Laurent Gosse 
  
A well-balanced scheme able to cope with hydrodynamic limits for linear kinetic models

Keywords: Discrete kinetic model, hydrodynamic limit, position-dependent equation. 1991 MSC: 65M12, 82C40, 35L03

Well-balanced schemes were introduced to numerically enforce consistency with long-time behavior of the underlying continuous PDE. When applied to linear kinetic models, like the Goldstein-Taylor system, this construction generates discretizations which are inconsistent with the hydrodynamic stiff limit (despite it captures diffusive limits quite well). A numerical hybridization, taking advantage of both time-splitting (TS) and well-balanced (WB) approaches is proposed in order to fix this defect: numerical results show that resulting composite schemes improve rendering of macroscopic fluxes while keeping a correct hydrodynamic stiff limit.

Introduction: loss of consistency in stiff relaxation regime

We are interested in an efficient algorithm for the numerical simulation of the linear system,

∂ t f ± ± ∂ x f ± = ± 1 ε 1 2 + φ(x) f -- 1 2 -φ(x) f + , f ± (t = 0, •) = f ± 0 , (1) 
where 0 ≤ f ± (t, x) ∈ L 1 ∩ L ∞ (R) stand for densities of right/left moving particles and φ ∈ C ∞ c (R) is a smooth, position-dependent function such that φ ∞ ≤ 1 2 . One introduces "macroscopic variables", the density ρ = f + + f -and the flux J = f + -f -, which satisfy,

∂ t ρ + ∂ x J = 0, ∂ t J + ∂ x ρ = 1 ε 2φ(x)ρ -J . (2) 
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When the Knudsen number vanishes, 0 < ε → 0, and for well-prepared initial data, the macroscopic density relaxes toward the position-dependent continuity equation, cf. [START_REF] Natalini | Recent results on hyperbolic relaxation problems[END_REF][START_REF] Nieto | High field limit for the Vlasov-Poisson-Fokker-Planck system[END_REF][START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF],

∂ t ρ + ∂ x (2φ(x)ρ) = 0, ρ(t = 0, •) = f + 0 + f - 0 . (3) 
Different choices of the function φ allow to recover previously studied equations: φ ≡ 0 yields the Goldstein-Taylor model, whereas φ(t, x) = ∂ x ϕ(t, x), ϕ the concentration of a chemo-attractant substance corresponds to Greenberg-Alt's model of chemotaxis dynamics (see [START_REF] Gosse | Asymptotic-Preserving and Well-Balanced scheme for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes[END_REF] and references therein).

For both the aforementioned cases, an interesting strategy for deriving reliable numerical approximations lies in following the "well-balanced canvas": given a space-step ∆x > 0, one proceeds by localizing the "collisions" onto a discrete lattice on the real line, (see e.g. [START_REF] Amadori | Stringent error estimates for one-dimensional, spacedependent 2 × 2 relaxation systems[END_REF][START_REF] Gosse | Computing Qualitatively Correct Approximations of Balance Laws[END_REF])

∂ t f ± ± ∂ x f ± = ± j∈Z ∆x ε 1 2 + φ(x) f -- 1 2 -φ(x) f + δ(x -x j-1 2 ), x j = j∆x.
At each abscissa, a "local scattering center" [START_REF] Glimm | An S-matrix theory for classical nonlinear physics[END_REF] appears and the corresponding Dirac mass induces a discontinuity in f ± : the jump relation is given by the integral curves of the stationary equations of (1), or equivalently of (2). In the particular case where φ ≡ 0, it suffices to mimic the calculations presented in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF] in order to derive them,

2ε∂ x f ± (x) = f --f + , f + (0) = f + L , f -(∆x) = f - R .
The solutions can be expressed by means of a 2 × 2 scattering matrix S,

f + (∆x) f -(0) = S f + (0) f -(∆x) , S = 1 1 + ∆x/2ε 1 ∆x/2ε ∆x/2ε 1 ,
which turns out to be bi-stochastic, thus ensuring preservation of both L ∞ and L 1 norms. Using standard notation, x j = j∆x, t n = n∆t for j, n ∈ Z × N, we set up numerical approximations f ± j,n ≃ f ± (t n , x j ). Accordingly, the well-balanced (WB) Godunov scheme, originally derived in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], rewrites,

f + j,n+1 f - j-1,n+1 = (1 - ∆t ∆x ) f + j,n f - j-1,n + ∆t ∆x S ∆x j-1 2 f + j-1,n f - j,n , (4) 
where S ∆x j-

1 2 ≡ S, (f + j-1,n , f - j,n
) is the "incoming state" at x j-1 2 , and it comes that:

f ± j,n+1 = f ± j,n+1 - ∆t ∆x (f ± j,n -f ± j∓1,n ) ± ∆t 2ε + ∆x (f ∓ j,n -f ± j∓1,n ).
Clearly, such a scheme is inconsistent with the continuous kinetic equation (1) if ε ≪ ∆x (however, it is L 1 -stable because S is stochastic). This comes from the fact that ∆t ε ≫ ∆t ε+∆x if the computational grid becomes too coarse with respect to ε, so the relaxation process is severely weakened. Hence the scheme (4) is reliable as long as ε ≥ O(∆x), e.g. ε ≥ 2∆x. The next section aims at removing this restriction and restoring overall consistency.

A composite scattering/time-splitting (TS) discretization

Hereafter we shall use the shorthand notation, L(x; f ± ) = 1 2 + φ(x) f --1 2 -φ(x) f + . Moreover, for 0 < ε small enough, we are led to define ε WB , ε TS in such a manner that

1 ε = 1 ε WB + 1 ε TS , 0 < ε WB = O(∆x), ε TS = ε • ε WB max(0, ε WB -ε) ∈ (0, +∞]. (5) 
Accordingly, the kinetic model ( 1) is treated by decomposing the collision terms into:

∂ t f ± ∓ L(x; f ± ) ε TS = ∓∂ x f ± ± L(x; f ± ) ε WB . (6) 
The left part of (6), possibly stiff if ε ≪ 1, is intended to be handled by time-splitting; the right part, from which any stiffness was extracted thanks to the ad-hoc choice of parameters, with (4). Our general strategy is to "correct" the lack of consistency in (4) by modifying the "incoming states" at each interface of the computational grid by means of a conventional time-splitting (TS) algorithm. Hence we proceed by, first, building the WB scheme for (1), and second, by indicating how to amend it in order to restore overall consistency.

• In general, one defines a position-dependent 2×2 scattering matrix S ∆x j-1 2

, j ∈ Z, by solving a boundary-value problem in the interval x ∈ (0, ∆x) for the stationary equations,

ε WB ∂ x f ± = L(x j-1 2 ; f ± ), f + (0) = f + L , f -(∆x) = f - R . ( 7 
)
Lemma 1 The scattering matrix S ∆x j-1 2 associated to (7) reads, for φ j-

1 2 = φ(x j-1 2 ), S ∆x j-1 2 = 1 1 2 + φ j-1 2 tanh(φ j-1 2 ∆x ε WB ) 2e e-1 φ j-1 2 1 2 + φ j-1 2 1 2 -φ j-1 2 2 e-1 φ j-1 2 , e = exp 2φ j-1 2 ∆x ε WB .
Being stochastic, it preserves the L 1 -norm:

| f + (∆x)| + | f -(0)| ≤ | f + (0)| + | f -(∆x)|.
Proof. One takes first advantage of flux conservation, ∂ x ( f + -f -) = 0 so f + -f -≡ J, then adds both equations with the notation ρ(x) = f + (x) + f -(x):

ε WB 2φ j-1 2 ∂ x ρ = ρ - J 2φ j-1 2 , ρ(∆x) = e • ρ(0) + (1 -e) • J 2φ j-1 2 .
Simple linear algebra furnishes the value of "outgoing states" f + (∆x), f -(0) in function of "incoming ones" f + (0), f -(∆x), so the expression of S ∆x j-1 2 is deduced. It is stochastic because all its entries are nonnegative, and the sum of its columns' elements equals 1:

0 ≤ sgn φ j-1 2 • (e -1) , 0 ≤ φ j-1 2 tanh(φ j-1 2 ∆x εWB ) = φ j-1 2 • e + 1 e -1 , 2 Lemma 2 If ∆t ≤ ∆x, the scheme (4) with S ∆x j-1 2
given in Lemma 1 is positivity preserving and satisfies

∀n ∈ N, j∈Z ∆x • |f ± j,n+1 | ≤ j∈Z ∆x • |f ± j,n |. ( 8 
)
The proof of Lemma 2 follows by convex combination arguments. The scheme (4) can be used directly to simulate accurately the Cauchy problem for (1) as long as ε ≥ 2∆x, so that ε WB = ε and 1/ε TS = 0. • When ε ≪ ∆x, one needs to complete (4) according to the decomposition (6): the differential equation in time on its left-hand side preserves the macroscopic density,

d dt f ± (t) = ±1 ε TS L(x j-1 2 ; f ± (t)) ⇔ d dt ρ = 0, d dt J = 1 ε TS 2φ(x j-1 2 )ρ -J . (9) 
To fulfill [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], it suffices to apply [START_REF] Nieto | High field limit for the Vlasov-Poisson-Fokker-Planck system[END_REF] to all sets of incoming states, f + j-1,n , f - j,n with t = ∆t: in particular, ρj-1 2 (t) ≡ f + j-1,n + f - j,n . Lemma 3 For any j ∈ Z, ∆t ≥ 0, the modified incoming states deduced from (9) read

f + j-1,n f - j,n = O ∆t j-1 2 f + j-1,n f - j,n , O ∆t j-1 2 = (1-ẽ)   1 2 tanh( ∆t 2ε TS ) + φ j-1 2 1 2 + φ j-1 2 1 2 -φ j-1 2 1 2 tanh( ∆t 2ε TS ) -φ j-1 2   , where ẽ = exp -∆t εTS . The matrix O ∆t j-1 2 is stochastic: | f + j-1,n | + | f - j,n | ≤ |f + j-1,n | + |f - j,n |. Proof.
The system (9) can be easily integrated, thus the expression of O ∆t j-1 2 follows.

Since |φ j-1 2 | ≤ 1 2 , its entries are nonnegative and 1 2 (1 +

1 2 tanh( ∆t 2ε TS ) )(1 -e) = 1. 2 
Relying on these stepping stones, we can now propose our composite scheme for (1):

f + j,n+1 f - j-1,n+1 = (1 - ∆t ∆x ) f + j,n f - j-1,n + ∆t ∆x S ∆x j-1 2 • O ∆t j-1 2 f + j-1,n f - j,n . (10) 
In the context of hydrodynamic limits, which consists in the limiting process passing from systems ( 1)-( 2) to the continuity equation ( 3) as ε → 0, a remarkable property holds:

Lemma 4 Let O ∞ j-1 2 = lim εTS→0 O ∆t j-1 2 , then O ∞ j-1 2
stands for the projection onto the line of slope

( 1 2 + φ j-1 2 , 1 2 -φ j-1 2 ) along (1, -1) 
. Moreover, for any j ∈ Z and ε WB , ∆x > 0,

O ∞ j-1 2 • S ∆x j-1 2 = O ∞ j-1 2 = S ∆x j-1 2 • O ∞ j-1 2 , O ∞ j-1 2 = 1 2 + φ j-1 2 1 2 + φ j-1 2 1 2 -φ j-1 2 1 2 -φ j-1 2 . (11) 
The relation (11) means that if one lets ε → 0 with (for instance) ε WB = 2∆x > 0, then ε TS → 0 by [START_REF] Gosse | Computing Qualitatively Correct Approximations of Balance Laws[END_REF], so S ∆x j-1 2 "cancels itself" out of [START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF]. Indeed, the scattering matrix S ∆x

j-1 2 , restricted to the range of O ∞ j-1 2 is the identity. If φ j-1 2 = 0, the projection is orthogonal. Proof. By straightforward computations, one verifies that (O ∞ j-1 2 ) 2 = O ∞ j-1 2
, and its spectrum is Λ = {0, 1} with corresponding eigenspaces. To prove the left equality in (11) one observes that since S ∆x j-1 2 is stochastic, it must have 1 as an eigenvalue associated to the left-eigenvector [START_REF] Amadori | Stringent error estimates for one-dimensional, spacedependent 2 × 2 relaxation systems[END_REF][START_REF] Amadori | Stringent error estimates for one-dimensional, spacedependent 2 × 2 relaxation systems[END_REF]

: this implies that O ∞ j-1 2 • S ∆x j-1 2 = O ∞ j-1 2
. The last equality is a direct consequence of

1 2 + φ j-1 2 1 2 + φ j-1 2 e+1 e-1 2eφ j-1 2 e -1 + 1 2 -φ j-1 2 = 1 2 +φ j-1 2 , 1 2 -φ j-1 2 1 2 + φ j-1 2 e+1 e-1 1 2 + φ j-1 2 + 2φ j-1 2 e -1 = 1 2 -φ j-1 2 2 Theorem 5 Let 0 ≤ f ± 0 ∈ L 1 ∩ L ∞ (R) and j∈Z ∆x • |f ± j,0 | ≤ f ± 0 L 1 (R)
. Under the CFL restriction ∆t ≤ ∆x and the condition (5) with ε WB = O(∆x) uniformly in ε ≥ 0, the scheme [START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF], based on [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], is positivity-preserving, consistent with the hydrodynamic limit (3) as ε → 0, and generates a sequence of approximations, f ± ∆x (t, •) ∈ L 1 (R) which converges weakly to f ± (t, x), solution of (1), as ∆x → 0. Proof. Since both S ∆x j- 

= f + j,n+1 + f - j,n+1 , ρn j = f + j,n + f - j,n , Jn j+ 1 2 = f + j,n -f - j+1,n
and adding both the equations in [START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF] after having applied (11):

ρ n+1 j = ρn j - ∆t ∆x Jn j+ 1 2 -Jn j-1 2 = ρn j - 2∆t ∆x φ j+ 1 2 • ρn j+ 1 2 -φ j-1 2 • ρn j-1 2 ,
which is a consistent upwind discretization of (3) because the asymptotic fluxes satisfy, Jn

j+ 1 2 = 2φ j+ 1 2 f + j,n + f - j+1,n =f + j,n +f - j+1,n := 2φ j+ 1 2 • ρn j+ 1 2 = 2φ j+ 1 2 • ρ n j+ 1 2 .
Lax's equivalence theorem asks for both the consistency and the stability of ( 10): (1) Consistency is a consequence of Trotter-Kato's formula with the choice ( 5);

(2) Stability is proved by means of a uniform (in both ∆x, ε) L 1 (R) bound. The scheme [START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF] rewrites as a time-splitting scheme, where at time t n = n∆t, the first time-step is

∀j ∈ Z, f + j-1,n f - j,n = O ∆t j-1 2 f + j-1,n f - j,n
, and so

j∈Z ∆x| f ± j,n | ≤ j∈Z ∆x|f ± j,n |,
and the second step is (4), applied to f ± j,n , for which (8) holds uniformly. By induction,

∀n ∈ N, j∈Z ∆x|f ± j,n+1 | ≤ j∈Z ∆x| f ± j,n | ≤ j∈Z ∆x|f ± j,n | ≤ f ± 0 L 1 (R) ,
and so the sequence

f ± ∆x is uniformly bounded in L 1 ([0, T ] × R; R 2
) for any T > 0. By standard arguments, a subsequence converges as ∆x → 0 in the weak-⋆ topology of measures, and by uniqueness of the limit, all the sequence converges.
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Remark 1 It is possible to extend [START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF] in a Strang-splitting fashion, by defining instead,

f + j,n+1 f - j-1,n+1 = O ∆t 2 j-1 2 (1 - ∆t ∆x ) f + j,n f - j-1,n + ∆t ∆x S ∆x j-1 2 • O ∆t 2 j-1 2 f + j-1,n f - j,n , (12) with O ∆t 2 j-1 2 
(inside which ∆t → ∆t 2 ) now acting on both incoming and outgoing states.

3 Several numerical illustrations realized with ε WB = 2∆x

Let a uniform grid be such that ∆t = 0.95∆x, with initial data taken from [START_REF] James | Numerical methods for one-dimensional aggregation equations[END_REF],

f ± (t = 0, x) = exp(-10(x -1.25) 2 ) + 0.8 exp(-20x 2 ) + exp(-10(x + 1) 2 ), x ∈ (- 5 2 , 5 2 ), 
and iterate the marching scheme until T = 9.5 for decreasing values of ε. Results of ( 10) and ( 12) are compared to a cell-centered (second-order) Strang time-splitting scheme for (1).

A static spike emerging within a compressive field

On Fig. 1, we display the outcomes of ( 12), [START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF] and the conventional time-split scheme with φ(x) = -1 2 tanh(5x) and 2 7 points. The velocity field of the limiting continuity equation induces a concentration mechanism, so a spike emerges and it sharpens as ε decreases.

The differences between the schemes appear clearly on J(t, •), which should be as flat as possible. On the contrary, the conventional time-splitting scheme generates a big oscillation (red curve). When ε = 0.1, ε WB = ε (the composite scheme is set up for ε < 2∆x) so J is flat because only (4) is activated. For ε = 0.05, the refined (12) delivers a slightly better macroscopic flux. However, for ε = 10 -4 , both [START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF] and (12) display similar performances.

A position-dependent continuity equation

Here, we refined the computational grid to get 2 8 points and set up a similar benchmark with φ(x) = -0.35 sin(5x) and ∆t = 0.95∆x: Gaussian distributions must now move correctly and then concentrate. The numerical results are qualitatively similar: in particular, the oscillations in the macroscopic fluxes generated by the conventional scheme worsen as ε is decreased. On the contrary, the ones produced by both [START_REF] Perthame | A simple derivation of BV bounds for inhomogeneous relaxation systems[END_REF] and (12) seem to remain nearly the same. For completeness, we display on Fig. 3 the same numerical experiment with a lower CFL number of 0.65: results are still similar, even if the corresponding bigger artificial diffusion degrades the overall performance of every scheme. 

Conclusion and outlook

(1) We presented a seemingly new extension of the so-called "well-balanced" formalism [START_REF] Gosse | Computing Qualitatively Correct Approximations of Balance Laws[END_REF] to rather general two-velocity kinetic models: its main qualities are positivity and total mass preservation together with a numerical consistency with the assiciated hydrodynamic asymptotic regime. This last property isn't verified by the schemes presented in e.g. [START_REF] Gosse | Asymptotic-Preserving and Well-Balanced scheme for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes[END_REF][START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], hence we believe that ( 10) and (12) may realize an optimal compromise. Actually, both Figs. 1 and2 (see also Fig. 3) reveal that our "composite" schemes deliver more accurate approximations of the macroscopic fluxes J(t, •). (2) Another quality of the present approach lies in the fact that it can extend in a rather straightforward manner to kinetic equations with a continuous velocity variable, when approximated in the discrete-ordinates method: thus, the scattering matrices built either from using so-called "Case's elementary solutions" [START_REF] Gosse | Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension[END_REF], or approximately [5, chapter 10], can combine with a time-splitting treatment of the stiff collision term in order to numerically enforce consistency with hydrodynamic regimes. Upon observing that the simple two-stream model (1) rewrites as,

ε ∂ t f ± ± ∂ x f ± = 1 2 ± φ(x) (f + + f -) -f ± , ρ = f + + f -,
let us delineate this hybridization process for a 1 + 1-dimensional kinetic equation like,

ε (∂ t f + v • ∂ x f ) = 1 2 + φ(x, v) 1 -1 f (t, x, v ′ )dv ′ -f, ε > 0, (13) 
where (-1, 1) ∋ v → φ(x, v) is an odd function for any x ∈ R. The WB approach for (13) is carried out in [5, pp. 202-207], and is likely to fail in the same manner as (4) when ε ≪ ∆x. Accordingly one may set up a similar hybridization process by introducing 0 < ε WB , ε TS satisfying (5) in order to split (13) like [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF]. Besides scattering matrices (see [5, p.203]), a time-split process is to incoming states, say at x j-1 2 ,

ε∂ t f + f = 1 2 + φ(x j-1 2 , v) ρ, ρ = 1 0 f (x j-1 , v ′ ) + f (x j , -v ′ )dv ′ .
Thanks to the mass-preserving property, d dt ρ = 0, its exact solution is straightforward and both the schemes ( 10) and ( 12) can be set up in this more complex context. Proving their consistency with the hydrodynamical limit is more delicate, though (see [START_REF] James | Numerical methods for one-dimensional aggregation equations[END_REF]).
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 1 Fig. 1. Macroscopic densities (top) and fluxes (bottom) with ε = 0.1, 0.05, 0.0001 (left to right).

Fig. 2 .

 2 Fig. 2. Macroscopic densities (top) and fluxes (bottom) with ε = 0.05, 0.01, 0.0001 (left to right).
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 3 Fig. 3. Macroscopic fluxes with ∆t = 0.65∆x and ε = 0.05, 0.01, 0.0001 (left to right).