

∥

∥
(∇u)i,j

∥

∥

∥

R2

=
∥

∥

(

∇u1i,j,∇u
2
i,j

)∥

∥

R2
=

√

(

∇u1i,j
)2

+
(

∇u2i,j
)2
.

The discrete divergence operator -div is the adjoint operator of the gradient operator

∇:

∀(p, u) ∈ Y ×X, 〈−div p, u〉X = 〈p,∇u〉Y .

To define a discrete version of the second order total variation Φ2 we have to

introduce the discrete Hessian operator. For any v ∈ X, the Hessian matrix of v,

denoted Hv is identified to a X4 vector:

(Hv)i,j =
(

(Hv)11i,j, (Hv)
12
i,j, (Hv)

21
i,j, (Hv)

22
i,j

)

.

We refer to [6, 5] for the detailed expressions of these quantities. The discrete second

order total variation corresponding to Φ2(v) writes

(2.9) J2(v) =
1

NM

∑

1≤i≤N

∑

1≤j≤M

‖(Hv)i,j‖R4 ,

with

‖(Hv)i,j‖R4 =
√

(Hv11i,j)
2 + (Hv12i,j)

2 + (Hv21i,j)
2 + (Hv22i,j)

2 .

The discretized problem stands

(2.10) inf
(u,v)∈X×X

Fλ,µ :=
1

2
‖ud − u− v‖2X + λJ1(u) + µJ2(v).

Problem (2.10) has obviously a solution ũ and ṽ that satisfies the following necessary

and sufficient optimality conditions

(2.11a) ũ = ud − ṽ −ΠλK1
(ud − ṽ) ,

(2.11b) ṽ = ud − ũ−ΠµK2
(ud − ũ) ,

where K1 and K2 are the following convex closed subsets :

(2.12a) K1 = {div p | p ∈ X2, ‖pi,j‖R2 ≤ 1 ∀i = 1, . . . , N, j = 1, . . . ,M},

(2.12b) K2 = {H∗p | p ∈ X4, ‖pi,j‖R4 ≤ 1, ∀i = 1, . . . , N, j = 1, . . . ,M},

and ΠKi
denotes the orthogonal projection on Ki. These projections are computed

with a Nesterov-type scheme as in [7]. We refer to [5] for more details. This leads

to the following fixed-point algorithm :
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Algorithme 1

Initialization step. Choose u0, v0, set 0 < α < 1/2 and n = 1.

Iteration. Define the sequences ((un, vn))n as
{

un+1 = un + α (ud − un − vn −ΠλK1
(ud − vn))

vn+1 = vn + α (ud − un − vn −ΠµK2
(ud − un)) .

Stopping test. If max(‖un+1 − un‖L2 , ‖vn+1 − vn‖L2) ≤ ε where ε > 0 is

a prescribed tolerance, or if the iterations number is larger than a prescribed

maximum number itmax, then STOP.

For any α ∈ (0, 1/2), the sequence generated by the algorithm converges to a sta-

tionary point, solution of (2.11) that we generically denote (u∗, v∗) in the sequel.

The tolerance was set to ε = 10−2 so that the stopping criterion is de facto the

maximum number of iterations itmax. In the sequel, we have set itmax = 10 000 for

the 1D case and itmax = 400 for the 2D case.

We do not report on CPU time since all tests have been done with MATLAB c© and

the code is not optimized. A parallelized C++ is version is written that reduces the

computational time significantly.

2.2. Examples. We use 1D and 2D examples.

For the first (1D) example we set s = s0 + s1 + s2 on [0,1] with s0 a white gaussian

noise with standard deviation σ = 0.02 and

s1 =

{

0.4 on [ 3
10
, 6
10
]

0 elsewhere
, s2(x) =

{

0.8 x+ 0.2 on [0, 1
2
]

−1.2 (x− 1) elsewhere.

Figure 2.1. 1D example - 1000 points

The second example is a 2D picture of a butterfly and the third one an highly

textured image (old wall). We used geometrical images as well but we do not report

on them.
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(a) Test 2D - Butterfly (b) Test 2D - Wall

Figure 2.2. 2D examples

We present some results and comments in the next subsections1.

2.3. Initialization process. We have tested many initialization choices for algo-

rithm. Indeed, we have not proved uniqueness (though we conjecture it). So the

computed solution is only a stationary point. As we may have many, we may think

that the initialization process has a significant influence on the generated sequence.

More precisely, we used

• u0 = 0, v0 = ud, that we call initialization (a) in the sequel,

• u0 = ud, v0 = 0 that we call initialization (a’) in the sequel,

• u0 = 0, v0 = 0 : initialization (b),

• randomized initializations around ud mean value.

Initialization (a) (resp. (a’)) provides a stationary pair (u∗, v∗) such that u∗ (resp.

v∗) has null mean value.

Proposition 2.1. Assume u0 = 0 and v0 = ud. Then any solution (u∗, v∗) given by

the algorithm satisfies

∫

Ω

u∗ = 0. Similarly, if u0 = ud and v0 = 0, the pair (u∗, v∗)

given by the algorithm satisfies

∫

Ω

v∗ = 0.

Proof. Though we consider a discrete setting we use a continuous setting notation

(using for example a piecewise affine approximation). We first note that

w ∈ K1 ∪K2 =⇒

∫

Ω

w = 0 .

We prove the first assertion. Assume that u0 = 0 and v0 = ud. It is easy to see by

induction that

(2.13) ∀n ∈ N

∫

Ω

un = 0 and

∫

Ω

(vn − ud) = 0 .

1Complete results (text files, movies, other examples) and MATLAB c© code, are available at

http://maitinebergounioux.net/PagePro/Movies.html
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using

{

un+1 = un + α (ud − un − vn −ΠλK1
(ud − vn))

vn+1 = vn + α (ud − un − vn −ΠµK2
(ud − un)) .

Passing to the limit we get

∫

Ω

u∗ = 0 and

∫

Ω

(v∗ − ud) = 0 .

The second assertion is proved similarly.

Proposition 2.1 yields that the BV - part u∗ (or the BH- part v∗) belongs to the

discrete Meyer space G (see [3]) if we perform the appropriate initialization step.

This means it is an oscillating function. More precisely, choosing u0 = ud, v0 = 0

gives a BH- part that belongs to G. This is not what we want, since the BH- part

should not be oscillating. Therefore, we shall never use such an initialization.

Initializations (a) and (a’) seem to give different results from initialization (b). We

shall see in the sequel that the difference is small if the iteration number is large

enough. Therefore, we think that the initial guess has no influence on the result,

but only on the convergence speed.

We can see on Figure 2.3 (1D example) the oscillating effect of initialization u0 =

0, v0 = ud:

(a) Initialization u0 = 0, v0 = ud (b) Initialization u0 = 0, v0 = 0

Figure 2.3. Example 1D without noise, λ = 10−2, µ = 5 10−2 and

different initializations. Both u∗ and w∗ have null mean value for init

(a). We recover the original decomposition with init (b).

Figure 2.4 and Table 1 gives the computed pairs with initializations (a) (a’) (b)

and a randomized initialization around the mean value of ud.
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Initialization Fλ,µ(u
∗, v∗) ‖w∗‖L2 TV (u∗) TV 2(v∗) Error # it.

λ = 1, µ = 10

u0 = 0, v0 = ud 23.68 1.04 12.70 1.04 2.35 400

u0 = ud, v0 = 0 18.29 1 13.43 0.43 0.73 400

u0 = 0, v0 = 0 20.36 1.03 12.87 0.69 0.89 400

Random 20.39 1.03 12.88 0.69 0.87 400

λ = 2, µ = 0.1

u0 = 0, v0 = ud 1.5414 2.24 e-01 3.64 e-04 15.15 8.48 e-03 22

u0 = ud, v0 = 0 8.0239 2.76 e-01 3.31 13.52 4.35 400

u0 = 0, v0 = 0 3.3335 2.45 e-01 0.92 14.65 3.12 400

Random 3.5384 3.18 e-01 1.02 14.62 3.30 400

λ = 5, µ = 7

u0 = 0, v0 = ud 61.7005 4.22 5.71 3.45 1.67 400

u0 = ud, v0 = 0 62.7803 4.02 7.29 2.60 3.25 400

u0 = 0, v0 = 0 61.6248 4.15 6.34 3.04 1.50 400

Random 61.6331 4.15 6.35 3.04 1.55 400

λ = 7, µ = 7

u0 = 0, v0 = ud 69.6775 5.23 2.29 5.69 9.76 e-01 400

u0 = ud, v0 = 0 72.6262 4.96 4.09 4.51 4.74 400

u0 = 0, v0 = 0 70.2957 5.13 2.97 5.19 2.45 400

Random 70.3114 5.12 2.98 5.18 2.52 400

λ = 7, µ = 9

u0 = 0, v0 = ud 79.7064 5.42 4.10 4.03 1.33 400

u0 = ud, v0 = 0 80.1229 5.18 5.40 3.33 4.09 400

u0 = 0, v0 = 0 79.8224 5.33 4.58 3.72 1.86 400

Random 79.8297 5.33 4.58 3.72 1.89 400

λ = 10, µ = 15

u0 = 0, v0 = ud 116.2130 7.04 3.59 3.69 1.39 400

u0 = ud, v0 = 0 116.9598 6.79 4.33 3.36 4.67 400

u0 = 0, v0 = 0 116.0822 6.95 3.83 3.56 2.02 400

Random 116.0918 6.95 3.84 3.56 2.10 400

Table 1. Comparison of different initializations (Butterfly )- it-

max=400 -The stationary pair is denoted (u∗, v∗) and w∗ = ud−u
∗−v∗.

The blue (grey) lines of Table 1 show the optimal solution, that is the computed

pair whose cost functional value is the lowest. We observed that

• the randomized initialization gives the same result as initialization (b),

• the component w∗ = ud − u∗ − v∗ is always the same, which is consistent

with the theoretical result of uniqueness,
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• the values of the cost functional may be quite close and the computed pairs

quite different: see for example λ = 5, µ = 7 (and figure 2.4),

• initialization (b) gives a pair (ub, vb) such that neither ub nor vb has null

mean value.

(a) u0 = 0, v0 = ud (b) u0 = ud, v0 = 0 (c) u0 = 0, v0 = 0 (d) Random

(e) u0 = 0, v0 = ud (f) u0 = ud, v0 = 0 (g) u0 = 0, v0 = 0 (h) Random

Figure 2.4. BH-part v (first line) and BV -part u (second line) given

by initializations (a), (a’), (b) and random for λ = 5, µ = 7 - Butterfly

example with 400 iterations

In the sequel, (ua, va) denotes the pair given by the algorithm with initialization (a)

and (ub, vb) the one given by the algorithm with initialization (b). Moreover, we set

the signed relative error as

(2.14) δFλ,µ =
Fλ,µ(ua, va)− Fλ,µ(ub, vb)

min(Fλ,µ(ua, va), Fλ,µ(ub, vb))
.
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(a) δFλ,µ(λ, µ)

(b) δFλ,µ(0.1, µ) (red dotted line) - δFλ,µ(λ, 0.1)(blue solid line)

Figure 2.5. Behavior of δFλ,µ for 400 iterations (Butterfly example).

If λ and µ are large enough (λ > 0.1 and µ > 0.1 for example), both

optimal values are very close.

Figure 2.5 shows the behavior of δFλ,µ with respect to λ and µ.
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# it. Fλ,µ(ua, va) Fλ,µ(ub, vb) |δFλ,µ|

50 82.38439 81.69328 8 e-03

100 80.9555 80.9579 3 e-05

200 80.18443 80.35509 2 e-03

400 79.83481 79.94497 1.3 e-03

600 79.73564 79.80224 8 e-04

800 79.68948 79.73411 5.6 e-04

1000 79.66213 79.69571 4.2 e-04

1200 79.64396 79.67121 3.4 e-04

1500 79.62567 79.64659 2.6 e-04

5000 79.5738 79.5718 2.5 e-05

# it. TV (ua) TV (ub) TV (ϕ) TV 2(va) TV 2(vb) TV 2(ϕ) Error (a) Error (b)

50 2.45 5.62 3.57 5.40 3.20 4.05 7.41 7.14

100 3.29 5.31 2.53 4.69 3.33 2.82 4.88 5.03

200 3.85 4.93 1.66 4.23 3.52 1.87 2.87 3.26

400 4.12 4.60 1.03 4.01 3.70 1.18 1.34 1.87

600 4.19 4.47 0.771 3.95 3.77 0.896 1.02 1.32

800 4.22 4.40 0.628 3.93 3.81 0.736 0.855 1.03

1000 4.23 4.37 0.536 3.92 3.83 0.632 0.735 0.845

1200 4.24 4.35 0.470 3.91 3.84 0.556 0.642 0.723

1500 4.24 4.33 0.396 3.90 3.86 0.472 0.535 0.595

5000 4.28 4.26 0.148 3.88 3.89 0.180 0.207 0.208

Table 2. Cost functional, TV and TV 2 for pairs given by initial-

izations (a) and (b) and λ = 7, µ = 9, as the number of iterations

increases. Here ϕ = ub − ua = vb − va and the error is given by the

stopping criterion of Algorithm.

Though Fλ,µ(ua, va) ≃ Fλ,µ(ub, vb) the pairs (ua, va) and (ub, vb) may be very

different. More precisely, we have ub = ua − ϕ and vb = va + ϕ. Though the

computed function ϕk at iteration k is not a constant function (see Figure 2.6), we

infer that ϕk converges to a constant function as the iteration number increases.

Indeed, we have numerically observed (see Table 2) that both TV (ϕ) and TV 2(ϕ)

decreases to 0 as the iteration number increases. Nevertheless, we can perform

only a limited number of iterations. So the computed solutions differ from a (small)

piecewise constant function (see Figure 2.6). In addition, it is numerically confirmed

that wa = ud − ua − va = wb (what was theoretically proved).



Numerical experimentation of inf-convolution image processing model 11

(a) va - init : u0 = 0, v0 = ud (b) ua - init : u0 = 0, v0 = ud

(c) vb - init : u0 = 0, v0 = 0 (d) ub - init : u0 = 0, v0 = 0

(e) Norm of ub gradient (f) wb = wa

(g) ϕ = ub − ua = va − vb (h) Norm of ϕ gradient

Figure 2.6. Difference between the solutions given by initializations (a)

and (b) for λ = 7, µ = 9 - 5000 iterations . ‖ϕ‖2 = 0.1518, TV (ϕ) =

0.1484, TV 2(ϕ) = 0.1803. The function ϕ seems to be piecewise constant

as we see it on the gradient norm.
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2.4. Convergence. We chose α = 0.25 in the fixed point algorithm and we always

observed convergence. We set the maximal number of iterations quite large but we

noticed that the solution is satisfactory with less iterations (400 for 2D case and

1000 for 1D case).

# it. Fλ,µ(ua, va) Fλ,µ(ub, vb) |δFλ,µ|

λ = 1, µ = 10

50 39.132 25.513 5 e-01

100 31.727 23.113 3.7 e-01

200 26.907 21.440 2.5 e-01

400 23.711 20.377 1.6 e-01

600 22.410 19.978 1.2 e-01

800 21.688 19.774 9.6 e-02

λ = 10, µ = 15

50 119.448 117.102 2 e-02

100 117.578 116.601 8.3 e-03

200 116.612 116.257 3 e-03

400 116.215 116.083 1.1 e-03

600 116.106 116.031 6.5 e-04

800 116.052 116.006 4 e-04

λ = 10, µ = 2

50 25.90989 39.586 5.2 e-01

100 25.91003 33.501 2.9 e-01

200 25.91008 29.512 1.4 e-01

400 25.91009 27.558 6.3 e-02

600 25.91009 26.986 4.1 e-02

800 25.91009 26.699 3 e-02

# it. TV (ua) TV (ub) TV (ϕ) TV 2(va) TV 2(vb) TV 2(ϕ) Error (a) Error (b)

λ = 1, µ = 10

50 10.73 12.12 3.98 2.74 1.27 2.19 14.58 6.51

100 11.81 12.51 3.13 1.92 1 1.50 8.30 3.33

200 12.39 12.74 2.47 1.39 0.81 1.09 4.39 1.72

400 12.70 12.87 1.96 1.04 0.69 0.82 2.37 0. 90

600 12.80 12.92 1.70 0.9 0.65 0.70 1.53 0.58

800 12.85 12.94 1.53 0.83 0.63 0.63 1.09 0.42

λ = 10, µ = 15

50 2.59 4.83 2.74 4.42 3.09 3.14 9.04 9.33

100 3.19 4.44 1.85 3.98 3.27 2.14 5.29 6.17

200 3.48 4.07 1.18 3.77 3.45 1.39 2.49 3.77

400 3.59 3.83 0.73 3.69 3.56 0.87 1.39 2.03

600 3.61 3.76 0.55 3.67 3.60 0.67 1.08 1.40

800 3.62 3.72 0.45 3.67 3.62 0.54 0.87 1.07

λ = 10, µ = 2

50 8.937 e-03 1.619 1.619 11.214 9.88 1.80 1.15 e-02 18.18

100 8.951 e-03 8.948 e-01 8.94 e-01 11.214 10.566 9.62 e-01 4.72 e-03 12.92

200 8.956 e-03 4.116 e-01 4.11 e-01 11.214 11.010 3.35 e-01 1.93 e-03 8.92

400 8.957 e-03 1.804 e-01 1.80 e-01 11.214 11.183 6.05 e-02 9.30 e-04 4.48

600 8.957 e-03 1.180 e-01 1.17 e-01 11.214 11.207 1.54 e-02 6.23 e-04 2.54

800 8.957 e-03 8.841 e-02 8.77 e-02 11.214 11.212 6.4 e-03 4.42 e-04 1.77

Table 3. Sensitivity with respect to number of iterations. Here ϕ =

ub − ua = vb − va and the error is given by the stopping criterion of

Algorithm. On can refer to Table 2 as well.
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(a) BV part - λ = 1, µ = 10 (b) BV part - λ = 10, µ = 15 (c) BV part -λ = 10, µ = 2.

In this case u ≃ 0

(d) ϕ - λ = 1, µ = 10 (e) ϕ - λ = 10, µ = 15 (f) ϕ -λ = 10, µ = 2

Figure 2.7. BV component ua and ϕcorresponding to Table 3 - 800 iterations

Figure 2.8 illustrates the generic behavior of the cost-functional Fλ,µ.
2

(a) Init (a) : u0 = 0, v0 = ud (b) Init (b) : u0 = 0, v0 = 0 (c) Zoom 75-100 iterations

Figure 2.8. Behavior of the cost functional for λ = 7, µ = 9, 100

iterations- Dotted (blue) line is initialization (a) and solid (red) line

is initialization (b)

2One can look at http://maitinebergounioux.net/PagePro/Movies.html to see the conver-

gence process.
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(a) BV part u - 800 iterations (b) Absolute difference of BV parts be-

tween it 400 and it 800

(c) BH part v - 800 iterations (d) Absolute difference of BH parts be-

tween it 400 and it 800

(e) L2- part w - 800 iterations (f) Absolute difference of L2- parts be-

tween it 400 and it 800

Figure 2.9. Test 2D - Initialization (b) for λ = 10, µ = 15- Differ-

ence between the computed pairs at iteration 400 and iteration 800.



Numerical experimentation of inf-convolution image processing model 15

2.5. Sensitivity with respect to sampling and quantification. Table 4 and

Figure 2.10 show that the model is robust with respect to sampling. Here, we

have discretized the analogical signal of example 1D with 103, 104 and 105 points

respectively.

λ µ Fλ,µ(ub, vb) ‖wb‖L2 TV (ub) TV 2(vb)

103 points 103 points 103 points 103 points

104 points 104 points 104 points 104 points

105 points 105 points 105 points 105 points

1e -03 1 e-02 6.47 e-06 1.43 e-03 5.01 e-03 4.28 e-05

5.78 e-06 1.47e-03 4.37 e-03 3.19 e-05

5.73 e-06 1.5 e-03 4.34 e-03 3.09 e-05

1e-03 1 4.86 e-05 1.43 e-03 5.01 e-03 4.25 e-05

3.73 e-05 1.47 e-03 4.37 e-03 3.18 e-05

3.63 e-05 1.47 e-03 4.34 e-03 3.09 e-05

1e -02 1e-01 3.27 e-05 5.07 e-03 8.80 e-04 1.10 e-04

2.62 e-05 5.16 e-03 1.81 e-04 1.10 e-04

2.52 e-05 5.24 e-03 7.26 e-05 1.08 e-04

1e -02 1 1.32 e-04 5.07 e-03 8.80 e-04 1.10 e-04

1.26 e-04 5.16 e-03 1.81 e-04 1.10 e-04

1.22 e-04 5.24 e-03 7.26 e-05 1.08 e-04

1e-01 1e-01 1.01 e-04 6.90 e-03 5.43 e-04 2.32 e-04

3.71 e-05 5.53 e-03 8.74 e-05 1.30 e-04

2.73 e-05 5.38 e-03 1.20 e-05 1.16 e-04

Table 4. Test 1D (with noise) - sensitivity with respect to sampling

- Initialization (b) (u0 = v0 = 0) and 10 000 iterations

(a) 103 points

(b) 104 points

Figure 2.10. Test 1D (with noise) - Pair given by initialization (b)

for λ = 0.1, µ = 1, 10 000 iterations and different samplings.
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We now investigate the sensitivity of the model with respect to quantification. Let

ud a data (with values in [0, 255] for example). Let (λ, µ) be chosen parameters and

(uλ,µ, vλ,µ) the corresponding computed pair (with the appropriate initialization).

Let α > 0 and consider the new data αud. This is the case, for example, if we get 16

bits images and convert them to 8 bits : in this case α = (28−1)/(216−1). We may

want to normalize the data as well: in this case α = 1/max(ud). The question is

to know what new parameters (λ̃, µ̃) must be chosen to get uλ̃,µ̃ = αuλ,µ and vλ̃,µ̃ =

αvλ,µ . For any (uλ,µ, vλ,µ) solution to (Pλ,µ), we get

Fλ,µ(uλ,µ, vλ,µ) =
1

2
‖ud − uλ,µ − vλ,µ‖

2 + λTV (uλ,µ) + µTV 2(vλ,µ)

=
1

2α2
‖αud − αuλ,µ − αvλ,µ‖

2 +
λ

α
TV (αuλ,µ) +

µ

α
TV 2(αvλ,µ)

=
1

α2

(

1

2
‖αud − uλ̃,µ̃ − vλ̃,µ̃‖

2 + αλTV (uλ̃,µ̃) + αµTV 2(vλ̃,µ̃)

)

=
1

α2
Fλ̃,µ̃(uλ̃,µ̃, vλ̃,µ̃) with

λ̃ = αλ and µ̃ = αµ.

α 1/255 100

λ = 7, µ = 9 Initialization (a)

‖uαλ,αµ − αuλ,µ‖∞/α 3.0291e-01 3.0291e-01

‖vαλ,αµ − αvλ,µ‖∞/α 3.1291e-01 3.1291e-01

λ = 7, µ = 9 Initialization (b)

‖uαλ,αµ − αuλ,µ‖∞/α 1.8006e-01 1.8006e-01

‖vαλ,αµ − αvλ,µ‖∞/α 1.7924e-01 1.7924e-01

λ = 10, µ = 2 Initialization (a)

‖uαλ,αµ − αuλ,µ‖∞/α 8.0280e-15 8.4421e-15

‖vαλ,αµ − αvλ,µ‖∞/α 1.1324e-13 1.4552e-13

λ = 10, µ = 2 Initialization (b)

‖uαλ,αµ − αuλ,µ‖∞/α 3.9216e-03 4.5475e-14

‖vαλ,αµ − αvλ,µ‖∞/α 1.1324e-13 1.0914e-13

Table 5. Sensitivity with respect to quantification- Initialization (b)

- itmax = 400

2.6. Sensitivity with respect to parameters. As mentioned before the com-

puted stationary pair depends on the initialization guess via the convergence speed.

We consider three cases and we illustrate them on test 2D (Butterfly).
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• If µ << λ, then initialization (a) : u0 = 0 and v0 = ud is the best choice to

make the algorithm converge quickly. So we use this initialization to get the

solution (u∗, v∗). In this case, the BV part is close to 0. However, we note

that if we fix µ then TV (u∗(λ, µ)) decreases to 0 and TV 2(v∗(λ, µ)) increases

to become constant (see Figure 2.11) when λ → +∞. This means that if λ

is large then u∗ is constant. As we know that u∗ has a null mean value, then

u∗ = 0.

(a) ‖w∗‖L2 (b) TV (u∗) (c) TV 2(v∗)

Figure 2.11. Generic L2- norm, TV and TV 2 behavior (µ fixed )

400 iterations - Example 2D (Butterfly).

On can see an example on Figure 2.7 for λ = 10, µ = 2 and Figure 2.12.

(a) L2 part (b) BV part (c) BH part

Figure 2.12. λ = 7, µ = 5 - initialization u0 = 0 and v0 = ud , 400

iterations

• If µ ≃ λ, both initializations seem equivalent. For the Butterfly test, init

(a) remains slightly faster (in this case the minimum value of cost functional

is achieved first) while it is the converse for the Wall test and small values

of λ. Figures 2.13 and 2.14 show the behavior of the cost functional, L2-

norm, TV and TV 2 for both initializations and λ = µ ∈ [0.5, 1, 2, 3 · · · 25].

We report the behavior of cost functional, L2- norm, TV and TV 2 in Table

6
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λ = µ Fλ,λ ‖wa‖2 TV (ua) TV 2(va) Error

0.5 6.3577 1.459 e-03 4.685 7.646 4.13 e-01

1 12.2448 2.655 e-03 4.756 6.853 5.19 e-01

5 52.4043 9.654 e-03 3.020 5.782 5.83 e-01

10 93.2718 1.562 e-02 1.733 5.395 5.59 e-01

13 114.9198 1.835 e-02 1.268 5.237 5.11 e-01

17 141.3794 2.128 e-02 8.506 e-01 5.066 4.78 e-01

21 165.9126 2.357 e-02 5.768 e-01 4.940 4.36 e-01

25 188.8569 2.537 e-02 3.941 e-01 4.840 3.86 e-01

Table 6. Cost functional, L2- norm, TV and TV 2 for λ = µ =

0.5, 1, 2, 3 · · · 25- init (a) - 800 iterations - Butterfly

(a) Cost functional (b) ‖w∗‖L2

(c) TV (u∗) (d) TV 2(v∗)

Figure 2.13. Cost functional, L2- norm, TV and TV 2 for λ = µ =

0.5, 1, 2, 3 · · · 25 - Dotted (blue) line is initialization (a) and solid (red)

line is initialization (b) - 800 iterations - Butterfly test
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(a) TV (u∗) (b) TV 2(v∗)

Figure 2.14. TV and TV 2 for λ = µ = 0.5, 1, 2, 3 · · · 25 - Dotted

(blue) line is initialization (a) and solid (red) line is initialization (b)

- 800 iterations - Wall test

• If λ << µ, then we choose initialization (b) : u0 = 0 and v0 = 0 to get

the solution. The behavior is similar to the case µ < λ: if we fix λ, then

TV (u∗(λ, µ)) increases to a constant value and TV 2(v∗(λ, µ)) converges to

0 as µ → +∞ (see figure 2.15). This means that if µ is large enough then

solution is always the same : v∗ is an affine fonction.

(a) ‖w∗‖L2 (b) TV (u∗) (c) TV 2(v∗)

Figure 2.15. Generic L2- norm, TV and TV 2 behavior - (λ fixed )

400 iterations - Example 2D (Butterfly).

Examples of solutions are given in Figures 2.4, 2.7 and 2.9. We give

another example below on a textured image:
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(a) L2- part λ = 1, µ = 5 (b) L2- part λ = 5, µ = 10 (c) L2- part λ = 10, µ = 20

(d) BV part λ = 1, µ = 5 (e) BV part λ = 5, µ = 10 (f) BV part λ = 10, µ = 20

Figure 2.16. BV and L2 components with λ < µ - 800 iterations -

Wall example

λ µ Fλ,µ(u
∗, v∗) ‖w∗‖L2 TV (u∗) TV 2(v∗)

1 5 21.6334 4.270 e-03 18.453 3.868 e-01

5 10 87.2937 1.759 e-02 10.402 1.413

10 20 152.5461 2.854 e-02 4.922 2.382

Table 7. Wall- example, initialization u0 = 0, v0 = 0 - 800 iterations

3. Conclusion

The model is well adapted to texture extraction. In the case, where the data

is noiseless and/or is not too much textured, the decomposition given par λ - µ

and initialization u0 = v0 = 0, gives a cartoon part which is piecewise constant as

expected. This means that u =
∑

i ui1Γi
where

⋃

i Γi is the contour set. In this case,

the remainder L2 term is the texture and/or noise. The decomposition is robust with

respect to quantification, sampling and is always the same for any µ >> λ, once λ

has been chosen.

In the case where the image is highly textured the model provides a two-scale

decomposition. The TV part represents the macro-texture and the L2 part the

micro-texture and/or noise. The scaling is tuned via the ratio ρ =
λ

µ
.
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The notion of highly textured may be quantified par theG-norm. In our 2D examples,

the butterfly G norm was ≃ 7.71 and the wall one was ≃ 4.92.

Figure 3.17 shows the behavior of the different components with respect to λ and

µ. We have chosen the 1D noiseless case, to see the multi-scale effect on components

u and w when µ < λ (init (a)).

(a) λ = 5 10−3, µ = 10−3- (init (a)) (b) λ = 5 10−3, µ = 10−2- (init (b))

Figure 3.17. Test 1D without noise (1000 points)

Moreover, the initialization process has no influence on the solution (up to a

constant function) but rather on the algorithm speed. The choice has to be made

with respect to the parameters: roughly speaking, if λ < µ we choose u0 = 0, v0 = 0

and if λ ≥ µ we choose u0 = 0, v0 = ud. Finally, we have observed (numerically)

that the L2-component w is unique.

Our next issue is to speed up the algorithm and set an automatic parameter tuning

with respect to data properties (G norm, Signal to Noise Ratio , and so on.) From

the theoretical point of view, we infer that problem (Pλ,µ) has a unique solution (up

to constant functions) but the question is still open.
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