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Abstract

This paper provides a probabilistic proof of the comparison result for viscosity solutions of

path-dependent semilinear PDEs. We consider the notion of viscosity solutions introduced in [8]

which considers as test functions all those smooth processes which are tangent in mean. When

restricted to the Markovian case, this definition induces a larger set of test functions, and reduces

to the notion of stochastic viscosity solutions analyzed in [1, 2]. Our main result takes advantage

of this enlargement of the test functions, and provides an easier proof of comparison. This is most

remarkable in the context of the linear path-dependent heat equation. As a key ingredient for

our methodology, we introduce a notion of punctual differentiation, similar to the corresponding

concept in the standard viscosity solutions [3], and we prove that semimartingales are almost

everywhere punctually differentiable. This smoothness result can be viewed as the counterpart

of the Aleksandroff smoothness result for convex functions. A similar comparison result was

established earlier in [8]. The result of this paper is more general and, more importantly, the

arguments that we develop do not rely on any representation of the solution.
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1 Introduction

This paper provides a purely probabilistic wellposedness result for the semilinear path-dependent

partial differential equation:

−∂tu−
1

2
Tr

[

σt(ω)σ
T
t (ω)∂

2
ωωu

]

− Ft

(

ω, ut(ω), σ
T
t (ω)∂ωut(ω)

)

= 0 on [0, T ), (1.1)

where T > 0 is a given terminal time, ω ∈ Ω is a continuous path from [0, T ] to Rd starting from

the origin, the diffusion coefficient σ is a mapping from [0, T ] × Ω to Rd×d with σT denoting its

transpose, and the nonlinearity F is a mapping from (t, ω, y, z) ∈ [0, T ] × Ω × R × Rd to R. The

unknown process {ut(ω), t ∈ [0, T ]} is required to be continuous in (t, ω). In the smooth case, the

derivatives ∂tu, ∂ωu, and ∂
2
ωωu are defined in accordance with the functional Itô formula introduced

by Dupire [7]. However, as it is shown in the previous literature [8, 10, 11], such a smoothness

requirement is rather exceptional, even in the case of the path-dependent heat equation, that is,

σ = Id and F ≡ 0.

Our objective is to continue the development of the theory of viscosity solutions in this context.

Viscosity solutions in finite dimensional spaces, which are locally compact, were introduced by

Crandall and Lions [5], we refer to [6] and [14] for an overview. Extensions to infinite-dimensional

spaces with special structure have also been established by Lions [18, 19, 20] and Swiech [30].

However, these extensions are not suitable for our purpose due to the two following reasons. First,

the path space Ω is a Banach space when endowed with the L∞−norm, and not a Hilbert space as

assumed in the above literature. Secondly, the adaptedness requirement on the functions u(t, ω) is

a special feature of our problem which is not addressed in the infinite-dimensional PDE literature.

Nonlinear path-dependent PDEs appear in various applications as the stochastic control of non-

Markovian systems [10], and the corresponding stochastic differential games [25]. They are also

intimately related to the backward stochastic differential equations introduced by Pardoux and

Peng [21], and their extension to the second order in [4, 29]. Loosely speaking, backward SDEs can

be viewed as Sobolev solutions of path-dependent PDEs, and our goal is to develop the alternative

notion of viscosity solutions which is well-known to provide a suitable wellposedness and stability

theory in the Markovian case u(t, ω) = u(t, ωt). We also refer to the recent applications in [15] to

establish a representation of the solution of a class of equations (1.1) in terms of branching diffusions,

and to [17] for the small time large deviation results of path-dependent diffusions.

The notion of viscosity solutions studied in this paper, as introduced in [8, 10, 11], consider

smooth test processes which are tangent in mean, with respect to an appropriate class of probability

measures, to the process of interest. This is in contrast with the Crandall and Lions [5] standard

notion of viscosity solutions in finite dimensional spaces where the test functions are tangent in

the pointwise sense. In particular, when restricted to the Markovian case, our notion of viscosity

solutions allows for a larger set of test functions, and in the case of the heat equation (or more

general linear equation) case it reduces to the notion of stochastic viscosity solutions analyzed by

Bayraktar and Sirbu [1, 2]. Consequently, the uniqueness may be easier with our notion, while

existence is more restricted and may become harder. However, it was proved in the previous papers
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[8, 10, 11] that existence still holds true under this notion of viscosity solutions for a large class of

equations. In particular, in the present semilinear case, the solution of backward SDEs provides a

natural probabilistic representation for viscosity solution of path dependent PDEs, and thus extends

the nonlinear Feynman-Kac formula of [22] to path dependent case.

The main contribution of this paper is to provide a probabilistic proof of the comparison result

for the path-dependent equation (1.1) which, in contrast with [8], does not rely on any representation

of the solution. We also observe that the present comparison result is stronger than that of [8] as it

holds in a larger class of processes and for a random and possibly degenerate diffusion coefficient σ

(in [8], only σ = Id is considered). Our proof by-passes completely the delicate and deep Crandall

and Ishii Lemma (see Lemma 3.2 in [6]). In particular, our proof of comparison result for the

path-dependent heat equation is elementary, and does not require any penalization to address (the

standard comparison result for second order PDEs applies to a bounded domain, the extension

to an unbounded domain involves a penalization using the growth conditions). In particular, the

wellposedness of the path-dependent heat equation is a direct consequence of the equivalence between

the viscosity subsolution and the submartingale properties.

Our arguments are inspired from the work of Caffarelli and Cabre [3]. By adapting the notion

of punctual differentiation to our path-dependent framework, we prove an important smoothness

result. Namely, we show that semimartingales are punctually differentiable Leb⊗P−a.e. This result

can be viewed as the analogue of the Aleksandroff regularity result for convex functions. In the

present semilinear case, an important property of our notion of viscosity solutions is that viscosity

subsolutions (resp. supersolutions) are submartingales (resp. supermartingales) up to the addition

of some absolutely continuous process. In particular, viscosity subsolutions and supersolutions are

punctually differentiable Leb⊗P−a.e.

We shall remark that, while the framework of fully nonlinear path dependent PDEs in [10, 11]

covers the random coefficient σ here, their comparison result excludes this case due to their heavy

reliance on the locally uniform smooth approximation of the viscosity solution. The definition of

viscosity solutions here is slightly different from that in [10, 11] by considering even more test

functions. This enlargement of test function class allows us to establish the punctual differentiation

of viscosity solutions, which does not require the smooth approximation to be locally uniform. On a

different perspective, the class of probability measures used to determine the test functions is non-

dominated in [10, 11], consequently the corresponding convergence theorem requires very strong

regularity of the involved processes. It is still unclear how to obtain the punctual differentiation of

viscosity solutions, even for the present semilinear PPDE (1.1), if we use the non-dominated class

of probability measures as in [10, 11].

The rest of the paper is organized as follows. Section 2 introduces the set up of the problem, in

particular the class of probability measures we will use. The notion of viscosity solution is defined in

Section 3. In particular, similar to the Crandall and Lions [5] standard notion of viscosity solutions,

we show that our notion for path dependent PDEs can be formulated equivalently in terms of the

corresponding semijets. Section 4 is devoted to the main result of the paper: the comparison result of
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viscosity solutions of semilinear path dependent PDEs. Then, Section 5 prove briefly the existence of

viscosity solutions by using the wellposedness of corresponding BSDEs. Finally Section 6 completes

the technical proofs.

2 Preliminaries

Throughout this paper let T > 0 be a given finite maturity, Ω := {ω ∈ C([0, T ];Rd) : ω0 = 0} the

set of continuous paths starting from the origin, and Θ := [0, T ]×Ω. We denote by B the canonical

process on Ω, F = {Ft, 0 ≤ t ≤ T } the canonical filtration, T the set of all F-stopping times taking

values in [0, T ], and P0 the Wiener measure on Ω. Moreover, let T + denote the subset of τ ∈ T

taking values in (0, T ], and for h ∈ T , let Th and T +
h

be the subset of τ ∈ T taking values in [0,h]

and (0,h], respectively.

Following Dupire [7], we introduce the following pseudo-distance on Θ:

‖ω‖t := sup
0≤s≤t

|ωs|, d
(

(t, ω), (t′, ω′)
)

:= |t− t′|+ ‖ωt∧ − ω′
t′∧‖T for all (t, ω), (t′, ω′) ∈ Θ.

We say a process valued in some metric space E is in C0(Θ, E) whenever it is continuous with

respect to d. Similarly, L0(Ft, E) and L0(F, E) denote the set of Ft-measurable random variables

and F-progressively measurable processes, respectively. We remark that C0(Θ, E) ⊂ L0(F, E), and

when E = R, we shall omit it in these notations.

For any A ∈ FT , ξ ∈ L0(FT , E), X ∈ L0(F, E), and (t, ω) ∈ [0, T ]× Ω, define:

At,ω := {ω′ ∈ Ω : ω ⊗t ω
′ ∈ A}, ξt,ω(ω′) := ξ(ω ⊗t ω

′), Xt,ω
s (ω′) := X(t+ s, ω ⊗t ω

′)

for all ω′ ∈ Ω, where (ω ⊗t ω
′)s := ωs1[0,t](s) + (ωt + ω′

s−t)1(t,T ](s), 0 ≤ s ≤ T.

Following the standard arguments of monotone class, we have the following simple results.

Lemma 2.1 Let 0 ≤ t ≤ s ≤ T and ω ∈ Ω. Then At,ω ∈ Fs−t for all A ∈ Fs, ξ
t,ω ∈ L0(Fs−t, E)

for all ξ ∈ L0(Fs, E), Xt,ω ∈ L0(F, E) for all X ∈ L0(F, E), and τ t,ω − t ∈ Ts−t for all τ ∈ Ts.

To study the semilinear PPDE (1.1), we need to introduce the diffusion coefficient σ. Throughout

the paper, the following assumption will always be in force.

Assumption 2.2 The diffusion coefficient σ : (t, ω) ∈ Θ → σt(ω) ∈ Rd×d is continuous in t, and

Lipschtiz continuous in ω uniformly in t, i.e.

|σt(ω)− σt(ω
′)| ≤ C‖ω − ω′‖t for all t ∈ [0, T ], ω, ω′ ∈ Ω, for some C ≥ 0;

Remark 2.3 Assumption 2.2 implies that σ is continuous in (t, ω), and thus F−adapted. Also, we

allow the parabolic PPDE (1.1) to be degenerate.

Our paper builds on the following result.
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Lemma 2.4 For any bounded λ ∈ L0(F,Rd), the following SDE has a unique weak solution:

dXt = σ(t,X·)
[

dWt + λt(X·)dt
]

, X0 = 0, (2.1)

where W is a Brownian motion. In particular, if λ = 0, the SDE has a unique strong solution. The

solution will be denoted as Pσ,λ, and Pσ := Pσ,0 when λ = 0.

Proof We first construct the solution by using the Girsanov transformation. First, thanks to the

Lipschitz continuity of σ, let X be the unique (strong) solution of the following SDE

Xσ
t =

∫ t

0

σs(X
σ
· )dBs for all t, P0 − a.s. (2.2)

Denote

Bλ
t := Bt −

∫ t

0

λt(X
σ
· )dt, Pσ,λ := Pλ ◦ (Xσ)−1 (2.3)

where
dPλ

dP0
:= exp

(

∫ T

0

λt(X
σ
· ) · dBt −

1

2

∫ T

0

|λt(X
σ
· )|

2dt
)

.

Then clearly (Bλ, Xσ,Pσ,λ) is a weak solution to SDE (2.1).

For the uniqueness, we follows the arguments in [16] Proposition 5.3.10. Let (W i, X i,Pi), i = 1, 2

be two weak solutions to SDE (2.1), namely W i is a Pi-Brownian motion and

dX i
t = σ(t,X i

· )
[

dW i
t + λt(X

i
· )dt

]

, X i
0 = 0, Pi-a.s.

Denote

W̃ i
t :=

∫ t

0

[dW i
s + λs(X

i
· )ds],

dP̃i

dPi
:=M i

T := exp
(

−

∫ T

0

λt(X
i
· ) · dW

i
t −

1

2

∫ T

0

|λt(X
i
· )|

2dt
)

.

Then W̃ i is a P̃i-Brownian motion, and

X i
t =

∫ t

0

σ(s,X i
· )dW̃

i
s , P̃i-a.s.

By the Lipschitz continuity of σ, the P̃1-distribution of (W̃ 1, X1) is equal to the P̃2-distribution

of (W̃ 2, X2). Note that W i and M i
T are functions of (W̃ i, X i), we see that the P̃1-distribution

of (W̃ 1, X1,W 1,M1
T ) is equal to the P̃2-distribution of (W̃ 2, X2,W 2,M2

T ). Now it follows from

dPi = (M i
T )

−1dP̃i that the P1-distribution of X1 is equal to the P2-distribution of X2.

For any τ ∈ T and ω ∈ Ω, let Pτ,ω be an r.c.p.d. of the probability measure P conditional to Fτ .

Lemma 2.5 Let M be a P-martingale with continuous paths, P-a.s.. Then, for any τ ∈ T we have

P
[

Ω0
τ

]

= 1, where Ω0
τ :=

{

ω :M τ,ω is a Pτ,ω −martingale
}

. (2.4)

Proof By standard approximation arguments, it is sufficient to prove that, for any 0 ≤ t1 < t2 ≤ T

and any sequence 0 ≤ s1 ≤ · · · ≤ sn ≤ t1 such that (s1, · · · , sn) ∈ Qn, it holds that

EPτ,ω[

(M τ,ω
t2

−M
τ,ω
t1

)ϕ(Bs1 , · · · , Bsn)] = 0, for all ϕ ∈ Cb(R
n)

and for all ω ∈ Ωn
τ , for some Ωn

τ such that P[Ωn
τ ] = 1. (2.5)
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Since Cb(R
n) is a separable space, there exists a countable set (ψn

k )k≥1 dense in Cb(R
n). By the

tower property, we may find Ωn
k ⊂ Ω such that

EPτ,ω[

(M τ,ω
t2

−M
τ,ω
t1

)ψn
k (Bs1 , · · · , Bsn)

]

= 0, for all ω ∈ Ωn
k , P[Ωn

k ] = 1.

Then (2.5) holds on Ωn
τ := ∩k≥1Ω

n
k .

For all τ ∈ T and ω ∈ Ω, it is clear that στ,ω satisfies Assumption 2.2. Then, for any bounded

λ ∈ L0(F,Rd), we may define from Lemma 2.4 a probability measure Pστ,ω ,λτ,ω . The next result

compares this probability measure to the r.c.p.d. Pτ,ω
σ,λ.

Proposition 2.6 Let λ ∈ L0(F,Rd) be bounded and τ ∈ T . Then for Pσ,λ-a.e. ω, P
τ,ω
σ,λ = Pστ,ω ,λτ,ω ,

namely E
P
τ,ω

σ,λ [ξ] = EPστ,ω,λτ,ω [ξ], for any bounded ξ ∈ L0(FT−τ(ω)).

Proof First, denote

Mt := Bt −

∫ t

0

(σλ)s(B·)ds, Nt :=MtM
T
t −

∫ t

0

(σσT )s(B·)ds.

By the uniqueness of weak solution of SDE (2.1) we see that a probability measure P is equal to Pσ,λ

if and only if both M and N are P-martingales. Note that M and N are continuous. By Lemma

2.5, for Pσ,λ-a.e. ω, it holds that

M
τ,ω
t = Bt −

∫ t

0

(σλ)τ,ωs (B·)ds, N
τ,ω
t = (MtM

T
t )τ,ωt −

∫ t

0

(σσT )τ,ωs (B·)ds

are P
τ,ω
σ,λ-martingales, which implies that Pτ,ω

σ,λ = Pστ,ω ,λτ,ω .

We now introduce an important family of probability measures on Ω: for L ≥ 0 and (t, ω) ∈ Θ,

Pt,ω
L :=

{

Pσt,ω ,λ : λ ∈ LL(F)
}

where LL(F) := {λ ∈ L0(F) : |λ| ≤ L}, and PL := P0,0
L , (2.6)

and the associated nonlinear expectations

E
t,ω

L := sup
P∈Pt,ω

L

EP, Et,ω
L := inf

P∈Pt,ω

L

EP, and EL := E
0,0

L , EL := E0,0
L . (2.7)

Unlike [9, 10, 11] where mutually singular measures are considered for fully nonlinear PPDEs, here

all measures P ∈ ∪L>0PL are equivalent to Pσ. In particular, for λ ∈ LL(F) and ξ ∈ L0(FT ), we

have, using the notations in (2.2) and (2.3),

EPσ,λ [|ξ|] = EPλ [|ξ(Xσ)|] = EP0 [Mλ
T |ξ(X

σ)|] ≤ C
(

EP0 [|ξ(Xσ)|1+ε]
)

1
1+ε

= C
(

EPσ [|ξ|1+ε]
)

1
1+ε

,

for some constant C = CL,ε. That is,

EL[|ξ|] ≤ CL,ε

(

EPσ [|ξ|1+ε]
)

1
1+ε

. (2.8)

A direct consequence of this is the following convergence theorem, which makes some analysis in

this paper much easier than that in [9, 10, 11].

Proposition 2.7 Assume ξn, ξ ∈ L0(FT ), ξn → ξ in probability Pσ, and supn E
Pσ [|ξn|

1+ε] <∞ for

some ε > 0. Then limn→∞ EL[|ξn − ξ|] = 0 for all L > 0.

6



3 Viscosity solutions of semilinear path dependent PDEs

The objective of this paper is the semilinear path dependent PDEs (1.1), which we rewrite as:

−Lut(ω)− F
(

t, ω, ut(ω), σ
T
t (ω)∂ωut(ω)

)

= 0, (t, ω) ∈ [0, T )× Ω, (3.1)

where Lut(ω) := ∂tut(ω) +
1
2Tr[σt(ω)σ

T
t (ω)∂

2
ωωut(ω)],

and the nonlinearity F : (t, ω, y, z) ∈ Θ×R×Rd → R is F-progressively measurable in all variables.

We shall assume

Assumption 3.1 (i) F is uniformly L0−Lipschitz continuous in (y, z), for some L0 ≥ 0, i.e.

|F (·, y, z)− F (·, y′, z′)| ≤ L0 (|y − y′|+ |z − z′|) for all y, y′ ∈ R, z, z′ ∈ Rd,

(ii) There exists F 0 ∈ C0(Θ) such that |F (·, 0, 0)| ≤ F 0.

3.1 Definition via test functions

In the present semilinear case, we shall use the following notion of smoothness of processes.

Definition 3.2 (Smooth processes) We say that u ∈ C1,2(Θ), if u ∈ C0(Θ,R) and there exist

processes Λ, Z in C0(Θ,R) and C0(Θ,Rd), respectively, such that: for each (t, ω) ∈ Θ,

ut,ωs − ut(ω) =

∫ s

0

Λt,ω
r dr +

∫ s

0

Zt,ω
r · dBr for all s ∈ [0, T − t], Pσt,ω -a.s.

We denote Lut(ω) := Λt(ω), ∂ωut(ω) := Zt(ω).

Remark 3.3 (i) Notice that all measures in ∪L>0P
t,ω
L are equivalent to Pt,ω

σ . Then for u ∈ C1,2(Θ),

by definition the following functional Itô formula in the spirit of Dupire holds:

ut,ωs − ut(ω) =

∫ s

0

(Lu)t,ωr dr +

∫ s

0

(∂ωu)
t,ω
r · dBr, s ∈ [0, T − t], P-a.s. for all P ∈ ∪L>0P

t,ω
L . (3.2)

(ii) Unlike [8, 10, 11] where ∂tu and ∂2ωωu are defined separately, here they appear jointly in

the term ∂tu + 1
2Tr(σσ

T ∂2ωωu), following Dupire’s functinal Itô formula. Since σ is given, for

our purpose we do not need to distinguish the two terms and thus identify Lut(ω) directly with

∂tu+ 1
2Tr(σσ

T ∂2ωωu).

We introduce the sets of test processes for subsolutions and supersolutions:

ALut(ω) :=
{

ϕ ∈ C1,2(Θ) : (ϕ− u)t(ω) = minτ∈Th
E t,ω
L

[

(ϕ− u)t,ωτ

]

for some h ∈ T +
T−t

}

,

ALut(ω) :=
{

ϕ ∈ C1,2(Θ) : (ϕ− u)t(ω) = maxτ∈Th
E
t,ω

L

[

(ϕ− u)t,ωτ

]

for some h ∈ T +
T−t

}

.
(3.3)

The stopping time h implies that the test processes are locally defined at (t, ω), and in particular

the integrability in (3.3) will always be guaranteed. For a test function ϕ ∈ ALut(ω)∪ALut(ω), we

shall refer to a corresponding h as its localizing time. Note that in our definition, a test function

is tangent to u at a point (t, ω) in mean value (under a family of probability measures), which is

different from the corresponding notion in Crandall and Lions [5].
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Definition 3.4 (Viscosity solution of path-dependent PDE) Let u ∈ C0(Θ,R).

(i) u is a PL-viscosity subsolution of (3.1) if for any (t, ω) ∈ [0, T )× Ω:

−Lϕt(ω)− F
(

t, ω, ut(ω), σ
T
t (ω)∂ωϕt(ω)

)

≤ 0 for all ϕ ∈ ALut(ω).

(ii) u is a PL-viscosity supersolution of (3.1) if for any (t, ω) ∈ [0, T )× Ω:

−Lϕt(ω)− F
(

t, ω, ut(ω), σ
T
t (ω)∂ωϕt(ω)

)

≥ 0 for all ϕ ∈ ALut(ω).

(iii) A PL-viscosity solution of (3.1) is both a PL-subsolution and a PL-supersolution.

Remark 3.5 (i) In [10, 11], a larger and non-dominated set PL which consists of mutually singular

probability measures is used. The corresponding sets of test functions APL

L u and A
PL

L u are smaller

there, and consequently a viscosity solution here must be a viscosity solution in the sense of [10], but

not vice versa in general. Therefore, by putting more test functions in this paper, we are helping for

the proof of uniqueness.

(ii) When σ = Id but under the above PL-definition, the wellposedness of the semilinear PPDE

(3.1) is achieved in [10, 11] by using a different approach. However, the general case with random

σ and under PL-definition does not fall into the framework of this paper and does not satisfy the

sufficient conditions for comparison principle in [11], and its wellposedness is still open.

3.2 Equivalent definition via semijets

Following the standard theory of viscosity solutions for PDEs, we may also define viscosity solutions

via semijets. In light of Definition 3.2 and Remark 3.3 (ii), we introduce the linear processes:

Qα,β(t, ω) := αt+ β · ωt, α ∈ R, β ∈ Rd, and (t, ω) ∈ Θ. (3.4)

Definition 3.6 (Semijets) For u ∈ C0(Θ,R), the subjet and superjet of u at (t, ω) are defined as:

J
L
ut(ω) :=

{

(α, β) ∈ R× Rd : Qa,β ∈ ALut(ω)
}

;

J Lut(ω) :=
{

(α, β) ∈ R× Rd : Qa,β ∈ ALut(ω)
}

.

Moreover, cl(J
L
ut(ω)) and cl(J Lut(ω)) denote their closures.

Remark 3.7 In the fully nonlinear case, one has to distinguish ∂tu and ∂2ωωu, and accordingly one

needs to introduce paraboloid processes:

Qα,β,γ(t, ω) := αt+ β · ωt +
1

2
γωt · ωt, α ∈ R, β ∈ Rd, γ ∈ Rd×d and (t, ω) ∈ Θ.

See [26] for more details. In the present semilinear case, one can easily show that the linear processes

(3.4) is sufficient for our purpose.

Proposition 3.8 Let u ∈ C0(Θ,R). Then the following are equivalent: for any (t, ω) ∈ [0, T )× Ω,

(i) u is a PL-viscosity subsolution of the path-dependent PDE (3.1) at (t, ω);

(ii) −α− F
(

t, ω, ut(ω), σ
T
t (ω)β

)

≤ 0 for all (α, β) ∈ J
L
ut(ω);

(iii) −α− F
(

t, ω, ut(ω), σ
T
t (ω)β

)

≤ 0 for all (α, β) ∈ cl(J
L
ut(ω)).
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Proof Since Qα,β ∈ C1,2(Θ,R), clearly (i) implies (ii). Now assume (ii) holds true. For any

(α, β) ∈ cl(J
L
ut(ω)), there exist (αn, βn) ∈ J

L
ut(ω) such that (αn, βn) → (α, β). By (ii) we have

−αn − F
(

t, ω, ut(ω), σ
T
t (ω)βn

)

≤ 0. Sending n→ ∞ we prove (iii).

It remains to prove that (iii) implies (i). Let (t, ω) ∈ [0, T )×Ω and ϕ ∈ ALut(ω) with localizing

time h ∈ T +
T−t. Without loss of generality, we take (t, ω) = (0, 0) and (ϕ− u)0 = 0. Denote

α := Lϕ0, β := ∂ωϕ0. (3.5)

For any ε > 0, since σ ∈ C0(Θ) and ϕ is smooth, by otherwise choosing a smaller h we may assume

|σt − σ0| ≤ 1, |Lϕt − α| ≤ ε, |∂ωϕt − β| ≤ ε, 0 ≤ t ≤ h.

Denote αε := α+ [1 + L(1 + |σ0|)]ε. Then, for all τ ∈ Th,

(Qαε,β − u)0 − EL

[

(Qαε,β − u)τ
]

= EL

[

(u− u0 −Qαε,β)τ
]

≤ EL

[

(u− ϕ)τ
]

+ EL

[

(ϕ−ϕ0−Q
αε,β)τ

]

≤ EL

[

∫ τ

0

(Lϕs −αε)ds+ (∂ωϕs − β) · dBs

]

.

where the last inequality thanks to the fact that ϕ ∈ ALu0. Note that, for any λ ∈ LL(F),

EPσ,λ

[

∫ τ

0

(Lϕs −αε)ds+

∫ τ

0

(∂ωϕs − β) · dBs

]

= EPσ,λ

[

∫ τ

0

(Lϕs − α)ds+

∫ τ

0

(∂ωϕs − β) · σsλsds− [1 + L(1 + |σ0|)]ετ
]

≤ EPσ,λ

[

∫ τ

0

[ε+ εL(1 + |σ0|)]ds− [1 + L(1 + |σ0|)]ετ
]

= 0.

By the arbitrariness of λ ∈ LL(F), we see that

(Qαε,β − u)0 − EL

[

(Qαε,β − u)τ
]

≤ EL

[

∫ τ

0

(Lϕs −αε)ds+ (∂ωϕs − β) · dBs

]

≤ 0.

That is, (αε, β) ∈ J
L
u0 and thus (α, β) ∈ cl(J

L
u0). Now it follows from (iii) that

−α− F (0, 0, u0, σ
T
0 β) ≤ 0,

which, together with (3.5), exactly means (i).

The following simple results will be useful later.

Proposition 3.9 Let u, u′ ∈ C0(Θ,R) and (t, ω) ∈ Θ.

(i) (α, β) ∈ J
L
ut(ω) if and only if (−α,−β) ∈ J L(−u)t(ω).

(ii) If (α, β) ∈ J
L
ut(ω), (α

′, β′) ∈ J
L
u′t(ω), then (α+ α′, β + β′) ∈ J

L
(u + u′)t(ω).

Moreover, the results remain true if we replace the semi-jets with their closures.

Proof (i) is obvious, and we can easily extend the results from semi-jets to their closures. It

remains to prove (ii). Indeed, by definition, there exists a common h ∈ T +
T−t such that

ut(ω) ≥ EL[(u
t,ω −Qα,β)τ ], u′t(ω) ≥ EL[((u

′)t,ω −Qα′,β′

)τ ], ∀τ ∈ Th.

Then, by the sub-linearity of EL we have

(u+ u′)t(ω) ≥ EL

[

(ut,ω −Qα,β)τ + ((u′)t,ω −Qα′,β′

)τ

]

= EL

[

(

[u+ u′]t,ω −Qα+α′,β+β′

)τ

]

.

This means that (α+ α′, β + β′) ∈ J
L
(u+ u′)t(ω).

9



3.3 Punctual differentiability

When u ∈ C1,2(Θ,R), it is immediately seen that (Lut(ω), ∂ωut(ω)) ∈ cl(J
L
ut(ω)) for L ≥ L0.

Moreover, similar to [10], and also combining the arguments in Proposition 3.8, one can easily show

that the following are equivalent:

• u is a classical subsolution at (t, ω);

• u is a viscosity subsolution at (t, ω).

Following Caffarelli and Cabre [3], we introduce a notion of differentiation which is weaker than

the path derivatives and will be crucial for the proof of our main comparison result.

Definition 3.10 Let ϕ ∈ L0(F). We say ϕ is PL-punctually C
1,2 at (t, ω), if

JLϕt(ω) := cl
(

J
L
ϕt(ω)

)

∩ cl
(

J Lϕt(ω)
)

6= ∅.

The following result is straightforward.

Proposition 3.11 Let u ∈ C0(Θ,R).

(i). If u ∈ C1,2(Θ,R), then u is PL-punctually C
1,2 at all (t, ω) with (Lut(ω), ∂ωut(ω)) ∈ JLut(ω);

(ii). If u is PL-punctually C
1,2 at (t, ω) and is a PL-viscosity solution (resp. subsolution, superso-

lution) of the path-dependent PDE (3.1) at (t, ω), then for any (α, β) ∈ JLut(ω) we have

−α− F
(

t, ω, ut(ω), σ
T
t (ω)β

)

= (resp. ≤, ≥) 0.

4 Comparison result

We first introduce some notations for appropriate spaces.

• S
t,ω
2 :=

{

Y ∈ L0(F) : Y is continuous in time, Pσt,ω -a.s. and EPσt,ω
[

sup0≤s≤T−t |Ys|
2
]

<∞
}

;

• S2 := S
0,0
2 ;

• C0
2 (Θ) :=

{

u ∈ C0(Θ) : ut,ω ∈ S
t,ω
2 for all (t, ω) ∈ Θ

}

;

• H2 :=
{

Z ∈ L0(F,Rd) : EPσ
[ ∫ T

0
|σT

s Zs|2ds
]

<∞
}

;

• I2 :=
{

K ∈ S2 : K is increasing, Pσ-a.s. and K0 = 0
}

;

In particular, it follows from Assumption 2.2 and standard estimates for SDEs that σ ∈ C0
2 (Θ).

4.1 Main result

The main focus of this paper is the following comparison result.

Theorem 4.1 Let Assumption 3.1 hold true, and u, v ∈ C0
2 (Θ) be PL-viscosity subsolution and

supersolution, respectively, of PPDE (3.1) for some L ≥ L0. If uT ≤ vT on Ω, then u ≤ v on Θ.
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A similar result in the case of σ = Id was proved in [8]. Their proof is based on the construction of

a regular approximation of the BSDE representation of the solution. Also, the comparison result in

the fully nonlinear case addressed in [11] is crucially based on an approximation by finite-dimensional

partial differential equations induced by conveniently freezing the path-dependency. With this ap-

proximation in hand, the comparison result is proved by building on the corresponding classical

results in the PDE literature.

The main contribution of this paper is to provide an alternative proof which does not rely on any

representation of the solution, and which does not appeal to the corresponding PDE literature. We

also observe that the comparison result of Theorem 4.1 allows for a random and possibly degenerate

diffusion coefficient σ. Our proof of the comparison result is new, and is even relevant in the

Markovian case which reduces to a PDE in a finite-dimensional space. Notice that in the last

context, any test function φ(t, x) which is pointwise tangent from below to a function f(t, x) at

point (t∗, x∗) induces a test process ϕt(ω) := φ(t, ωt) which lies in ALut∗(ω
∗) with ut(ω) := f(t, ωt),

whenever ω∗
t∗ = x∗. In general, the opposite direction is not true, even for a Markovian test

process ϕt(ω) = ϕ(t, ωt) in ALut(ω). This shows that our definition of viscosity solutions involves a

larger class of test function than the standard Crandall-Lions notion of viscosity solutions in finite-

dimensional spaces. Consequently, the comparison result has more chances under our definition, and

we may hope to have an easier proof. We believe that the present proof achieves this goal. This is

definitely true in the linear case which is isolated in Subsection 4.5.

4.2 Martingale representation and optimal stopping problem

In this subsection, we state the results of the martingale representation under Pσ and the related

optimal stopping problem, which is the key stone for our comparison principle of viscosity solutions.

We report the corresponding proofs in Appendix so that the readers may have a clear perspective

of the whole paper.

Theorem 4.2 (Martingale representation) Pσ satisfies the martingale representation property.

That is, for any ξ ∈ L2(FT ,Pσ), there exists unique Z ∈ H2 such that

ξ = EPσ [ξ] +

∫ T

0

Zt · dBt, Pσ-a.s.

Corollary 4.3 Let λ ∈ LL(F) and M ∈ S2. Then M is a Pσ,λ-martingale if and only if there exists

Z ∈ H2 such that

dMt = Zt ·
[

dBt − σtλtdt
]

, Pσ-a.s.

Let h ∈ T + and X ∈ L0(F) be a process with continuous sample paths. Consider the optimal

stopping problem under dominated nonlinear expectation:

Vt(ω) := sup
τ∈T

E
t,ω

L

[

X
t,ω

τ∧(ht,ω−t)

]

, for all (t, ω) ∈ Θ. (4.1)
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Theorem 4.4 (Optimal stopping problem) Let L > 0 and X ∈ L0(F) such that X·∧h ∈ S2.

Then, there exists an F−adapted and Pσ-a.s. continuous process Y satisfying:

(i) there exists τ∗ ∈ Th such that τ∗ = inf{t : Yt = Xt}, Pσ-a.s. and Y0 = EL[Xτ∗ ];

(ii) for all τ ∈ Th, we have Yτ = Vτ , Pσ−a.s.; in particular, Y0 = V0;

(iii) there exist P∗ ∈ PL, P
∗-martingale M starting from 0, and K ∈ I2 such that

Y = Y0 +M −K and
∫

(Y −X)dK = 0, Pσ − a.s.

Definition 4.5 (Snell envelop) The process Y introduced in Theorem 4.4 is called a Snell envelop

of the stopped process X·∧h, and denote Snell(X·∧h) := Y . The stopping time τ∗ ∈ Th is called an

optimal stopping rule.

4.3 Pathwise semimartingales

In this subsection, let u ∈ L0(F) such that all the (nonlinear) expectations involved below exist. Sim-

ilar to standard semimartingale under a fixed probability measure P, we say u is an EL-submartingale

(resp. supermartingale) if, for any t and any τ ∈ T such that τ ≥ t,

ut ≤ (resp. ≥) EL[uτ |Ft] := ess−sup
P∈PL

EP[uτ |Ft], Pσ-a.s. (4.2)

Notice that viscosity solutions are pathwise defined. We extend the above notion in a pathwise

manner.

Definition 4.6 (i) We say u is a pathwise Pσ-submartingale (resp. supermartingale) if

ut(ω) ≤ (resp. ≥) EPσt,ω [ut,ωτ ] for any (t, ω) ∈ Θ and τ ∈ TT−t.

(ii) We say u is a pathwise EL-submartingale (resp. supermartingale) if

ut(ω) ≤ (resp. ≥) E
t,ω

L [ut,ωτ ] for any (t, ω) ∈ Θ and τ ∈ TT−t.

Remark 4.7 By Proposition 2.6 and definition of r.c.p.d., it is clear that a pathwise Pσ-submartingale

(resp. supermartingale) is a Pσ-submartingale (resp. supermartingale).

Proposition 4.8 Assume u ∈ S2 is a pathwise EL-submartingale. Then,

(i). u is an EL-submartingale;

(ii). there exists P∗ ∈ PL such that u is a P∗-submartingale.

4.4 A fundamental lemma

The following result shows how to find a point of tangency in mean. This replaces the local com-

pactness argument in the standard Crandall-Lions theory of viscosity solutions.

Lemma 4.9 Assume u ∈ L0(F) satsfying u·∧h ∈ S2 and u0 > EL[uh] for some h ∈ T +. Then there

exists ω∗ ∈ Ω and t∗ < h(ω∗) such that 0 ∈ ALut∗(ω
∗).
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Proof Define the optimal stopping problem V by (4.1) with X := u. Let τ∗ ∈ Th be the optimal

stopping rule. Since by Theorem 4.4 (i) and (ii) we have

EL[uτ∗ ] = V0 ≥ u0 > EL[uh] and Pσ

[

uτ∗ = Vτ∗

]

= 1,

and it follows that Pσ

[

uτ∗ = Vτ∗ , τ∗ < h
]

> 0, then there exists ω∗ ∈ Ω such that t∗ := τ∗(ω∗) <

h(ω∗) and ut∗(ω
∗) = Vt∗(ω

∗). By the definition of V and ALu, this means that (t∗, ω∗) is the desired

point.

As a direct application of the lemma above, we obtain the comparison result for the heat equation

in the next subsection.

4.5 Comparison result for the heat equation

In this subsection, we consider equations with nonlinearity F = 0, i.e.

−Lu(t, ω) = 0 t < T, ω ∈ Ω. (4.3)

Our objective is to provide an easy proof of the comparison result of Theorem 4.1 which requires

standard tools from stochastic analysis. For simplicity, we specialize the comparison Theorem 4.1 to

the case L = 0, and call the corresponding viscosity solution as Pσ-viscosity solution. We emphasize

that the set of test processes is the largest possible with L = 0.

Theorem 4.10 For a process u ∈ C0
2 (Θ), the following are equivalent:

(i) u is a pathwise Pσ-submartingale (resp. supermartingale);

(ii) u is Pσ-viscosity subsolution (resp. supersolution) of the path-dependent heat equation (4.3).

Proof (i) =⇒ (ii): Assume to the contrary that, for some (t, ω) ∈ [0, T )×Ω and ϕ ∈ A0ut(ω) with

localizing time h ∈ T +, −c := Lϕt(ω) < 0. Without loss of generality, we assume that (t, ω) = (0, 0).

Note that

(ϕ− u)0 ≤ EPσ
[

(ϕ − u)τ
]

for all τ ∈ Th.

Denote τ := inf{t : Lϕt ≥ − c
2}∧h ∈ T +. Then, by (ii), we obtain the following desired contradiction:

0 ≥ u0 − EPσ
[

uτ
]

≥ ϕ0 − EPσ
[

ϕτ

]

= EPσ

[

−

∫ τ

0

Lϕsds
]

≥
c

2
EPσ [τ ] > 0.

(ii) =⇒ (i): First, denote uεt (ω) := ut(ω) + εt. It is easy to verify that uε is a Pσ-viscosity

subsolution to the following equation:

−Luεt (ω) + ε ≤ 0.

We now show that uε is a pathwsie Pσ-submartingale. Suppose to the contrary that there exists

a point (t, ω) at which the supermartingale property fails, and set (t, ω) = (0, 0) without loss of

generality. Then, there exists a stopping time h ∈ T +
T such that uε0 > EPσ [uεh]. By Lemma 4.9, there
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exists (t∗, ω∗) such that 0 ∈ A0u
ε
t∗(ω

∗), and it follows from the Pσ-viscosity subsolution property of

uε that ε ≤ 0, which is the required contradiction.

Hence, uε is a pathwise Pσ-submartingale, namely ut(ω) + εt ≤ EPσt,ω

[ut,ωτ + ε(τ + t)] for all

τ ∈ TT−t. Send ε→ 0, we obtain immediately that u is a a pathwise Pσ-submartingale.

Theorem 4.10 leads immediately to the comparison result.

Theorem 4.11 Let u, v ∈ C0
2 (Θ) be Pσ-viscosity subsolution and Pσ-viscosity supersolution, respec-

tively, of path dependent heat equation (4.3). If uT ≤ vT on Ω, then u ≤ v on Θ.

Remark 4.12 By Theorem 4.10 we see that our notion of Pσ−viscosity solution reduces to the

notion of stochastic viscosity solution introduced by Bayraktar and Sirbu [1, 2] in the Markovian

case.

Remark 4.13 (i) Theorem 4.10 also provides the unique solution of the heat equation. Indeed

it implies that a pathwise Pσ-martingale is a viscosity solution. Since the final value is fixed by

the boundary condition ξ, we are naturally lead to the candidate solution u(t, ω) := EPσt,ω
[

ξt,ω
]

,

(t, ω) ∈ Θ. Therefore, if this process is in C0
2 (Θ), it is the unique viscosity solution of the heat

equation.

(ii) For the heat equation, we can in fact prove the comparison principle without requiring the

continuity (in ω) of the viscosity semi-solutions.

4.6 Partial comparison

We next return to the general semilinear PPDE (3.1). The following partial comparison result, as

in [8] and [10], is a crucial step for our proof of the comparison result.

Proposition 4.14 In the setting of Theorem 4.1, if in addition v ∈ C1,2(Θ), then u ≤ v on Θ.

Proof We report the proof from [8] for completeness. First, by possibly transforming the problem

to the comparison of ũt := eλtut and ṽt := eλtvt, it follows from the Lipschitz property of the

nonlinearity F in y that we may assume without generality that F is decreasing in y.

Suppose to the contrary that c := (u − v)t(ω) > 0 at some point (t, ω) ∈ [0, T ) × Ω. Without

loss of generality assume (t, ω) = (0, 0). Let c0 := c
2T , and define Xs := (u − v)+s + c0s, s ∈ [0, T ].

Clearly X ∈ C0
2 (Θ). Since (u− v)T ≤ 0, it follows that X0 > EL[XT ]. By Lemma 4.9, we may find

a point (t∗, ω∗) such that t < T and 0 ∈ ALXt∗(ω
∗). In particular, this implies that

−(u− v)+t∗(ω
∗)− c0t

∗ ≤ EL

[

−
{

(u − v)+
}t∗,ω∗

T−t∗
− c0T

]

= −c0T,

and thus (u− v)+t∗(ω
∗) ≥ c0(T − t∗) > 0. Therefore, (u− v)+t∗(ω

∗) = (u− v)t∗(ω
∗) > 0. Then, since

(u− v)+ ≥ u− v, we deduce from 0 ∈ ALXt∗(ω
∗) that

(ϕ− u)t∗(ω
∗) ≤ EL

[

(ϕ− u)t
∗,ω∗

τ

]

for all τ ∈ TT−t∗ , where ϕs(ω) := vs(ω)− c0s.
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Since v ∈ C1,2(Θ), this means that ϕ ∈ ALut∗(ω
∗). Note that Lϕ = Lv− c0 and ∂ωϕ = ∂ωv. Then,

since u is a viscosity subsolution and v is a classical supersolution, we deduce that

0 ≥ {−Lϕ− F (., u, σT∂ωϕ)}(t
∗, ω∗)

= c0 + {−Lv − F (., u, σT∂ωv)}(t
∗, ω∗)

≥ c0 + {F (., v, σT∂ωv)− F (., u, σT ∂ωv)}(t
∗, ω∗) ≥ c0,

where the last inequality follows from the non-increase of F in y and the fact that ut∗(ω
∗) ≥ vt∗(ω

∗).

Since c0 > 0, this is the required contradiction.

4.7 Punctual differentiability of viscosity semi-solutions

We first extend part of Theorem 4.10 to this case.

Lemma 4.15 Let Assumption 3.1 hold, and for some L ≥ L0, u ∈ C0
2 (Θ) be an L-subsolution of

PPDE (3.1). Then, the process û := u+
∫ .

0(L0|us|+ F 0
s + 1)ds is a pathwise EL-submartingale.

Proof Suppose to the contrary that ût(ω) > E
t,ω

L [ût,ωh ] for some (t, ω) ∈ [0, T )×Ω and h ∈ T +
T−t.

Then, it follows from Lemma 4.9 that there exist ω∗ ∈ Ω and t∗ ∈ [t, t + h(ω∗)) such that 0 ∈

ALût∗(ω
∗), that is, there exists h′ ∈ T +

T−t∗ such that

−ût∗(ω
∗) ≤ Et∗,ω∗

L

[

− ût
∗,ω∗

τ

]

for all τ ∈ Th′ .

Rewriting it we have

−ut∗(ω
∗) ≤ Et∗,ω∗

L

[

ϕτ − ut
∗,ω∗

τ

]

for all τ ∈ Th′ , where ϕt := −

∫ t

0

(

L0|us|+ (F 0)s + 1
)

ds.

Clearly ϕ ∈ C1,2(Θ) with Lϕt∗(ω
∗) = −L0|ut∗(ω∗)| − F 0

t∗(ω
∗) − 1 and ∂ωϕt∗(ω

∗) = 0. Then the

above inequality implies that ϕ ∈ ALut∗(ω
∗). Now by the viscosity subsolution property of u and

Assumption 3.1, we have

0 ≥ −Lϕt∗(ω
∗)− Ft∗(ω

∗, ut∗(ω
∗), σT

t∗(ω
∗)∂ωϕt∗(ω

∗))

= L0|ut∗(ω
∗)|+ F 0

t∗(ω
∗) + 1− Ft∗(ω

∗, ut∗(ω
∗), 0) ≥ F 0

t∗(ω
∗) + 1− Ft∗(ω

∗, 0, 0) ≥ 1,

contradiction.

Unlike the heat equation case, the above property and the corresponding statement for a viscosity

supersolution v does not lead to the comparison principle directly. Our main idea is the following

punctual differentiability of u.

Proposition 4.16 Assume u is a Pσ−semimartingale with decomposition: dut = Zt · dBt + dAt,

where Z ∈ H2 and A ∈ L0(F) is continuous and has finite variation, Pσ-a.s. Then there exist a

Borel set Tu ⊂ [0, T ] and Ωu
t ∈ Ft for each t ∈ Tu such that, for any L > 0,

Leb(Tu) = T, Pσ(Ω
u
t ) = 1, and u is PL-punctually C

1,2 at (t, ω) for all t ∈ Tu, ω ∈ Ωu
t . (4.4)
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Proof Denote

ζt := lim
0↓h∈Q

1

h

∫ t+h

t

|σT
s Zs − σT

t Zt|ds, Ȧ
+
t := lim

0↓h∈Q

1

h
[At+h −At], Ȧ

−
t := lim

0↓h∈Q

1

h
[At+h −At].

Note that the processes ζ, Ȧ+, and Ȧ−
t are F+-measurable (with possible values∞ and −∞). Denote

Ω0 :=
{

ω ∈ Ω :
∫ T

0 |σT
t Zt(ω)|dt <∞, and A is continuous and has finite variation on [0, T ]

}

;

Θ0 :=
{

(t, ω) ∈ [0, T )× Ω : ζt(ω) = 0, Ȧ+
t (ω) = Ȧ−

t (ω) ∈ R

}

∈ B
(

[0, T ]
)

×FT ,
(4.5)

Then Pσ(Ω0) = 1, and, by the Lebesgue differentiation theorem (see e.g. [27] Theorem 7.7, p. 139),

Leb
[

t : (t, ω) ∈ Θ0

]

= T for all ω ∈ Ω0.

Applying Fubini Theorem there exists Tu ⊂ [0, T ] such that

Leb[Tu] = T and Pσ[Ω
1
t ] = 1 for all t ∈ Tu, where Ω1

t := {ω ∈ Ω : (t, ω) ∈ Θ0}. (4.6)

Note that Ω1
t ∈ Ft+ ⊂ F∗

t , thanks to Proposition 6.2 in Appendix. Moreover, for any t ∈ Tu, by

Proposition 2.6 one can easily see that there exists Ω2
t ∈ Ft such that

Pσ[Ω
2
t ] = 1 and dut,ωs = Zt,ω

s · dBs + dAt,ω
s , 0 ≤ s ≤ T − t, Pσt,ω -a.s. for all ω ∈ Ω2

t . (4.7)

Now define Ωt := Ω1
t ∩Ω2

t ∩ Ω0 ∈ F∗
t for all t ∈ Tu, then we may find Ωu

t ⊂ Ωt such that

Ωu
t ∈ Ft, Pσ[Ω

u
t ] = 1, for all t ∈ Tu. (4.8)

Define Ȧt(ω) := Ȧ+
t (ω) = Ȧ−

t (ω) for (t, ω) ∈ Θ0. We claim that (Ȧt(ω), Zt(ω)) ∈ JLut(ω) for all

t ∈ Tu, ω ∈ Ωu
t and L > 0. Without loss of generality, we shall only show that

(Ȧt(ω) + ε, Zt(ω)) ∈ J
L
ut(ω) for any ε > 0. (4.9)

Indeed, fix t ∈ Tu and ω ∈ Ωu
t . First, since A(ω) is continuous, we have

lim
h↓0

1

h

∫ t+h

t

|σT
s Zs(ω)− σT

t Zt(ω)|ds = 0, lim
h↓0

1

h
[At+h(ω)−At(ω)] = Ȧt(ω).

Next, set δ := ε
2L(1+|Zt(ω)| . By Lemma 6.4 in Appendix, there exists h ∈ TT−t such that

h = inf
{

s > 0 :
∫ s

0 |(σTZ)t,ωr − (σTZ)t(ω)|dr ≥ δs, or |σt,ω
s − σt(ω)| ≥ δ,

or At,ω
s −At(ω) ≥ (Ȧt(ω) +

ε
2 )s

}

∧ (T − t), Pσt,ω -a.s.
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By (4.5) we see that h > 0 and thus h ∈ T +
T−t. For any λ ∈ LL(F) and τ ∈ Th, by (4.7) we have

EPσt,ω,λ

[

ut,ωτ −QȦt(ω)+ε,Zt(ω)
τ

]

− ut(ω)

= EPσt,ω,λ

[

ut,ωτ − u
t,ω
0 − (Ȧt(ω) + ε)τ − Zt(ω) ·Bτ

]

= EPσt,ω,λ

[

∫ τ

0

[Zt,ω
s − Zt(ω)] · dBs + (At,ω

τ −A
t,ω
0 )− (Ȧt(ω) + ε)τ

]

= EPσt,ω,λ

[

∫ τ

0

[Zt,ω
s − Z

t,ω
0 ] · (σt,ω

s λs)ds+ (At,ω
τ −A

t,ω
0 )− (Ȧt(ω) + ε)τ

]

≤ EPσt,ω,λ

[

L

∫ τ

0

|(σTZ)t,ωs − (σTZ)t(ω)|ds+ L|Zt(ω)|

∫ τ

0

|σt,ω
s − σt(ω)|ds

+(At,ω
τ −A

t,ω
0 )− (Ȧt(ω) + ε)τ

]

≤ EPσt,ω,λ

[

Lδτ + L|Zt(ω)|δτ + (Ȧt(ω) +
ε

2
)τ − (Ȧt(ω) + ε)τ

]

= 0,

Then (4.9) follows from the arbitrariness of λ and τ .

4.8 Comparison result for general semilinear PPDEs

We are now ready for the key step for the proof of Theorem 4.1. We observe that this statement is

an adaptation of the approach of Caffarelli and Cabre [3] to the comparison in the context of the

standard Crandall-Lions theory of viscosity solutions in finite dimensional spaces. See their Theorem

5.3 p45.

Proposition 4.17 Let Assumption 3.1 hold true, and u, v ∈ C0
2 (Θ) be PL-viscosity subsolution and

supersolution, respectively, of PPDE (3.1) for some L ≥ L0. Then, w := u − v is an L-viscosity

subsolution of

−Lw(t, ω)− L|wt(ω)| − L|σT
t (ω)∂ωwt(ω)| ≤ 0. (4.10)

Before we prove this proposition, we use it to complete the proof of Theorem 4.1.

Proof of Theorem 4.1 By Proposition 4.17, functional u − v is a PL−viscosity subsolution of

PPDE (4.10). Clearly, 0 is a classical supersolution of the same equation. Since (u − v)T ≤ 0, we

conclude from the partial comparison Proposition 4.14 that u− v ≤ 0 on Θ.

Proof of Proposition 4.17 Without loss of generality, we only check the viscosity subsolution

property at (t, ω) = (0, 0). For an arbitrary (α, β) ∈ J
L
w0, we want to show that

−α− L|w0| − L|σT
0 β| ≤ 0. (4.11)

1. By definition, there exists h ∈ T + such that

w0 = max
τ∈Th

EL

[

(w −Qα,β)τ
]

.

Fix δ > 0. By otherwise choosing a smaller h, we may assume without loss of generality that

|ϕt − ϕ0| ≤ δ for ϕ = B, σ, u, v. (4.12)
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Recall Definition 4.5 and introduce the processes

X := w −Qα+δ,β and Y := Snell(X·∧h).

Clearly, since δ > 0,

EL [Xh] < w0 = X0 ≤ Y0 and Yh = Xh, Pσ-a.s. (4.13)

Then, it follows from (4.13) and Theorem 4.4 (iii) that there exists P∗ ∈ PL and K ∈ I2 such that

0 > EL [Yh − Y0] ≥ EP∗

[Yh − Y0] = −EP∗

[Kh] = −EP∗

[
∫

h

0

1{Yt=Xt}dKt

]

.

We shall prove in Step 3 below that

K is absolutely continuous, Pσ − a.s. (4.14)

Then, denoting by K̇ the derivative of K and noticing that P∗ is equivalent to Pσ, we deduce from

the previous inequalities that:

EP∗

[
∫ h

0

1{Yt=Xt}K̇tdt

]

> 0 and thus Leb⊗ Pσ

[

t < h, Yt = Xt

]

> 0. (4.15)

Moreover, combining Lemma 4.15, Remark 4.7, and Proposition 4.8, we see that û, and hence

u, is a Pσ-semimartingale. Then by Proposition 4.16, there exist measurable sets Tu ⊂ [0, T ] and

Ωu
t ∈ Ft for each t ∈ Tu such that (4.4) holds. Similarly, we may find Tv and Ωv

t such that (4.4)

holds for v as well. Then (4.15) leads to:

Leb⊗ Pσ

[

t ∈ [0,h) ∩ Tu ∩ Tv, Yt = Xt

]

> 0,

and thus there exists

t∗ ∈ Tv ∩ Tu such that Pσ

[

t∗ < h, Yt∗ = Xt∗
]

> 0,

which implies further that, recalling the V defined in (4.1) and Theorem 4.4 (i),

Pσ

[

Ωu
t∗ ∩ Ωv

t∗ ∩ {t∗ < h, Yt∗ = Xt∗} ∩ {Yt∗ = Vt∗}
]

> 0.

Therefore, there exists ω∗ ∈ Ω such that

both u and v are PL-punctually C
1,2 at (t∗, ω∗),

t∗ < h(ω∗) and Xt∗(ω
∗) = supτ∈T E

t∗,ω∗

L

[

X
t∗,ω∗

τ∧(ht∗,ω∗−t∗)

]

.
(4.16)

2. Let (αu, βu) ∈ JLu(t
∗, ω∗) ⊂ cl(JLut∗(ω

∗)) and (αv, βv) ∈ JLv(t
∗, ω∗) ⊂ cl(JLvt∗(ω

∗)). Then

(αu − δ, βu) ∈ JLut∗(ω
∗) and (αv + δ, βv) ∈ J

L
v(t∗, ω∗). Apply Proposition 3.9, we have

(α′, β′) ∈ J LXt∗(ω
∗), where α′ := αu − αv − α− 3δ, β′ := βu − βv − β. (4.17)
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Choose λ ∈ LL(F) such that (σT )t
∗,ω∗

β′ · λ = L|(σT )t
∗,ω∗

β′|. Then, for any ε > 0, letting h
′ ≤

h
t∗,ω∗

− t∗ be a common localizing time satisfying |σt∗,ω∗

t − σt∗(ω
∗)| ≤ ε for 0 ≤ t ≤ h

′, we have

Xt∗(ω
∗) ≤ EL

[

X
t∗,ω∗

h′ −Q
α′,β′

h′

]

≤ E
P
σt∗,ω∗

,λ

[

X
t∗,ω∗

h′ −Q
α′,β′

h′

]

= E
P
σt∗,ω∗

,λ

[

X
t∗,ω∗

h′ − α′
h
′ −

∫

h
′

0

L|(σT )t
∗,ω∗

t β′|dt
]

≤ E
t∗,ω∗

L [Xt∗,ω∗

h′ ]− (α′ + L|σT
t∗(ω

∗)β′| − Lε|β′|)EP
σt∗,ω∗

,λ [h′].

This, together with the optimality in (4.16), implies that α′+L|σT
t∗(ω

∗)β′|−Lε|β′| ≤ 0. Since ε > 0

is arbitrary, we obtain

α′ + L|σT
t∗(ω

∗)β′| ≤ 0.

Moreover, applying Proposition 3.8, the semi-viscosity properties of u and v lead to

−αu − Ft∗(ω
∗, ut∗(ω

∗), σT
t∗(ω

∗)βu) ≤ 0, −αv − F (t∗(ω
∗, vt∗(ω

∗), σT
t∗(ω

∗)βv) ≥ 0.

Then, recalling (4.17) and by (4.12),

0 ≤ αu + Ft∗(ω
∗, ut∗(ω

∗), σT
t∗(ω

∗)βu)− αv − Ft∗(ω
∗, vt∗(ω

∗), σT
t∗(ω

∗)βv)− α′ − L|σT
t∗(ω

∗)β′|

≤ α+ 3δ + L|wt∗(ω
∗)|+ L|σT

t∗(ω
∗)β| ≤ α+ L|w0|+ L|σT

0 β|+ (3 + L+ L|β|)δ.

Now send δ → 0, we obtain (4.11).

3. It remains to prove (4.14). By Proposition 4.15 and Remark 4.7, we know the process û is an EL-

submartingale. Then it follows from Proposition 4.8 and Corollary 4.3 that there exist λu ∈ LL(F)

and Ku ∈ I2 such that

dût = Zu
t · (dBt − σtλ

u
t dt) + dKu

t , Pσ-a.s.

This implies

dut = Zu
t · dBt − (σtλ

u
t · Zu

t − L0|ut| − F 0
t − 1)dt+ dKu

t , Pσ-a.s.

Similarly, for some λv ∈ LL(F) and K
v ∈ I2,

dvt = Zv
t · dBt + (−σtλ

v
t · Z

v
t + L0|vt|+ F 0

t + 1)dt− dKv
t , Pσ-a.s.

Thus, with certain appropriately defined processes ZX , σX , and the λ∗ corresponding to P∗,

dXt = ZX
t · (dBt − σtλ

∗
t dt)− σX

t dt+ d(Ku
t +Kv

t ), Pσ-a.s. (4.18)

Now for any 0 ≤ s ≤ t ≤ T , define τs := inf{t ≥ s ∧ h : Xt = Yt}. Recalling Theorem 4.4 (iii),

we have Kτs = Ks∧h, Pσ-a.s. Then, by (4.18) we have

EP∗

[

Kt∧h −Ks∧h

∣

∣

∣
Fs∧h

]

= EP∗

[

Kt∧h −Kτs

∣

∣

∣
Fs∧h

]

= EP∗

[

Yτs − Yt∧h

∣

∣

∣
Fs∧h

]

≤ EP∗

[

Xτs −Xt∧h

∣

∣

∣
Fs∧h

]

= EP∗

[

∫ t∧h

τs
(σX

r dr − dKu
r − dKv

r )
∣

∣

∣
Fs∧h

]

≤ EP∗

[

∫ t∧h

s∧h
|σX

r |dr
∣

∣

∣
Fs∧h

]

.

This implies that dKt ≤ |σX
t |dt, P∗-a.s. and hence also Pσ-a.s.
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5 Existence

To construct a viscosity solution to a semilinear path-dependent PDE, we need to introduce BSDEs.

Now for any (t, ω) ∈ Θ, τ ∈ TT−t, and ξ ∈ L2(Fτ ,Pσt,ω ), consider the following BSDE under Pσt,ω :

Ys = ξ +

∫ τ

s

F t,ω
r (B·, Yr, (σ

T )t,ωr Zr)dr −

∫ τ

s

Zr · dBr, 0 ≤ s ≤ τ,Pσt,ω -a.s. (5.1)

By Assumption 3.1 and Theorem 4.2, additionally assuming that

EPσt,ω

[

∫ T−t

0

F t,ω
s (B, 0, 0)2ds

]

<∞ for all (t, ω) ∈ Θ,

one may easily prove by standard arguments that the above BSDE admits a unique F-measurable

solution, denoted as (Yt,ω(τ, ξ),Zt,ω(τ, ξ)). Now, fix ξ ∈ L0(FT ) such that ξt,ω ∈ L2(FT−t,Pσt,ω )

for any (t, ω) ∈ Θ, define

u(t, ω) := Yt,ω
0 (T − t, ξt,ω). (5.2)

Theorem 5.1 Let Assumption 3.1 hold true. Assume F is continuous in t and u ∈ C0
2 (Θ). Then

u is an L-viscosity solution of PPDE (3.1) for any L ≥ L0.

Proof Since u ∈ C0
2 (Θ), together with standard arguments, (5.2) implies the dynamic program-

ming principle: given (t, ω) ∈ Θ and τ ∈ TT−t,

u(t, ω) = Yt,ω
t (τ, ut,ωτ ). (5.3)

Without loss of generality, we check only the viscosity subsolution property at (0, 0). Assume

not, then there exists ϕ ∈ ALu0 with localizing time h such that −c := Lϕ0 + F0(u0, σ
T
0 ∂ωϕ0) < 0.

By continuity there exists τ ∈ T +
h such that Lϕt + Ft(ut, σ

T
t ∂ωϕt) ≤ − c

2 for 0 ≤ t ≤ τ . Note that

ut = Y0,0
t (τ, uτ ) and denote Zt := Z0,0(τ, uτ ). Then, by (5.3) and the functional Itô formula (3.2),

[ϕ− u]τ − [ϕ− u]0 =

∫ τ

0

[Lϕt + Ft(ut, σ
T
t Zt)]dt+

∫ τ

0

[∂ωϕt − Zt] · dBt

≤

∫ τ

0

[−
c

2
+ Ft(ut, σ

T
t Zt)− Ft(ut, σ

T
t ∂ωϕt)]dt+

∫ τ

0

[∂ωϕt − Zt] · dBt

=

∫ τ

0

[

−
c

2
− [∂ωϕt − Zt] · σtλt

]

dt+

∫ τ

0

[∂ωϕt − Zt] · dBt, Pσ-a.s.

where λ ∈ LL0
(F). Note that Pσ,λ and Pσ are equivalent. This implies

[ϕ− u]τ − [ϕ− u]0 ≤ −
c

2
τ +

∫ τ

0

[∂ωϕt − Zt] · [dBt − σtλtdt], Pσ,λ-a.s.

Thus, noting that L ≥ L0 and that dBt − σtλtdt is a Pσ,λ-martingale,

[ϕ− u]0 ≥ EPσ,λ

[

[ϕ− u]τ +
c

2
τ
]

> EPσ,λ

[

[ϕ− u]τ

]

≥ EL

[

[ϕ− u]τ

]

,

contradicting with the fact that ϕ ∈ ALu0.

The following proposition gives a sufficient condition so that u ∈ C0
2 (Θ). The proof follows from

standard BSDE estimates, and thus is omitted.

Proposition 5.2 If F and ξ are both uniformly continuous in ω and F is continuous in t, then

u ∈ C0
2 (Θ).
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6 Appendix

6.1 Martingale representation

We start with a simple lemma. Recall (2.2) and denote X := Xσ for notational simplicity.

Lemma 6.1 For any η ∈ L1(FX
T ,P0), we have EP0 [η|FX

t ] = EP0 [η|Ft], P0-a.s.

Proof Denote Gt := σ{Bs − Bt : s ≥ t}. Since X is a strong solution, we see that FX
t ⊂ Ft and

FX
T ⊂ FX

t ∨ Gt. In particular, FX
t and Ft are independent of Gt under P0. Then,

EP0 [1E1E′ |FX
t ] = 1EP0[E

′] = EP0 [1E1E′ |Ft], for any E ∈ FX
t , E

′ ∈ Gt.

Now the result follows from the standard argument of monotone class theorem.

We next establish the martingale representation property for Pσ.

Proof of Theorem 4.2 By standard approximation arguments, we may assume without loss of

generality that ξ is Lipschitz continuous in ω. Denote

u(t, ω) := EPσt,ω [ξt,ω] = EP0

[

ξt,ω(Xt,ω)
]

, where Xt,ω
s =

∫ s

0

σt,ω
r (Xt,ω

· )dBr , P0-a.s.

Since σ is also Lipschitz continuous in ω, one can easily show that u is uniformly Lipschitz continuous

in ω and, by Proposition 2.6 with λ = 0, u is a Pσ-martingale.

We proceed the rest of the proof in three steps.

1. We first assume σ is a constant matrix and show that the above Z exists and is bounded.

Indeed, by standard approximation again, we may assume ξ = g(Bt1 , · · · , Btn) for some 0 < t1 <

· · · < tn ≤ T and smooth function g. Then one can easily see that u(t, ω) = v(t, Bt1 , · · · , Bti , Bt),

ti ≤ t < ti+1, for some smooth function v. Applying Itô’s formula we obtain the representation

with Zt = Dv(t, Bt1 , · · · , Bti , Bt), where Dv is the gradient in terms of the last variable Bt. It

is straightforward to check that Dv is bounded by the Lipschitz constant of ξ, which implies the

boundedness of Z.

2. We now prove the general case. Denote ξ̃ := ξ(X·), ũ := u(X·), and σ̃ := σ(X·). It follows

from Lemma 6.1 that ũ is a (P0,F)-martingale. By the standard martingale representation theorem

under P0, there exists Z̃ such that EP0

[ ∫ T

0 |Z̃t|2dt
]

<∞ and dũt = Z̃t · dBt, P0-a.s. We claim that

Z̃ = σ̃T ζ for some ζ ∈ L0(F,Rd). (6.1)

Then

dũt = ζt · dXt and thus d〈ũ, X〉t = σ̃tσ̃
T
t ζtdt, P0-a.s.

Rewrite σ = Pσ∗Q, where P , Q are orthogonal matrices and σ∗ = diag[a1, · · · , ad] is a diagonal

matrix. Denote P̃ := P (X), and similarly for other terms. Since 〈ũ, X〉 ∈ L0(FX), we see that
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σ̃σ̃T ζ = P̃ (σ̃∗)2P̃T ζ ∈ L0(FX), and thus (σ̃∗)2P̃T ζ ∈ L0(FX). Denote P̃T ζ := [ζ1, · · · , ζd]T , and let

ζ′ be determined by P̃T ζ′ := [ζ11{ã1 6=0}, · · · , ζd1{ãd 6=0}]
T . Then one can easily check that

• σ̃∗P̃T ζ′ = [ã1ζ11{ã1 6=0}, · · · , ãdζd1{ãd 6=0}]
T = σ̃∗P̃T ζ and thus σ̃ζ′ = σ̃ζ;

• ã2i ζi1{ãi 6=0} ∈ L0(FX), then ζi1{ãi 6=0} ∈ L0(FX), thus P̃T ζ′ ∈ L0(FX) and hence ζ′ ∈ L0(FX).

The second property above implies that ζ′ = Z(X) for some Z ∈ L0(F). Then it follows from the

first property that

dũt = ζ′t · dXt, P0-a.s. and thus dut = Zt · dBt, Pσ-a.s.

which is the desired representation.

3. It remains to prove the claim (6.1). Consider the decomposition Z̃ = σ̃T ζ + η, where σ̃η = 0,

and let us prove that η = 0, P0-a.s. For this purpose, let n > 0, h := T
n
, ti := ih, i = 0, · · · , n, and

denote η̄i := h−1EP0

[ ∫ ti+1

ti
ηsds|Fti

]

, σ̄i := h−1EP0

[ ∫ ti+1

ti
σ̃sds|Fti

]

, i = 0, . . . , n− 1. Then,

EP0

[

∫ T

0

|ηt|
2dt

]

= EP0

[

∫ T

0

Z̃t · ηtdt
]

=

n−1
∑

i=0

EP0

[

∫ ti+1

ti

Z̃t · η̄idt
]

+Rn
1 ,

where Rn
1 −→ 0 as n→ ∞. Denoting Bt

s := Bs −Bt, it follows from the Itô isometry that

EP0

[

∫ T

0

|ηt|
2dt

]

=
n−1
∑

i=0

EP0

[

η̄i · B
ti
ti+1

∫ ti+1

ti

Z̃t · dBt

]

+Rn
1

=
n−1
∑

i=0

EP0

[

(

ũti+1
− ũti

)

η̄i ·B
ti
ti+1

]

+Rn
1

=
n−1
∑

i=0

EP0

[

(

uti+1
(X)− uti(X)

)

η̄i · B
ti
ti+1

]

+Rn
1

=
n−1
∑

i=0

EP0

[

(

uti+1
(X ⊗ti σ̄iB

ti)− EP0 [uti+1
(X ⊗ti σ̄iB

ti)|Fti ]
)

η̄i ·B
ti
ti+1

]

+Rn
2 ,

where we used the fact that Bti
ti+1

and Fti are P0-independent. By the uniform Lipschitz continuity

of u, we see that Rn
2 −→ 0 as n → ∞. We further decompose η̄i = σ̄T

i εi + η̂i, where σ̄iη̂ = 0. Note

that, conditionally on Fti , σ̄iB
ti and η̂i · B

ti
ti+1

are P0-independetnt. Then

EP0

[

∫ T

0
|ηt|2dt

]

= Rn
2 +

∑n
i=1 r

n
i ,

where rni := EP0

[

(

uti+1
(X ⊗ti σ̄iB

ti)− EP0 [uti+1
(X ⊗ti σ̄iB

ti)|Fti ]
)

σ̄T
i εi · B

ti
ti+1

]

.

We now analyze rni . By Step 1, there exists γ bounded by the Lipschitz constant of uti+1
(in

terms of ω) such that

uti+1
(X ⊗ti σ̄iB

ti)− EP0 [uti+1
(X ⊗ti σ̄iB

ti)|Fti ] =

∫ ti+1

ti

γt · σ̄idB
ti
t .

Then

|rni | =
∣

∣

∣
EP0

[

∫ ti+1

ti

γtdt · σ̄iσ̄
T
i εi

]∣

∣

∣
=

∣

∣

∣
EP0

[

∫ ti+1

ti

γtdt · σ̄iη̄i
]∣

∣

∣
≤ ChEP0

[

|σ̄iη̄i|
]

.
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Since σ̃η = 0, then

0 = EP0

[

∫ ti+1

ti

σ̃tηtdt
∣

∣

∣
Fti

]

= σ̄iη̄i + EP0

[

∫ ti+1

ti

(

[σ̃t − σ̄i]ηt + σ̄i[ηt − η̄i]
)

dt
∣

∣

∣
Fti

]

.

Thus, noting that σ ∈ C0
2 (Θ) ⊂ S2 and EP0

[ ∫ T

0 |ηt|2dt
]

<∞,

n
∑

i=1

|rni ≤ C

n
∑

i=1

EP0

[

∫ ti+1

ti

∣

∣[σ̃t − σ̄i]ηt + σ̄i[ηt − η̄i]
∣

∣dt
]

≤ C
(

n
∑

i=1

EP0

[

∫ ti+1

ti

[|σ̃t − σ̄i|
2 + |ηt − η̄i|

2]dt
)

1
2

→ 0,

as n→ ∞. This implies that EP0

[

∫ T

0 |ηt|
2dt

]

= 0 and thus proves (6.1).

6.2 Some measurability issues

As a preparation for the nonlinear optimal stopping problem which will be studied in Section 6.3,

we investigate a subtle but crucial measurability issue here. Recall that F is the natural filtration

generated by B. Denote:

F∗ := Pσ-augmentation of F and T ∗ := the set of F∗-stopping times. (6.2)

We start with the Blumenthal 0-1 law under Pσ.

Proposition 6.2 (Blumenthal’s 0-1 law) Under Assumption 2.2, for any bounded ξ ∈ Ft+,

EPσ [ξ|Ft] = ξ, Pσ-a.s. Consequently, the augmented filtration F∗ is right continuous.

Proof Denote again that X := Xσ and ξ̃ := ξ(X). Clearly ξ̃ ∈ Ft+, and by the Blumenthal 0-1

law under P0, we have EP0 [ξ̃|Ft] = ξ̃, P0-a.s. Since ξ̃ ∈ L1(FX
T ,P0), Applying Lemma 6.1 we see

that EP0 [ξ̃|FX
t ] = ξ̃, P0-a.s. which exactly means EPσ [ξ|Ft] = ξ, P-a.s.

Follow the arguments in [12], we have

Proposition 6.3 Let τ ∈ T ∗ be previsible, namely there exist τn ∈ T ∗ such that τn < τ and τn ↑ τ .

Then there exists τ̄ ∈ T such that τ̄ = τ , Pσ-a.s.

Proof Denote by F+ := {F+
t }0≤t≤T the right filtration. For each n ≥ 1 and r ∈ Q∩ [0, T ], denote

En
r := {τn < r} ∈ F∗

r . Then there exists Ẽn
r ∈ Fr such that Ẽn

r ⊂ En
r and Pσ(E

n
r \Ẽ

n
r ) = 0. Note

that En
r is decreasing in n and increasing in r, without loss of generality we may assume that Ẽn

r

has the same monotonicity. Define

τ̃n := inf{r ∈ Q ∩ [0, T ] : ω ∈ Ẽn
r } ∧ T, τ̃ := lim

n→∞
τ̃n.

One can easily check that τ̃n and τ̃ are F+-stopping times, τ̃n ↑ τ̃ , and Pσ(τ̃ = τ) = 1. To construct

the desired F-stopping time, we modify τ̃n and τ̃ as follows.

τ̄n :=
(

τ̃n1{τ̃n<τ̃} + T1{τ̃n=τ̃}

)

∧ (T −
1

n
), τ̄ := lim

n→∞
τ̄n.
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It is clear that τ̄n are also F+-stopping times, τ̄n ↑ τ̄ , τ̄ ≥ τ̃ , and Pσ(τ̄ = τ) = 1. Moreover, for each

n, on {τ̃n < τ̃} we have τ̄n = τ̃n ∧ (T − 1
n
) < τ̃ ≤ τ̄ ; and on {τ̃n = τ̃}, we have τ̃m = τ̃ for all m ≥ n,

thus τ̄m = T − 1
m
, τ̄ = T , and therefore τ̄n = T − 1

n
< τ̄ . So in both cases we have τ̄n < τ̄ . Then

{τ̄ ≤ t} = ∩n≥1{τ̄n < t} ∈ Ft, for all t ≤ T.

That is, τ̄ is an F-stopping time.

Lemma 6.4 Assume X ∈ L0(F) is continuous (in t), Pσ-a.s. Then there exists τ ∈ T such that

τ = inf{t : Xt = 0} ∧ T , Pσ-a.s.

Proof If X0 = 0, then τ := 0 satisfies all the requirement. We thus assume X0 6= 0. Set

E := {ω : X(ω) is continuous on [0, T ]} and X̂ := X1E + 1Ec . Then X̂ ∈ L0(F∗) is continuous for

all ω and X̂0 6= 0. Denote τ̂ := inf{t : X̂t = 0}∧T ∈ T ∗ and τ̂n := inf{t : |X̂t| ≤
1
n
}∧ (T − 1

n
) ∈ T ∗.

Clearly τ̂n < τ̂ and τ̂n ↑ τ̂ . By Proposition 6.3, there exists τ ∈ T such that τ̂ = τ , Pσ-a.s. Note

that τ = inf{t : Xt = 0}∧T on {τ̂ = τ}∩E. Since Pσ[τ̂ = τ ] = Pσ[E] = 1, this concludes the proof.

6.3 Optimal stopping under EL

The next result is a BSDE characterization of the nonlinear expectation EL, which extends the

g-expectation of Peng [23] to general σ.

Proposition 6.5 Let ξ ∈ L2(FT ,Pσ) and τ ∈ T .

(i) For any λ ∈ L0(F) bounded, EP
τ,ω

σ,λ [ξτ,ω] = Y λ
τ (ω) for Pσ-a.e. ω, where

Y λ
t = ξ +

∫ T

t

Zs · σsλsds−

∫ T

t

Zs · dBs, Pσ-a.s.

(ii) For any L > 0, E
τ,ω

L [ξτ,ω] = Yτ (ω) for Pσ-a.e. ω, where

Yt = ξ +

∫ T

t

L|σT
s Zs|ds−

∫ T

t

Zs · dBs, Pσ-a.s.

Proof (i). The result follows directly from the definition of Pσ,λ and Proposition 2.6.

(ii). Following Proposition 2.6, for Pσ-a.e. ω, we have Y
τ,ω
t = Ỹt, 0 ≤ t ≤ T̃ := T − τ(ω), Pστ,ω -a.s.

where Ỹ is the solution to the following shifted BSDE:

Ỹt = ξτ,ω +

∫ T̃

t

L|(στ,ω)Ts Z̃s|ds−

∫ T̃

t

Z̃s · dBs, 0 ≤ t ≤ T̃ , Pστ,ω -a.s.

Clearly, we have Ỹ0 = E
τ,ω

L [ξτ,ω], and therefore, Yτ (ω) = E
τ,ω

L [ξτ,ω], Pσ-a.s.

As an application of Proposition 6.5, we study the optimal stopping problem under EL via

reflected BSDE under Pσ:






Yt = Xh +

∫

h

t

L|σT
s Zs|ds−

∫

h

t

Zs · dBs +Kh −Kt;

Y ≥ X, (Yt −Xt)dKt = 0;

0 ≤ t ≤ h, Pσ-a.s. (6.3)
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Here the component K of the solution triplet (Y, Z,K) is by definition nondecreasing with K0 = 0.

Given the martingale representation Theorem 4.2, it follows from standard arguments (see e.g. [13])

that (6.3) has a unique solution (Y, Z,K) ∈ S2 ×H2 × I2, restricted on [0,h].

We are now ready to establish the nonlinear Snell envelope theory.

Proof of Theorem 4.4 (i) Since X and Y are continuous, Pσ-a.s., applying Lemma 6.4 we

have τ∗ ∈ T such that τ∗ = inf{t : Yt = Xt} ∧ h, Pσ-a.s. Moreover, since Yh = Xh, it is clear that

Yτ∗ = Xτ∗ , Pσ-a.s. To see the optimality of τ∗, we first note that Y > X in [0, τ∗). Then it follows

from the minimum condition in (6.3) that K = 0 in [0, τ∗). Thus RBSDE (6.3) becomes a standard

BSDE on [0, τ∗]. Now it follows from Proposition 6.5 (ii) that Y0 = EL[Yτ∗ ] = EL[Xτ∗ ].

(ii) We first show that V0 = Y0. For any τ ∈ Th, by Proposition 6.5 (ii) EL[Xτ ] = Y τ
0 , where

Y τ
t = Xτ +

∫ τ

t

L|σT
s Z

τ
s |ds−

∫ τ

t

Zτ
s · dBs, 0 ≤ t ≤ τ, Pσ-a.s.

Note that Xτ ≤ Yτ , it follows from the comparison principle of BSDEs that Y τ
0 ≤ Y0. Then V0 ≤ Y0.

On the other hand, by (i) we have Y0 = EL[Xτ∗ ] ≤ V0. So Y0 = V0.

For the general case, following Proposition 2.6, for any τ ∈ Th and Pσ-a.e. ω, we have Y
τ,ω
t = Ỹt,

0 ≤ t ≤ h̃ := h
τ,ω − τ(ω), Pστ,ω -a.s. where Ỹ is the solution to the following shifted RBSDE:











Ỹt = X
τ,ω

h̃
+

∫

h̃

t

L|(στ,ω)Ts Z̃s|ds−

∫

h̃

t

Z̃s · dBs + K̃h̃ − K̃t;

Ỹ ≥ Xτ,ω, (Ỹt −X
τ,ω
t )dK̃t = 0;

0 ≤ t ≤ h̃, Pστ,ω -a.s.

Then the above arguments (for t = 0) imply that Vτ (ω) = Ỹ0, and therefore, Vτ = Yτ , Pσ-a.s.

(iii) We take P∗ := Pσ,λ∗ , where λ∗ is so that (λ∗)TσTZ = L|σTZ| holds. Then the desired result

follows.

We remark that the optimal stopping problem here relies on the convergence Proposition 2.7

implicitly, more precisely, the wellposedness of RBSDE (6.3) relies on the dominated convergence

theorem under Pσ. In [9] the class PL is non-dominated and we do not have this type of convergence

theorem. Consequently, the optimal stopping problem in [9] is technically much more involved than

here. We also remark that a more direct proof, without involving RBSDEs, can be found in [26].

Also as an application of RBSDE, we may prove Proposition 4.8.

Proof of Proposition 4.8 (i). For any τ ∈ T such that τ ≥ t. Consider the BSDE:

Ys = uτ +

∫ τ

s

L|σT
r Zr|dr −

∫ τ

s

Zr · dBr, 0 ≤ s ≤ τ, Pσ-a.s.

One may easily show that Yt = EL

[

uτ
∣

∣Ft

]

, Pσ-a.s. By (ii) of Proposition 6.5, we have Yt(ω) =

E
t,ω

L

[

u
t,ω
τ t,ω

]

for Pσ-a.e. ω. Since u is a pathwise EL-submartingale and τ t,ω ∈ TT−t, we obtain that

ut(ω) ≤ E
t,ω

L

[

u
t,ω
τ t,ω

]

= EL

[

uτ
∣

∣Ft

]

(ω), Pσ-a.s.

Therefore, u is an EL-submartingale.
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(ii). Consider the following RBSDE with upper barrier:










Yt = uT +

∫ T

t

L|σT
s Zs|ds−

∫ T

t

Zs · dBs −KT +Kt;

Yt ≤ ut, (ut − Yt)dKt = 0;

0 ≤ t ≤ T,Pσ-a.s.

Similar to Theorem 4.4, one can show that Yt = ess−infτ∈T ,τ≥t EL[uτ |Ft], Pσ-a.s. Since u is an

EL-submartingale, we get EL[uτ |Ft] ≥ ut, Pσ-a.s. for all τ ∈ TT−t, and thus Y ≥ u. On the

other hand, by definition Y ≤ u. Hence, u = Y . Further, take P∗ := Pσ,λ∗ , where λ∗ is so that

(λ∗)TσTZ = L|σTZ| holds. Then the desired result follows.
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