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Abstract. This work provides a mathematical analysis of a thermo-diffusive combustion

model for lean spray flames. We prove that the large activation energy limit of the model

enjoys explicit expressions of two types correponding to two distinct combustion regimes, in

contrast with similar gaseous flames as studied in [4]. The transition parameter is proved

to be the ratio between the speed of vaporisation and the speed of combustion, and we

are able to prove and estimate the thickening of the combustion zone in the case of slow

vaporisation, which is again a novelty compared to purely gaseous combustion. The model

at task is therefore on the one hand simple enough to allow for explicit asymptotic limits,

and on the other hand rich enough to capture some particular aspects of spray combustion.

Finally, we briefly consider situations where the vaporisation is infinitely fast, where the

spray is polydisperse, or where the geometry of the problem is different from that of the

onedimensional travelling wave.

1. Introduction

This paper provides a rigourous mathematical analysis of some aspects of spray combustion,
including the analysis of the so-called large activation energy limit for a spray flame model. This
notion of large activation energy limit was first introduced in the pioneering work of Zeldovich
and Frank-Kamenetskii [27], and refers to the limit where the combustion rate is much faster than
any other physical phenomenon, in particular diffusion. Gas-vapor-droplets systems have many
applications in industry or everyday’s life, such as diesel or propulsion engines. When trying to
understand some specific features, it appears that the structure of these two-phase flames as well
as their speed or stability are greatly affected by the presence of vaporising liquid droplets possibly
interacting with the combustion zone.

The behaviour of spray flames has been investigated a lot in the physics literature and a wide
variety of regimes were considered. Dating from the 70s and early 80s, we can quote the works of
Polymeropoulos et al. [21][22], Mizutani et al. [19][20], Hayashi et al. [15][16]. Ballal et al.
[2]. They present studies of the propagation of liquid fuel sprays, study the influence of the size of
the droplets, the type and geometry of the spray flame as well as its structure. The investigation of
those vapor–drop–air systems was continued in the 90s. To quote but a few works, we refer to the
work of Aggarwal and Sirignano [1] as well as the papers of Greenberg, Tambour and Silverman
[23][24], where the structure of spray flames as well as the influence of parameters such as droplet
size, fuel volatility, or equivalence ratio are also investigated analytically. More elaborate situations
appearing in propulsion engines are for example pulsating or acoustic instabilities. We refer to
[14][13][9][10][11][7] and more recently [8][12][17][18] for studies in that direction.

Only few of these studies of spray flames (e.g. [8]) involve rigorous–in–the–mathematical–sense
analysis of the model at task where existence, uniqueness, or asymptotic limits are derived. This
is in contrast with purely gaseous combustion, where a lot of results exist in the mathematical
literature for various regimes and asymptotics. In particular, a complete study of thermo-diffusive
lean gaseous flame fronts and the large activation energy limit is in the paper of Berestycki,
Nicolaenko and Scheurer [4], and in the paper of Berestycki and Larrouturou [3]. The originality
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of the present work is to provide a complete mathematical analysis of the counterpart of those
systems, namely a lean spray flame model that on the hand is simple enough to allow for explicit
asymptotic limits, and on the other hand rich enough to capture some particular aspects of
spray combustion. We prove in particular the existence of two distinct combustion regimes
in the large activation energy limit. We prove also that the speed of the spray flame decreases
when the time for complete vaporisation of the droplets exceeds a critical value. Those results
should be compared with the very interesting work of Suard, Nicoli and Haldenwang [25]. Using
numerical simulations, these authors investigate the scaling laws of the spray flame velocity versus
the Damkhoeler number (i.e. the ratio of the typical time for vaporisation versus the typical time
for combustion). They also studied the structure of the reaction zone, of which they prove that the
complexity increases in the so–called ”vaporisation–controlled regime”. Our mathematical analysis
shows similar results, with however a sharp transition in the large activation energy limit. Also, an
important result of the present work is that we can characterize completely the limiting profiles,
with explicit expressions.

The model we consider is built as an elaboration of the purely gaseous thermo-diffusive lean
flame (see [4],[3]) that originally involves only the temperature T of the mixture and the fraction
Y of the gaseous fuel. We couple this thermo-diffusive model to vaporising droplets that act as a
reservoir of liquid fuel. That is, the vaporisation of the liquid droplets produces (part of) the fuel
vapor needed for the combustion. There is no combustion of the liquid phase. This leads to the
following minimal model for a lean spray flame:











−T ′′+ cT ′ = f(T )Y ,

−dY ′′+ cY ′ = −f(T )Y +2πng(T ) R
√

,

cR′ = −g(T )H(R),

(1)

supplemented with conditions at infinity






T (−∞) = 0, T (+∞) = Tb,

Y (−∞) = Yu, Y (+∞) = 0,
R(−∞) = Ru.

where T (x, t) is the nondimensional temperature, Y (x, t) the fraction of reactant, R(x, t) the
square radius (i.e. 4 πR is the surface of the droplet), and H is the Heaviside function. Also, we
have Tb :=Yu+4/3 πnuRu

3/2
. Finally, f(T ) is the reaction rate and g(T ) is the vaporisation rate.

The reaction term is of ignition type, that is f is nonnegative, piecewise Lipschitz continuous, and
there exists an ignition temperature θi> 0 such that f(T )≡ 0 for T ≤ θi and f(T )> 0 for T > θi.
The function g satisfies exactly the same hypotheses but with a boiling temperature θv<θi, which
means that the droplets start vaporising before the combustion starts. Finally, the constant d is the
inverse of the Lewis number. At constrast with the classical thermo-diffusive system for gas flames,
the system above in the case d=1 does not reduce to a single scalar equation. Finally, notice that
this model does not include the effect of the latent heat. The latent heat would appear as a loss
term proportional to the vaporisation term in the equation for the temperature. Neglecting this
phenomena is certainly an important simplification in the case where the latent heat is large. We
therefore assume implicitely in thius study that this effect is negligible.

The plan of the paper is as follows. Section 2 is devoted to the proof of the existence of travelling
waves for the system (1) above as stated in Theorem 1 for the monodisperse case, that is in the
case where the droplets at a given position all have the same size. The extension to the case of
polydisperse sprays is briefly discussed in section 4.2. Section 3 is devoted to the study of the high
activation energy limit, where one assumes that combustion is an infinitely fast process. Suitable
scalings for the reaction rate give rise to a limiting problem where combustion occurs in a possibly
infinitely small region:











−T ′′+ c T ′ =cTbδx=0,

−d Y ′′+ c Y ′ =−cTbδx=0+2 πnu g(T ) R
√

,

c R′ =−g(T )H(R),







T (−∞)= 0, T (∞)=Tb

Y (−∞)=Yu, Y (∞)= 0
R(−∞)=Ru,

(2)
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As announced before, we will prove that this system obeys two different regimes depending on the
size of the droplets (i.e. depending on the Damkhoeler number). With the notations above, when
the size of the droplets is below a critical size Rc, the droplets finish vaporising before the reaction
front, and the velocity of the flame is a constant equal to the velocity of the equivalent gas flame.
On the contrary, when the size of the droplets is larger than the critical value Rc, the velocity of
the flame starts decreasing. This is the so-called “vaporisation-limited” regime (see [25]). Moreover,
by zooming on the reaction zone in the large activation energy limit, we are able to estimate the
size of the vaporisation region that intersects the combustion region. These results are stated in
Theorem 11.

2. Existence of Travelling Waves

We want to prove here

Theorem 1. There exists at least one travelling wave (T ,Y ,R, c) in X=C1(R)×C1(R)×C(R)×
R solution to Problem ( 1) above .

The study of the existence of travelling waves for system (1) is done following the strategy of
H. Berestycki, B. Nicolaenko and B. Scheurer [4]. Namely : in Step 1, we state the problem in a
bounded domain. In Step 2 we rewrite the problem as a fixed point problem involving an homotopy
parameter. In Step 3, we prove a priori estimates independent of the size of the domain. In Step
4, we prove the existence of a travelling wave in a bounded domain. Finally, in Step 5, we let the
size of the domain go to infinity. The major step is Step 3 whose proof is postponed to the next
section. The proof of Step 5 being very similar to the classical gaseous flame case, we will not
detail it here (see [4]).

Steps 1 & 2: Problem in a bounded domain & homotopy technique Let a be a fixed
positive number. We consider the following boundary value problem on [−a, a]:

Problem 2. Find (T , Y , R, c) satisfying in ]− a, a[:


















−T ′′+ c T ′ =τ [f(T )Y ],

−d Y ′′+ c Y ′ =τ
[

−f(T )Y +2πn g(T ) R
√ ]

,

c R′ =τ [−g(T )H(R)],
c =T (0)− θi+ c







−T ′(−a)+ c T (−a)= 0, T (a)=Tb,

−d Y ′(−a)+ c T (−a)=Yu, Y (a)= 0,
R(−a)=Ru,

(3)

We will note Xa = C1([ − a, a]) × C1([ − a, a]) × C([ − a, a]) × R. Now, injecting functions
(T , Y , R, c) in the Right-Hand-Side of the system, integrating and solving for (T , Y , R, c) in the
Left-Hand-Side defines a fixed point problem that we denote by Fτ ≡ I −Kτ , so that proving the
existence of a solution (T , Y , R, c) to system (3) is equivalent to finding (T , Y , R, c) such that
Fτ(T , Y , R, c) cancels. Thanks to the boundedness of the domain and the regularizing properties
of the elliptic operator, one verifies easily that we have:

Lemma 3. Assume that the functions f and g are continous and Lipshitz. The mapping F : Xa× [0,
1] −→Xa defined by (T ,Y ,R,c)×τ 7−→ (I−Kτ)(T ,Y ,R,c) is well-defined, compact and uniformly
continous with respect to τ. 2

Step 3: Uniform a priori estimates The following result is proved in Section 2.1 below:

Lemma 4. Let Fτ be defined as above. There exists finite positive constants M, c, c̄ independent
of a, such that, for Ω defined as:

Ω := {(T , Y , R, c)∈X ; ‖T ‖C1(Ia)6M, ‖Y ‖C1(Ia)6M, ‖R‖C(Ia)6M, c< c< c}
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Step 4: Application of the Leray-Schauder Topologocal Degree. Assuming the uniform a
priori estimates above, we can find positive constants M, c, c̄ such that the solution of the fixed
point cannot be found on the frontier ∂ Ω. Also, using Lemma 3, we have:

Fτ(∂Ω)= (I −Kτ)(∂Ω)=/ 0, ∀τ ∈ [0, 1]
deg (Fτ ,Ω, 0)= deg (F0,Ω, 0)=/ 0, ∀τ ∈ [0, 1]

Finally, one checks easily that the linear problem F0 has a unique solution in X , so that deg (F0,

Ω, 0)=/ 0. Therefore we have also deg (F1,Ω, 0)=/ 0 which implies the existence of a solution to the
problem in the bounded domain [−a, a].

Remark 5. If the functions f and/or g have a discontinuity at θv and/or at θi, then we can prove
the same result by using regularisation techniques in order to overcome the fact that Kτ is no
longer continuous (see [4]).

2.1. Uniform a priori estimates. Proof of Lemma 4.
The aim of this section is the proof of Lemma 4. Without loss of generality, we can assume

that τ =1. This lemma can be divided into two propositions:

Proposition 6. [Estimates on the solutions]For every solution (T , Y , R, c) of problem ( 3) with
c≥ 0, the following holds:

c> 0,
0≤R≤Ru, 0<T ≤Tb, 0≤Y <Tb,

R′≤ 0, 0<T ′≤ cTb, − c

d
Tb≤Y ′≤ c

d
Tb+

4

3
πnuRu

3/2
.

Proof. The estimates on the size R of the droplets are obvious. The estimates on the other
unknowns follow the same lines as in [4]. �

Proposition 7. [Estimates on the velocity]Let h(s) = (Tb − s) f(s), and assume that H(Tb) =
∫

θi

Tb h(s) d s<∞. Then, if (T , Y ,R, c) is any solution of ( 3), c satisfies:

min

(

2

dTb
2
H(Tb), cs

2

)

≤ c2≤max





ln (
2Tb

θv
)

a0
,max

(

2M,
2MTb

θv

√

)



 (4)

2

We prove successively lower and upper-bounds independent of the size of the domain for the
velocity c:

Proof of the Lower-Bound of Proposition 7: The simple but important alternative stated in
Lemma 8 below allows us to take advantage of the estimates of Proposition 9 below:

Lemma 8. [An important alternative] If c ≤ cs :=
1

Rui

∫

θv

θi g(s)

s
d s

√

, then R(xi) ≤ 0 with xi

satisfying T (xi)= θi.

Proposition 9. Every solution (T , Y ,R, c) of problem ( 3), with c≥ 0, satisfy on [−a, a]:

|T +Y −Tb| ≤ |1− d

d
| (Tb−T )+

4

3
πnuR

3/2(x)

|T + d Y −Tb| ≤ |1− d| (Tb−T )+
4
3
πnuR

3/2(x)
(5)

and consequently

d>1:
1

d
(Tb−T )− 4

3
πnuR

3/2(x) ≤ Y ≤ (Tb−T )+
4

3
πnuR

3/2(x)

0<d<1: (Tb−T )− 4

3
πnuR

3/2(x) ≤ Y ≤ 1

d
(Tb−T )+

4

3
πnuR

3/2(x)
(6)
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Proof of Lemma 8:

Proof. (of Lemma 8) First, we recall that T (x) = θve
cx on [−a, xi], so that T ′(x) = c T (x). The

equation for R is:
dR

dx
=

dR

dT

dT

dx
=−1

c
g(T (x)). (7)

If we integrate
dR

dT
between the temperatures θv and θi, we obtain:

R(xi)−Ru=− 1

c2

∫

θv

θi g(s)

s
d s,

and, for c≤ cs, the droplets vaporise before they reach the reaction zone, so that the combustion
is monophasic. �

Proof. (of Proposition 9 )The proof follows the same lines as in [4]. It relies on suitable integrations
of the auxiliary functions W = T +Y and Z =T + d Y . We refer to [4] as well as the next section
for an exposition of this classical manipulations. �

Now, we can use the same procedure as in Berestycki, Nicolaenko and Scheurer ([4]) in order
to prove lower-bounds for the velocity c.

Proof. (of the lower-bound of Proposition 7) We give the details for the case d> 1 only, the proof
for the case d<1 being identical. First, if c≥ cs, then the first inequality in (4) is proved. Consider
now the case where c ≤ cs, which implies that the combustion . We start now with the identity
obtained by integration of −T ′′+ c T ′= f(T )Y between 0 and a, after multiplication by T ′:

− 1

2
|T ′(a)|2+ 1

2
c2θv

2+ c

∫

0

a

|T ′(s)|2 d s=
∫

xi

a

f(T (s))T ′(s)Y (s) d s. (8)

But, c≤〈cs〉, so that R(x)=0, ∀x≥xi, and we deduce: Y (x)≥ 1

d
(Tb−T (x)), ∀x≥xi. We use this

lower-bound for Y in the previous integral to obtain:

−1

2
|T ′(a)|2+ 1

2
c2θv

2+ c

∫

0

a

|T ′(s)|2 d s≥ 1

d

∫

xi

a

f(T (s)) (Tb−T (s))T ′(s) d s.

We make the change of variable t :=T (s) in the integral and obtain:

−1
2
|T ′(a)|2+ 1

2
c2θv

2+ c

∫

0

a

|T ′(s)|2 d s≥ 1
d
H(Tb).

Then, similar L2 estimates can be obtained by integrating against T the equation for the temper-

ature. This allows to control the integral above and therefore to prove that
2

dTb
2
H(Tb)≤ c2, which

is the desired result. �

Proof of the Upper-Bound of Proposition 7 We have the

Proposition 10. Let M = sup
[0,Tb]

f(s) and a0> 0 fixed:

then, for each a≥ a0, any solution (T , Y , R, c) of ( 3) satisfies:

c ≤max





ln (
2Tb

θv
)

a0
,max

(

2M,
2MTb

θv

√

)



. (9)

Proof. We compare the solution T of (3) to the solution T̄ of the following system:
{

−T̄ ′′+ cT̄ ′=TbMH(x) o n]− a, a[

−T̄ ′(−a)+ cT̄ (−a)= 0, T̄ (a)=Tb.
(10)
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where H is the Heaviside function. By a direct calculation, we have:










T̄ (x)=T (x), o n [−a, 0],

T̄ (x)=Tbe
cx

(

M

c2
(1− e−ca)+ (1− M

c
a) e−ca

)

, o n[0, a].
(11)

By using maximum principle, we have T ≤ T̄ on [−a, a]. In particular, for x=0, we have:

θv ≤Tbe
−ca (1− M

c
)+Tb

M

c2
(1− e−ca). (12)

We set c0=max (2M,
2MTb

θv

√

), and we compute an upper bound of c independent of a. If c≤ c0,

the result is proved. Conversely, if c> c0, then since θv ≤Tbe
−ca+

θv

2
, we have that eca≤ 2Tb

θv
, and

we conclude that:

c≤
ln

2Tb

θv

a0
.

This completes the proof of the proposition. �

3. Large Activation Energy Limit

We deal now with the most important part of the paper. We want to derive an asymptotic model
for the spray flame corresponding to the so-called large activation energy limit, where one assumes
that the typical time associated to the chemical reaction is infinitely small compared to any other
time-scales, namely in our case time-scales associated to the diffusion process or that associated to
the vaporisation process. The most important result is that we are able to prove and quantify in
the limit the existence of two different regimes for the propagation of the spray flame, which is a
striking and novel feature compared to classical gas flames. On the one hand, when the radius of
the droplets in the fresh mixture is small enough, the velocity of the flame is that of the equivalent
gas flame, that is the correponding gas flame where all the fuel is injected in gaseous form. On
the converse, above a critical radius of the incoming droplets, the velocity of the flame starts
decreasing and, following the terms of Suard, Nicoli and Haldenwang ([25]), we are in the presence
of a “Vaporisation Controlled” combustion regime. Moreover, the asymptotic analysis performed
below provides details on the structure of the internal combustion layer in the presence of vaporising
droplets. This are new mathematical results, consistent with the results and numerical observations
made by the previous authors.

After stating the results, Section 3.0.1 is devoted to a heuristic proof of the limiting profile. It
allows us to emphasize the existence of the two combustion regimes and to give more insight in
the system. The rigourous proof together with the study of the internal layer are done in Section 3.1.

We start again with system (1) in which the reaction term is now set as:

fε(T ) :=











0, T < θi,

1

εγ
e x p

(

T −Tb

ε

)

, T > θi.
(13)

and we are interested in the existence of travelling waves in the limit where ε goes to 0. Formally,
one expects at the limit that the reaction term occurs in an infinitely small region, that we set at
the origin x=0.











−T ′′+ c T ′ =cTbδx=0,

−d Y ′′+ c Y ′ =−cTbδx=0+2πnu g(T ) R
√

,

cR′ =−g(T )H(R).

(14)

We want to prove:
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Theorem 11. Let Mu := 4/3 π nu Ru
3/2 fixed be given, such that Tb = Yu + Mu is kept constant

when Ru varies. Let γ be given in the intervall [0, 2]. We have that

∗. If γ <2 then the solutions (Tε, Yε,Rε, cε) to system ( 1) tend to a degenerate travelling wave
in the sense that cε tends to 0.

∗. If γ = 2 then the solutions (Tε, Yε, Rε, cε) to system ( 1) tend to a travelling wave solution
of the limiting system ( 14) above, were the limiting velocity c has the expression

c=min





1

Tb

2

d

√

,
1

Ru

∫

θv

Tb g(s)

s
d s

√



 (15)

As a consequence, the behaviour of the velocity c of the limiting travelling waves shows a
bifurcation when the radius Ru of the incoming droplets is greater than the critical radius Rc:

Rc :=
d Tb

2

2

∫

θv

Tb g(s)

s
d s (16)

∗. Moreover, when γ = 2 and Ru ≥ Rc, then the size of the vaporising zone intersecting the

reaction zone is at most of order O(ε2/5|ln ε|) for small values of ε> 0.

2

3.0.1. Heuristic asymptotic analysis of spray flames.
Starting from Hypothesis 1&2 below, we show in this section how to solve completely the spray

flame problem using simple arguments. All these hypotheses and statement become rigourous in
the next section. In this study, the main parameter is the size of the incoming droplet. When this
parameter varies, it is crucial to keep constant the temperature Tb of the burnt gases. Equivalently,
this means that we want to compare flames whose total amount of (liquid and/or gaseous) incoming
fuel is the same, which is a natural constraint. The velocity, directly proportional to the burning
rate, therefore measures the efficiency of the combustion. For example, the total mass Mu :=
4/3 π nu Ru

3/2 of incoming liquid fuel is kept constant by adjusting the number density nu of the
incoming droplets when Ru varies.

Hypothesis 1: Combustion occurs instantaneously at the flame front xf :=0 at the temperature Tb

of the burnt gases.

Hypothesis 2: For small enough sizes of the incoming droplets, the vaporisation finishes strictly
before the reaction zone.

Here xf is the position of the flame front, taken as the origin, xv is the position of the beginning
of the vaporisation zone, i.e. T (xv) = θv, and xvf is the position of the vaporisation front, that is
the first point where the size of the droplets vanishes. For small droplets, Hypothesis 2 implies

that the velocity of the wave is equal to the Zeldovich velocity cm := 2/d
√

/Tb of the classical large
activation energy monophasic gas flame. Indeed, the internal structure of the flame involves only
the unknowns T and Y as well as the corresponding profiles in the hot gases, all of which are not
affected by the presence of the droplets. Increase now the size of the droplets, keeping Mu constant.
Assuming that the corresponding profiles vary continuously with respect to the size of the droplets,
define Rc > 0 as the critical smallest size at which the droplets finish vaporising exactely at the
flame front. This means in particular that for all Ru∈ ]0, Rc[, the velocity of the flame is equal to
cm. We have:

Statement. Assume for simplicity that the vaporisation law is the step-function g(T )= g0 H (T −
θv). Let Rc> 0 be the critical size of droplets defined above. Then we have:

Rc=
g0

cm
2
ln

(

Tb

θv

)

(17)

�
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Indeed, according to the vaporisation law, for a given size Ru of incoming droplets, the quan-
tities c(Ru), xv(Ru) and xvf(Ru) obey the relation:

xvf =xv+
c

g0
Ru=

1

c
ln (Tb θv)+

c

g0
Ru (18)

Then, by continuity of the solution with respect to the parameter Ru, on the one hand we must
have c(Rc)=cm and on the other hand, the definition of Rc implies xvf(Rc)=0. These two relations
give the relation for Rc in the Statement above.

Now, what happens now if Ru>Rc? We have:

Statement. In the case where Ru>Rc, we have necessarily xvf(Ru)= 0 and therefore

c(Ru)= cd(Ru) :=
g0
Ru

ln

(

Tb

θv

)

√

(19)

�

where cd designates the velocity of the flame in the diphasic case as opposed to the monophasic
case abovementionned. The second part of the statement is a direct consequence of the first
part, after solving the equation xvf(Ru)= 0 for c. Then, it is impossible that xvf > 0. Otherwise,
vaporisation, combustion and finally an elevation of temperature would occur after the flame front,
which is prohibited by the fact that the temperature is already equal to its maximum value at
x= 0. On the converse, xvf(Ru)< 0 is impossible. Indeed, one checks easily that we would have
xvf(R)< 0 for all R<Ru, a contradiction with xvfRc=0.

As a conclusion, for any Ru, we have the alternative:

Statement. Let Ru be given. Then, the limiting system is completely determined in terms of the
following alternative involving the data of the problem:

• Ru≤Rc is equivalent to {xvf(Ru)< 0 and c(Ru)= cm}

• Ru>Rc is equivalent to {xvf(Ru)= 0 and c(Ru)= cd(Ru)≤ cm}

�

As announced, we observe that the velocity of the spray-flames diminishes for size of the
incoming droplets larger than a critical value. This change of regime occurs abruptly at that critical
value. We recover here the existence of the so-called “vaporisation-limited” regime emphasized in
[HNS]. In particular, it follows from these remarks that substituting some gas fuel for some liquid
fuel in the fresh gas can only lead to a decrease of the burning rate, i.e. the velocity, of the flame
(at least in the scope of the hypotheses of this Section). If one sets the origin x = 0 in the fresh
gas where T (x=0)= T0<Tb, then the decrease of the velocity of the flame means an increase of
the preheating zone. In other words, large droplets push the reaction front towards the hot gases.

We invite the reader to verify that we would obtain exactely the same conclusions by replacing
Hypothesis 2 above by the following:

Hypothesis 3: The velocity of the spray flame is always lower or equal to the velocity cm of the
classical gas-flame having the same temperature in the burnt gas.�

The rigourous analysis of the structure of the spray flame in the large activation energy limit
precisely aims at proving Hypotheses 1 and 3 plus some more information about the structure of
the internal combustion layer.

3.1. Large activation energy values : existence of flames and their structure.
In the rigourous proof of the convergence of the system to a limiting travelling wave, the main

difficulty is to obtain uniform estimates from below as well as from above for the velocity. Thanks
to the results of the previous section, this directly yields a solution to the limiting system in the
form (14) above. In order to perform these estimates, one has to analyse the internal structure of
the reaction zone. Following Zeldovich, this is done by introducing scaled variables and coordinates
as we shall see below. First notice that the choice of the value T (0) := Tb − Aεlnε provides an
information about the velocity of the flame in terms of the temperature profile at the origin:
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First expression of the velocity of the flame

Thanks to the remark that, for A large enough, one has fε(Tε)Yε = O(εA/2) whenever Tε ≤
Tb+Aεlnε, it follows that Tε(x)=(Tb+Aεlnε) ecεx+O(εA/2) on ]−∞,0]. Integrating the equation
for Tε between −∞ and 0:

−Tε
′(0)+ cε(Tb+Aεlnε)=

∫

−∞

0

fε(Tε)Yε, (20)

where the Right-Hand-Side is O(εA/2), we have therefore

cε=
Tε

′(0)

Tb
+O(εlnε). (21)

It remains to estimate the derivative of the temperature profile at the origin, which we do by
studying the system on the intervall[0,+∞[.

Notations. Streched system.

The boiling point is denoted by xv,ε and satisfies Tε(xv,ε) = θv, the ignition point is denoted
by xi,ε and satisfies Tε(xi,ε) = θi, the end of vaporisation occurs at xvf,ε satisfies Rε(xvf,ε) = 0,
and we recall that Tε(0)=Tb+Aεlnε. Also, we use the auxiliary functions Wε :=Tε+Yε−Tb and
Zε :=Tε+dYε−Tb. Now, the exponent γ≤2 being given, we define the streched variables by setting:

ξ=
x

εγ/2
, pε(ξ)=

Tε(x)−Tb

ε
, qε(ξ)=

Yε(x)

ε
, wε(ξ)=

Wε(x)

ε
, zε(ξ)=

Zε(x)

ε
. (22)

pε(0)=A lnε, pε(∞)= 0, qε(∞)= 0, wε(∞)= 0, zε(∞)= 0

Moreover, we naturally denoted here (ξv,ε, ξi,ε, ξvf,ε) = (xv,ε, xi,ε, xvf,ε)/ε
γ/2. Finally, it is

important to recast the expression of the velocity in terms of the streched system, namely, for A
fixed large enough:

cε := ε1−γ/2pε
′(0)

Tb
+O(εlnε). (23)

and it remains to estimate the derivative of the temperature profile in the streched variables.

First Estimate of pε
′(0)

The estimate of pε
′(0) goes in two steps. First, we prove here that this quantity is bounded

uniformly with respect to ε. We provide an optimal value of the upper-bound later.

It is convenient to write the system in terms of the unknowns (pε, wε) or (pε, zε) defined above.
Simple algebra yields:



































−pε
′′+ cεe

γ/2pε
′ =(wε− pε) e

pε=−1

d
(zε− pε),

−wε
′′+ cεε

γ/2wε
′ =

(

1− d

d

)

cεε
γ/2pε

′′+
2 πnu

cε
√ ε

5γ

4
−1

(ξvf,ε− ξ)+
√

,

−zε
′′+

cεε
γ/2

d
zε
′ =

(

1− d

d

)

cεε
γ/2pε

′ +
2πnu

cε
√ ε

5γ

4
−1

(ξvf,ε− ξ)+
√

.

(24)

First, integrating the equation for the temperature against pε
′ gives:

cεε
γ/2

∫

0

∞

(pε
′)2 d ξ+

(pε
′(0))2

2
=

∫

0

∞

(wε− pε) epεpε
′d ξ=

1

d

∫

0

∞

(zε− p
ε
) epεpε

′d ξ (25)

where the contribution of pε in the last two integrals can be integrated explicitely. It remains to
estimate wε or zε in terms of pε. For that, we distinguish the two cases 0<d≤ 1 and d≥ 1.
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Case 0 < d ≤ 1: An integration of the equation for wε together with the condition at infinity
wε

′(+∞)= 0 yields, since the contribution of the vaporisation term is nonnegative:

wε
′(ξ) ≥1− d

d

∫

η=ξ

η=+∞

exp
(

−cεε
γ/2(ξ− η)

)

pε
′′(η) dη

=
1− d

d

{

[

exp (cεε
γ/2(ξ− η)) pε

′(η)
]

η=ξ
η=+∞

+

∫

η=ξ

η=+∞

exp (cεε
γ/2(ξ − η)) cεε

γ/2pε
′(η) d η

}

≥ε
1− d

d
(−pε

′(ξ))

(26)

because 0<d≤ 1 and the last integral is positive. Finally, since wε(+∞)= 0, and pε
′ ≥ 0, we have:

∀ξ ≥ 0, wε(ξ)≤ |pε(ξ)|=−pε(ξ) (27)

Hence, Eq. (25) gives
pε
′(0)2

2
≤ 1− d

d
+1=

1

d
(28)

Case d ≥ 1: Now, a direct integration of the equation for zε yields, since the contribution of the
vaporisation term is nonnegative:

zε
′(ξ)− cεε

γ/2

d
zε(ξ)≥ d− 1

d
cεε

γ/2pε(ξ) (29)

Hence

zε(ξ) ≤d− 1

d

∫

η=ξ

η=+∞

exp

(

cεε
γ/2

d
(ξ− η)

)

cεε
γ/2(−pε(η))dη

≤d− 1

d
(−pε(ξ))

∫

η=ξ

η=+∞

cεε
γ/2exp

(

ε
cεε

γ/2

d
(ξ− η)

)

d η

=(d− 1)(−pε(ξ))

(30)

where we have used the monotonicity of pε. Hence, Eq. (25) gives

pε
′(0)2

2
≤ (d− 1)+ 1

d
=1 (31)

As a conclusion, pε
′(0) is uniformly bounded with respect to ε and the boundedness of cε follows

from (23) as well as:

Lemma 12. Let γ < 2 be given. Then, the velocity cε tends to zero as ε goes to zero.

Hence, in the rest of this section, we shall only consider the case where γ=2.

Approximate System : Come back now to the unknowns (pε, zε). It is convenient to introduce
the approximate problem:















−p̃ε
′′ =

1

d
(z̃ε− p̃ε) e

p̃ε,

−z̃ε
′′ =

2πnu

cε
√ ε3/2 (ξvf,ε− ξ)+

√

,
(32)

with the same boundary conditions as for (pε, zε), but where we omitted the convection terms
involving the factor cεε. Classical results on elliptic regularity ensure that (pε, zε) − (p̃ε, z̃ε) as
well as their derivatives (pε

′ , zε
′) − (p̃ε

′ , z̃ε
′) are of order ε, uniformely on [0, +∞[, in the space of

continuous functions.

Estimate of the Vaporisation Front ξvf,ε

It is now possible to estimate the size ξvf,ε of the intervall of the vaporisation zone intersecting
that of the reaction zone (i.e. ξ > 0):
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Lemma 13. There exists a constant C > 0 such that for ε small enough:

ξvf,ε≤Cε−3/2|lnε|2/5, or equivalently xvf,ε≤Cε2/5|lnε|2/5 (33)

Proof. Integrate the equation for z̃ε taking into account the vaporisation term. For that, recall
that we have at the vaporisation front z̃ε(ξvf,ε)= 0 and z̃ε

′(ξvf,ε)= 0. It comes:

z̃ε
′(ξ)=C

ε3/2

cε
1/2

(ξvf,ε− ξ)3/2≥ 0 (34)

where C denotes a generic positive constant independent of ε. Integrating again, we have imme-
diately, since zε(+∞)= 0,

z̃ε(ξ)=−C
ε3/2

cε
1/2

(ξvf,ε− ξ)5/2≤ 0 (35)

Recalling that zε= z̃ε+O(ε), we have

−C
ε3/2

cε
1/2

ξvf,ε
5/2

+O(ε)= zε(0)= pε(0)+ dqε(0)≥A lnε (36)

because qε(0)≥ 0, and the result follows thanks to the boundedness of cε. �

Second Estimate of pe
′(0)

We precise here the upper-bound and give a lower-bound for the velocity and prove:

Lemma 14. Let d be given. We have for a certain c> 0, and for ε small enough:

c2Tb
2

2
≤ (pε

′(0))2

2
≤ 1

d
+0(ε2/5|lnε|) (37)

Proof. Since z̃ε above is negative, it follows that zε≤O(ε), so that we have from (25) the uniform
upper-bound:

∀d, pε
′(0)2

2
≤ 1

d
+O(ε) (38)

This inequality becomes an equality in the case where limsupε→0 ξvf ,ε< 0 and we have therefore
in that case a lower-bound for the velocity of the limiting flame. This happens in particular in
the case where limsupε→0 xvf ,ε < 0 (which implies ξvf ,ε→−∞) that is when the droplets finish
vaporising strictly before the reaction front x=0. This remark allows us to use the same alternative
(see Lemma 8) as in the previous section. Namely, using the notations of the heuristic analysis,
choose 0< c< cd(Ru). Then, for ε small enough, cε≤ c implies that the droplets finish vaporising
strictly before the reaction front. Hence, cε≃ cm. This completes the proof. �

3.2. Large activation energy values : Limiting system as ε→ 0.
It remains to prove that the limiting system in the High Energy Activation limit is indeed

system (14) with the velocity c as in Theorem 11.

Proof. (of Theorem 11 – Continued) Following [4], the uniform smoothness in C1(R) of the
sequence Tε together with the uniform lower-bound for cε allow us to extract converging subse-
quences Tε′, xvf ,ε′, xv,ε′, cε′ on any large enough compact intervall around the origin. Then, let
xvf ,1≤ 0 and xvf ,2≤ 0 be two limits of subsequences of the sequence of vaporisation fronts xvf ,ε.
If xvf ,1 < xvf ,2 < 0 then necessarily we have for the corresponding velocities c1 = cm = c2, which
implies xvf ,1=xvf ,2, a contradiction. Now, recalling the definition of Rc in the heuristic analysis,
if xvf ,1<xvf ,2=0, we must have both Ru<Rc and Ru≥0, a contradiction again. As a conclusion,
we have necessarily xvf ,1= xvf ,2, hence also c1= c2, so that the limiting profile is unique, and all
the sequence of solutions tend towards their respective limits. �
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4. Extensions

4.1. Singular limits for vaporisation and/or combustion.

The case of rapid vaporisation: There are situations where the vaporisation of the droplets
occurs in a very small region compared to the size of the heating zone, that is situations where the
time for complete vaporisation is very small. This may happen in two situations. First, when the
droplets are very small, we have Ru= η1Ru,0 where η1 is a small parameter and Ru,0 is a reference
size of order 1. In that case, the density number of droplets in the fresh gases is normalised to
nu = nu,0/η1

3/2. This allows us as usual to maintain a constant temperature in the burnt gases
Tb=Yu+4/3 π nu,0 Ru,0

3 /2 while letting η1 go to 0. Second, when the vaporisation rate is very large,
me may normalize it as g(T )= g0(T )/η2 where η2 is a small parameter. Recall here that g0(T ) is
an increasing function, positive for temperatures larger than θv. We have:

Set the origin as xv=0, such that T (0)= θv. Then, when η1 and/or η2 tend to 0, the solution
(T , Y , R, c)η1,η2

of problem (1) converges to a solution of the following system, where complete
vaporisation occurs instantaneously at xv=0:







−T ′′+ c T ′= f(T )Y

−d Y ′′+ c Y ′=−f(T )Y + c
4

3
πn1Ru,1

3/2
δ(x=0)

with the usual boundary conditions

Proof. The details of the proof are left to the reader. We refer to [6] for more details. �

The case of rapid vaporisation and combustion: The previous limit is easily combined whith the
high activation energy asymptotics. In that case, when rapid vaporisation and reaction occur at
the same time, the limiting system has two singular terms. Both the vaporisation and the reaction
term are concentrated in infinitely small regions. This is in some sense a simplified situation where
vaporisation necessarily ends before the reaction occurs, since θv < Tb. Hence, the velocity of the
limiting wave is obviously c= cm.

4.2. Results for a polydisperse spray.

All the previous results can be extended in the case of polydisperse sprays, that is in the case
where droplets of possibly different sizes are present at a given position. In that case, we need a
statistical description of the distribution of size of the droplets as was first pointed out by Williams
[?, 26]. For our problem, we assume more precisely that the distribution of size of droplets is
known in the fresh gases. Introduce for that the probability density number hu(R) of droplets in
the fresh gases, such that hu(R) d R is the probable number of droplets having size in the range [R,

R+d R]. We define in the same manner the density number h(x,R) at any position x and we have
the limiting condition in the fresh gas h(−∞, R) = hu(R). Also, we assume that hu is continuous
on R+ and has compact support. Then, the spray flame problem writes:















−T ′′+ c T ′ =Y f(T ),

−d Y ′′+ c Y ′ =−Y f(T )+ 2π g(T )

∫

R

R1/2h(x,R) dR,

c∂xh+ ∂R(h(− g(T )H(R)) =0,

(39)

In this setting, the total mass fraction Mu of liquid fuel in the fresh gas, and therefore the corre-
sponding temperature Tb of the burnt gases are given by:

Mu=

∫

0

+∞ 4

3
πR3/2hu(R) dR, Tb=Yu+Mu (40)

Notice finally that a monodisperse spray corresponds to the situation where hu writes as:

hu(R)=nu δ (R−Ru) (41)

12 Existence of travelling waves and large activation energy limits for a onedimensional thermo-

diffusive lean spray flame model



Existence of Travelling Waves: The proof of the existence of a travelling wave for the polydisperse
spray follows exactely the same lines as in the monodisperse case. In the alternative stated in
Lemma 8, page 4, the threshold velocity may now be written in terms of Rm := sup{R;hu(R)> 0}
instead of Ru.

Asymptotic Limits: The limiting profiles are again of two types, but now the critical radius Rc must
be compared to Rm defined above in order to know if the regime of combustion is controlled by
vaporisation or not. Also, in the case of infinitely rapid vaporisation, the vaporisation eventually
concentrates in an infinitely small region. Hence, there is no difference between a monodisperse
and polydisperse spray in this asymptotics. We refer the reader to [6] for more details.

4.3. Other geometries.

The large activation energy limit analysis can be carried out in other onedimensionnal geome-
tries, such as the anchored flame on the half-line, or counter-flow-like configurations, or finally
radial in dimension 2 or 3. In each case, we are able to solve explicitely the problem (provided the
expression of the vaporisation law is relatively simple), and it is possible to study the influence of
different parameters on the existence of a profile or on the value of the burning rate for example.
Relevant parameters are the typical velocities of injection of the gas and/or droplets, the value of
the vaporisation rate, the dimension. We refer the reader to [6] for more details.

5. Perspectives and Concluding Remarks

This paper considered the existence of travelling fronts for a simple onedimensionnal thermo-
diffusive lean spray flame model. We proved the existence of travelling waves for general combustion
and vaporisation laws. As far as qualitative results are concerned, the most important part of the
paper is the study of the high activation energy limit for the system. Indeed, the limiting problem
involve simple explicit profiles but still retains the important features of the dynamics. Extensions
of these results to the cases of fast vaporisation, polydisperse sprays or other onedimensionnal
geometries was briefly mentionned. The corresponding details can be found in [6].

The present work is therefore a first step towards the rigorous derivation of asymptotic models
for spray flames. However, much remains to be done in order to understand the effect of droplets
on the dynamics of the flame structure, as observed by many physicists and experimentalists (see
[14] and the references therein). First, as already noticed in the Introduction, the model under
consideration in this paper omits the effects of the latent heat. It would be very interesting to derive
some high activation energy models incorporating these effects, in the hope of deriving explicit
expressions of the limiting profiles and combustion rates, as well as extinction limits. Second, a
striking consequence of the high activation energy asymptotics is that droplets cannot cross the
flame front in that limit, but may enter the reaction zone only for large but not infinite values of
the activation energy. It would be interesting to derive intermediate asymptotic models making
explicit the structure and thickening of the combustion region for large but not infinite .

As far as dynamical phenomena are concerned, the problem of the stability of spray flame
system are of particular importance. As a first step, one has to study the nonlinear stability for
small perturbations of the thermodiffusive lean spray flame model (see [6, 5]). As a second step, we
are interested in the problem of acoustic instabilities in spray flame systems. In this direction, the
work Clavin an Sun [7] is of particular interest to us because these authors propose a framework
for the mathematical analysis of gas or spray flames coupled to the acoustics. This mathematical
analysis relies on the possibility of deriving explicit expressions of the solutions to the problem.
This is only possible in some asymptotic limits. For that, the authors consider the large activation
energy limit for combustion phenomena and assume an instantaneous vaporisation of the droplets.
As a consequence, both the combustion and the vaporisation zones reduce to infinitely small
regions, whose internal layer is analysed.
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However, assuming that the vaporisation zone is very small compared to the preheating zone is a
very restrictive assumption in many applications where the droplets can spread into the preheating
zone, approach the combustion zone, or even cross the combustion zone. We have shown in the
present paper that it is possible to handle analytically such situations where the droplets approach
or reach the reaction front, and where the slowly vaporising droplets induce a dramatic change of
the combustion rate. It would therefore be intersting to study mathematically and generalise the
work of Clavin and Sun [7] to more general situations regarding the size of the vaporisation zone.
It is reasonable to expect that different size of the vaporising region would give rise to different
behaviours or stability properties of the system.
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