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Abstract

In this paper, we prove the convergence of a class of finite volume schemes for the model of coupling
between a Burgers fluid and a pointwise particle introduced in [LSTO8]. In this model, the particle is
seen as a moving interface through which an interface condition is imposed, which links the velocity of
the fluid on the left and on the right of the particle and the velocity of the particle (the three quantities
are all not equal in general). The total impulsion of the system is conserved through time.

The proposed schemes are consistent with a “large enough” part of the interface conditions. The proof
of convergence is an extension of the one of [AST2] to the case where the particle moves under the influence
of the fluid. It yields two main difficulties: first, we have to deal with time-dependent flux and interface
condition, and second with the coupling between and ODE and a PDE.

Key phrases: Fluid-particle interaction; Burgers equation; Non-conservative coupling; moving interface;
convergence of finite volume schemes; PDE-ODE coupling
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1 Introduction

We study the numerical convergence of finite volume schemes for the Cauchy problem

Bou+ 0n s = —A(u — b ()80 (),
mph” (t) = A(u(t, h(t)) — I'(t)), (1)
up—o = u’, h(0) = h°, h'(0) = v°.

It models the behavior of a pointwise particle of position h, velocity h’ and acceleration h” with mass
mp, immersed into a “fluid,” whose velocity at time ¢ and point z is u(¢,z). The velocity of the fluid
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is assumed to follow the inviscid Burgers equation. This system is fully coupled: the fluid exerts a
drag force D = A(u(t,h(t)) — h'(t)) on the particle, where X is a positive friction parameter. By the
action—reaction principle, the particle exerts the force —D on the particle. The interaction is local: it
applies only at the point where the particle is. This friction force tends to bring the velocities of the
fluid and the particle closer to each other: as X is positive, the particle accelerates if u(t, h(t)) is larger
than h’(t) and vice-versa. This toy model was introduced in [LSTO8| (see also [BCG13| and [Aguld] for
related problems). In contrast with the model studied in [VZ03|, [Hil05] and [VZ06], the particle and the
fluid do not share the same velocity and the fluid is inviscid. In particular the fluid velocity is typically
discontinuous through the particle. It yields to issues to define correctly the product (u — h')d;, and the
ODE for the particle in system (). To do so, the idea is to regularize the Dirac measure in (IJ), and to
remark that the values of the fluid velocity on both sides of this thickened particle are independent of
the regularization. It allows to reformulate System (I]) as an interface problem, where the traces around
the particle u—(t) = lim,_, - u(t, ) and w4 (t) = lim, 4+ u(t, ©) must belong to a set Ga(h'(t)),
which takes into account the interface conditions. This study was done in details in [LSTO8|. The germ
is defined as follow.

Definition 1.1. For any given speed v € R, the germ at speed v, G (v), is the set of all (u—_,u) in R?

such that
(u—,us) € Gy UG (v) UGS (v),
where
Gy = {(u-,uy) eR?:u_ =uy + A},
gi(v):{(u,,qu)eRQ:vgu, <v+MNv—A<us <v and u,fu+</\},
and

gi(v):{(u,,u+)€R2 - A<uprtu- —2v< A and u- —uy >)\}.

The germ G (0) and its partition are depicted on Figure [l on the left (note that the germ Gx(v) is
the translation of Gx(0) by the vector (v,v)). Here, we choose a slightly different partition of the germ
than in [AS12] and [ALST13|, which is depicted on the right of Figure (I]). The reason is that we are
able to find a class of finite volume schemes which are consistent with G} U G3(0) with this choice, but
not with the original partition. However, the essential property that G3 U G2 (0) is a mazimal part of
the germ still holds true with the partition of Definition [[I] (more details are given in Definition [[4] and
Proposition 38). Once the germ has been defined, System (I]) is defined as an interface problem. The

U4 Gl Ut gl

G3(0) - g3(0) -

g3(0) g3(0)

Figure 1: The germ for a motionless particle and its partitions. Left: the partition used in this work. Right:
the partition used in [AS12] and J[ALST13].

equation on the particle is reformulated to keep the conservation of total momentum
mph'(t) + / u(t, z)dx
R

which holds formally in (). In [LSTO08|, an entropy inequality that takes into account the particle is also
derived.

Definition 1.2. A pair (u,h) of functions in L™ (R4 x R) x W2>°(Ry) is a solution of () with initial
data u® in L°°(R) and (R°,°) € R? if:



e the function w is an entropy weak solution of the Burgers equations on the sets {(¢,z), z < h(t)}
and {(¢,z), x > h(t)},

e for almost every positive time ¢,

ol (6) = () = ) (S ) 2)

and
(u—(t),u+ (1)) € Gr(R'(1))-

This definition requires the existence of traces along the particle’s trajectory h. It follows from the
works of Panov [Pan07] and Vasseur [Vas01]. When the particle is motionless, well-posedness in the BV
setting was proved in [AS12], while for the fully coupled system (), it is proved in [ALST10] and [ALST13].

Remark that Definition is not suitable to prove convergence of finite volume schemes in a general
framework. Indeed, a scheme can create a numerical boundary layer near the particle, of several cells
width. It does not prevent the scheme from converging in, say, LS. in time and L' in space; but in
that case we cannot expect the numerical traces to converge to their correct values. Nevertheless we will
prove the convergence of some schemes that create such boundary layers. The key point is to use, instead
of Definition [[LT] an equivalent definition which does not contain the traces of u. We begin with some
properties useful to decide if a pair (c—,c4) belongs to the germ Gy (v). We adopted the vocabulary of
the theory of conservation law with discontinuous flux function of [AKR10| and [AKR11].

In the sequel, we denote by ®,, the so-called Kruzhkov entropy flux associated with f,(u) = % — vu:
R?  — R

(a,b) +— sgn(a—0>b) ((%—va)—(%—vb))

D, :

and we define

- . R? x R? — R

=0 ((0mvag) (bosbe)) > Dulas,b) — Bular,by)
Proposition 1.3. If both (a—,a+) and (b—,bs) belong to Gx(v), then

Ev((a—,a4), (b=,bs)) > 0.
Conversely, if (a—,ay) is such that
V(b-,b1) € Ga(v), Euv((a-,a4),(b-,b4)) >0,
then (a—,a4) belongs to the germ.
Definition 1.4. A subset Hx(v) of Gx(v) is said to be maximal if any (a—,ay) that satisfies
V(b-,by) € Ha(v), Eul(assas), (b-,bs)) > 0 (3)

belongs to the germ Gy (v).

We will prove in Proposition [3.8 that gi U gi (v) is maximal. In the sequel H(v) always denotes a
maximal part of Gx(v). We now focus on alternative traceless characterizations of entropy solutions. For
all (c—,c+) we denote by ¢ the piecewise constant function

c(t,z) = c-Luch@e) + c+la>ne),
and by dist1(a, X) the L'-distance of a point a := (a—,a+) of R? to a set X included in R?:

disti((a—,a+),X)= inf |a— —z_|+|ay — 24|
(@_mp)eX

Proposition 1.5. Let h be a function of Wfocoo (Ry) and let u be a function of Lis. (R4 x R), which is
an entropy solution of the Burgers equation on the sets {(t,z), v < h(t)} and {(t,z), x > h(t)}. The
following assertions are equivalent.

e For almost every time t > 0, (u_(t),u4(t)) belongs to Gr(R'(t)).

e For almost every time t > 0, for all (c—,cy) € R?, there exist § € (0,t) and a constant A depending
only on ||u°]|co, A, (c—,ct) and ||B'||co such that for every nonnegative function @ in C§°((t — 6, +
0) X R),

/]R /R|u —c|(s,x)0cp(s,x — h(s)) + Py (u, ¢)(s,2)0xp(s, x — h(s))dx ds

>-A A dist1 ((c—, ct), Ha(h' (5)))e(s, 0) ds.



Proof. For the sake of completeness we reproduce here the main ingredients of the proof that can be
found in [AS12]. Let ¢ be in C§°((t — d,t +0) X R), where § belongs to (0,t). For positive &, we introduce
the function

((2) = 1 — min(L, |2|/e),
whose support is (—e, ). The support of the function

Pe(t,x) = (1= C)ep(t, = — h(t))

is included in {(¢,z), ¢t > 0,  # h(t)}. The function u is a entropy solution of the Burgers equation on
the sets {(¢,z), z < h(t)} and {(¢,z), x > h(¢)}, thus for all real &,

//RMR lu(s, ) — #|0se (s, @) + Po(u(s, 2), k) Datpeda ds > 0.
But 959 (s,2) = 8s((1 — C=)) (s, 2 — h(s)) — K (8)dx((1 — C=)) (s, — h(s)), and we using the fact that
@y (a,b) = Po(a,b) — vja — bl
we obtain
// = el(5,@)(0:(1 = C)e)(s = hls) + @o(us (s 2)0:(1 = ) (s — h(s))dods 2 0.
Thus W(:have

//R . lu —c|(s,2)0cp(s,x — h(s)) + Ppr 1) (u, ¢) (s, 2)0xp(s, x — h(s))dzds

e—0

> timint [ = cl(5,2)(O0(Gep)) (5 = h(s)) By (0.0)5,2) 0 () (5 = ()
- / By (1 (5), =) — Bprgey (1 (5), 4. )p(5, 0)ds

- / Z o) ((u(5), 4 (5)), (- e4))ip(s, 0)ds

For all s for which the pair (u_(s),uy(s)) exists and belongs to Gx(h'(s)), we denote by (¢_(s),c+(s)) a
L'-projection of (c—,cy) on Ha(h'(s)). We have

En(s) ((u—(8),u1(5)), (¢~ (5), ¢+(8))) = Enr (o) ((u—(8), u+(s)), (¢-(s), ¢
— B () ((u=(5), u+(s)), (¢~ (5), ¢4(5))) = B (s) ((u—(5), u(s)),
Since (é—(s), ¢+ (s)) belongs to Hx(h'(s)), Proposition [L3] yields

/R S ey (u (), s (), (6 (), 24 (5)))p(5, 0)ds > 0.

On the other hand
1Zn(5) ((u=(5), ut(5)), (c=(5), c4+(8))) = Epr(s) ((u=(5), u+(s)), (€~ (s), €+ (s)))]
< 10 (= (5), € (5)) — D (10— (), (5))] + [P (s (), e (5)) — P (s (), 4 (5))

which is smaller than a constant depending only on ||A’||sc, ||t||c0, ¢ and X (since ¢ — & depends on \),
multiplied by the L'-distance between (c—,c4) and (é—(s),é+(s)), and we obtain the result.

Conversely, using a sequence of test functions ¢ concentrating at a time ¢ for which u has traces in
Proposition F], we obtain that for all (c_,ct) in Ha(h'(t)),

Ew @) ((u—(8),u+(t)), (c-, c4)) 20,
and thus by Proposition [[3] (u—(t),u(t)) belongs to the germ Gx(h'(t)). |

Proposition 1.6. Let u in L. (R xR) be a solution of the Burgers equation on the sets {(t,z), z < h(t)}
and {(t,z), © > h(t)}. Consider a function h in W (Ry4) which verifies (@) with initial data h(0) = h°
and 1'(0) = v° almost everywhere if and only if for all € € C§°([0,T)) and for all ¢ € C§°(R) such that

P(0) =1 g
/ mph t)dt = mp°E(0 // 7 Y (x — h(s))dsdx
+ /R /0 u(s,z)[€'(s) — 1 (s)¢' (z — h(s))]ds dz: (5)
+/Ru°(x)w(x — h(0))&(0)dz.



Proof. This characterization were proved in [ALST10]. It follows from the application of the Green—Gauss
theorem and the fact that u is an entropy solution of the Burgers equation away from the particle:

[ 6000 = o))+ s, )€ ()~ (60 o~ (s d
:/ / (5, 2)0u (0 (x — (5))) + u(s, 2)Ds (E0(x — h(s)))ds d

[ L. i

e (( 2 o)) - (B W pusts) ) ) as

/ o (56(s)ds = [ u (2)o(a — h(O)EO)da.

(az% tu) (€v)deds — [ (x)ota = n(O)EO)s
9

O

We now present the family of finite volume schemes for which we prove convergence. The proof follows
the guidelines of the Lax—Wendroff theorem. In Section[2] we obtain a BV bound on the fluid velocity and
a W2 bound on the particle’s trajectory that allows to extract convergent subsequences in L}, (R x R)
and W, O’C‘X’ (R4+). The difficulties are to treat numerically the interface conditions enclosed in the germ and
the coupling between an ODE and a PDE. More precisely:
e First, we have to take into account at the numerical level the interface condition of Definition [Tl
We will use schemes that preserves a “sufficiently large” part of the germ.

e Second, to deal with a moving particle. It is crucial that the particle lies at an interface of the mesh
at the beginning of the time step. To do so and avoid the problem of the replacement of the particle,
we use a mesh that tracks the particle and we update the particle’s velocity by conservation of total
impulsion.

Let us fix a time step At and a space step Az. In the sequel we suppose that the time step and the space
step are proportional, and we denote by u = % their ratio. We propose to approximate the solution
of () with a finite volume scheme. We use a mesh that follows the particle, which is placed between
the cells numbered 0 and 1. The speed of the particle is approximated by a piecewise constant (v™),en.
Given the solution a time nAt: we consider that the particle has constant velocity v™ on the whole
time step (nAt, (n + 1)At) to update the fluid velocity, then we update v™ by conservation of the total
impulsion. The interface 1/2 where the particle lies is special, and we have to use appropriate fluxes at
this interface. Due to the source term7 the equation is not conservative around the particle, thus we have
two different fluxes f]';, /2 and f1 J2 on the left and on the right of the particle respectively. Away from
the particle, Equation (Il) writes as a scalar conservation law, and we can use any standard flux for the
Burgers equation. The scheme is initialized with

0
1 Ti+1/
Vi ez, ud = E/ 0 () da.

j—1/2
From the integration of the first equation of () on the space time cell
Cl ={(nAt+ s,z 10 +y+sv"),0<s <AL 0 <y < Az},
we obtain the finite volume scheme

uf = = p(f (V") = [l (0™) for j € Z,5 ¢ {0,1},
“gﬂ =ug — H(ff/zf(vn) - f31/2(vn))7

upt ™t =l — (5 (0") = flye 4 (0), (6)
g AL, (0) — [l (07),
x?“ =} + " At

Here we emphasized the dependency of the flux on the particle’s velocity. In the sequel we denote by uat
the constant by cell function
uat(t,z) =u; if (t,z)e€Cj. (7)

and by va: and ha: the constant and linear by cell functions:

vae(t) =" i nAt <t < (n+1)At,
hae(t) =h" + At o™ 40" (t —nAt) if nAL <t < (n+ 1)At.



Another way to proceed is to performed the change of variable
a(t,z) = u(t,z + h(t))
in (). This function verifies the PDE

il + O, (; — W (t)a ): — (@i — h')do(x) (9)

The particle is now motionless but the flux depends on time. We denote by f,(u) = “72 —vu. Integrating (@)
on [nAt, (n+ 1)At] x [379'71/27 x?+1/2]7 and using special flux around the particle (still placed at interface

1/2), we obtain the finite volume scheme

a;H_I =aj — N(f;+177/12 fJ 1/2) for j € Z\{0,1},
(f

att = = " = ), (10)
ﬂ’?-’_l =ay — (f;,)/gn ff/g’n:)y
e T (f1/2 - ff/2’n+)4
The two points of view are illustrated on Figure
O+ 0y = —A(u— I ()3 () Oyt + 0, (— —W(t)a ) = (@ — I)do(z)

Ty /2 nl

0
€T 0
1/2 12

Figure 2: To approximate the solution of (), we can either use a mesh that follows the particle (on the
left) or straighten the particle’s trajectory and approximate the solution of (@). In both case, the particle’s
trajectory is the bold line.

The fluxes f;';/5(v") with j # 1/2 (or f1/2( ") if j = 1/2) are strongly related to the fluxes f )
in @), f}%1/2(v") is an approximation of

12

1 (n+1)At 0 N . .
[T g
nAt

n
while in (0), fﬁl/g is an approximation of

1 (n+1)At o o
E / f (U)(t7 :Ej+1/2)dt
nAt

In the following we prove the convergence of Scheme (@) under a set of assumptions on the fluxes
fii1s2 fiye,— and fi% 5 | and a Courant-Friedrichs-Lewy condition. We restrict the study to two-points
fluxes

+
fjn+1/2 = g(u?,u;ﬂrhvn) and f1n/2 + = g (U;L7U;L+17Un)4
The assumptions on the flux f},,, away from the particle are the classical ones:

e consistency with the modified Burgers equation:

VCLGR7 VUER7 g(CL,CL,’U): % — va, (11)



e monotonicity with respect to the first two arguments:
V(a,b) € R®, Yo € R, dig(a,b,v) >0 and 8ag(a,b,v) <O0. (12)
e g is locally Lipschitz-continuous; (13)

they ensure convergence of the scheme to an entropy solution of the Burgers equation away from the
particle.

The assumptions on the fluxes around the particle are the following. We first have some consistency
assumptions, which ensure that some particular solutions corresponding to a large enough part of the
germ are exactly preserved by the numerical scheme. We do not ask the flux to preserve the whole germ
though, but only, in Section Bl with a mazimal part of the germ, and in Section ] with G3. More precisely,
the hypothesis on the fluxes gf are:

e consistency the part Gi of the germ:

2 2
Yo € R, Y(a,b) € Gy, g5 (a,b,v) = % —wva and g (a,b,v) = % — vb. (14)

In Section @] we make the stronger assumption that g is consistent with a mazimal subset Hy of Gx
(see Definition [I.4)
a? b?
Vv € R, V(a,b) € Ha(v), g (a,b,v) = 5 —va and g (a,b,v) = 5 vb. (15)
Hypothesis ({I4) will be used to prove BV estimates on the fluid part (u});cz nen. We also assume that

e if the particle has the same velocity than the fluid, its velocity does not change:
Yv € R, gy (v,v,0) = g;(’u, v, ). (16)

This hypothesis will be used to prove a L* bound on the particle velocity (v™),en. We add two classical
conditions of regularity and monotonicity, also used to prove the BV bound on (u});ez nen. We assume
that:

e both g5 and g are locally Lipschitz-continuous;  (17)

e g, and gi are nondecreasing with respect to their first arguments, and nonincreasing with respect

to their second arguments. (18)

Just like in [AS12|, we need a dissipativity property to prove discrete entropy inequalities. Moreover, it
will also be a key assumption to prove the bounds on the particle’s velocity.

e The function g, — g;L is nondecreasing with respect to its first two arguments. (19)
For this family of finite volume schemes, we are able to prove the following convergence theorem.

Theorem 1.7. Consider a finite volume scheme of the form (B)) that satisfies the set of hypothesis (IIHIF))
and [IBHIY), and [@H) in Section[d Suppose that u’ belongs to BV (R) N L*(R). Let us denote by L the
largest Lipschitz constant of g, g* and g~ on the set [m, M]? x [v, 7], where

m = min{essinfp— u® — ), essinfp+u’},
M = max{esssupg- u’, esssupg+ u’ + A},
v = min(m,v°),
T = max(M, v°).

Then, under the Courant-Friedrichs-Lewy condition

Lp< s, (20)

the sequence (uat) converges in Lio, (R4 x R) toward u and the sequence (hat) converges in WL (Ry)
toward h when At tends to 0, where (h,u) is the solution of ().

The next three Sections are devoted to the proof. In Section [2] we prove bounds on the total variation
of the fluid and on the acceleration of the particle, which permit us to extract converging subsequences.
Then in Section B} we prove Theorem [[7] under Hypothesis (I3]), which is sufficient to obtain a discrete
version of (@)). In Section [d we drop hypothesis ([I5]) and prove the convergence of the family of schemes
such that

gi(a,b,v) :g(a—)\,b7v)7

where ¢ satisfies assuptions (IIHI3)). This type of schemes was introduced in [AS12]. They only preserve
the part G of the germ, in the sense that if (a,b) belongs to G}, then

9x (a,b,v) = f"(a) and gy (a,b,v) = f*(b).

We recall that g; is not a maximal subset of Gx(v). Under the set of assumptions specified above
(except ([I3))) we extend the proof of convergence of [AS12] to the fully coupled case ().

{g;(a,b,v) — g(a,b+\,v),



2 A priori bounds
In the sequel we suppose that u° belongs to L*(R) N BV(R), that Hypothesis (), (IZ) and (I3)) on the
flux g are fulfilled, and that the monotonicity and regularity assumptions (I8) and ([I7) on g& are verified.

We will specify the consistency hypothesis on g% along the way. We first consider the uncoupled problem
where (vV")nen is fixed.

Proposition 2.1. Let u° be in BV(R) N L*(R). Let (v™)nen be given and v and © in R such that
VYneN, v<o" <o
Consider the finite volume scheme

U;H_l = u? - N(g(u?7u?+l7vn) - g(u?—17u?7 ,Un)) fOT‘j € Y/ \ {07 1}7

Ugﬂ :ug —u(g;(u87u?,v”)—g(uﬁl,u{{w")L
u’ll+1 = ’U{L - lu‘(g(u?7u£b7 vn) - g;\‘»(u(y)z u?7vn))'

Suppose that the fluzes g* verify () and that the CFL condition @0) holds. Then we have the following
L and BV estimates in space on uat, with m and M the constants of Theorem [

Yn>0,Vj€Z, m<uitt <M (21)
and
VneN, Y fuf —uf_i| <D |uf — |+ 2\ (22)
JEL JEL

Proof. Due to the presence of the particle, the maximum and the total variation of the exact solution
u of () can increase through time. For example if u® is constant equals to 0 and if v° > X, then
[[u(0, )| oo &) = |[u®]| oo ry + A and [[u(0F, )| pv (=) = [|[u’]|Bv(®) + 2A (see [LSTO8], Lemma 5.7). This
prevents us for applying the LeRoux and Harten lemma (see [Har84] and [LeR77]) directly to (u});ez, nen.
Yet it can be applied to the sequence (w});ez, nen defined by
n_ Jui =35 ifj<0,

uf +3% ifj>1.
Let us prove that there exists two families of real (C7'\;/5)jeznen and (D] /5) ez nen such that for all
jin Z, for all n in N,

ntl

wi = wi + Cih (Wit — wy) — Di o (w) — wiq), (23)

and

0<1-C}1/2—D}1p<1,0<C10<1 and 0 < DYy q/0 < 1.

+

In other words, w? L writes as a convex combination of wi_q1, w; and wjy; and therefore,

. 1
Vn > 0, minw;, < w;”L < maxwy,.
k k

As a consequence, for all n € N and for 7 <0,

mkinwg +A/2<u; < rnkaxwg +A/2

which rewrites
mll’l{ 7“87u(1)+)‘7}§u? Sma’X{'” ,US,U?+)\,“‘}-

Similarly, for all n € N and for all j > 1,
mll’l{ 7“87>‘7u(1)7”'}§u;} Smax{'u 7’“’87)‘7'“(1)7'”}7

hence the L*™ bound (2I]) is proven. Moreover, the LeRoux and Harten lemma yields

Ve N, Y |witt —wi <> jwl —wil,

JEZ JEL

and thus (22)).



Let us go back to the existence of C},,/, and D}_,,,. In the sequel we denote by |a,b| the interval
[min(a, b), max(a, b)]. Suppose first that ([23)) holds for some n € N. Then for every j < —1, there exists
w?—l/Q € |wi_1,w;| and w?—q—l/Q € [wj, wit]|

with = wf = (g(uf, ufea, 0") = g(ujor,ug, "))
A A A A
= wj —p <9A (w? + 57“’%1 + 571)”) — 9 <wy 1+ 35 7wg + 5#}"))
A n A n n n
= wg 019x ] 12+ 5 5 , Wit1 + 570 (wj *wj—l)
n A _n A n
+029x | wi—1 + 50 Wit1/2 + 7Y (wj1 — wy)
Both triplets (@}, /5 + 3, w}1 + 5,0") and (wj_; + 3, @}, /5 + 5,v") belong to [m, M]? x [v,9]. The

CFL condition (20), and the fact that 019 > 0 and 929 < 0, yield (23] with
D?71/2 —Nalgk( wj— 1/2+%7w?+1+%7vn)7
Clirjp = —pudaga (Wiy + 5, @041 )n +5,0").

The case j > 2 can be treated in the exact same way. We now turn to the trickier case j = 0. The facts
that gy is consistent with G} and that g is consistent (Hypothesis (I4) and (II))) imply that

(4 g =20 o (g + 4
gx 'lU() ,’U)() 271) =gx | Wo 2711}0 271} )

which allows us to write

wtt = wg — p (g5 (ug,ul,v") — g(uy,ug,v"))
= wy — N w"+éw"févn - w"+)\w +)\
— Wwo 1 g)\ 0 27 1 27 gn —1 27 0 27
_ A A _ A A
:w(r)bifj‘(g/\ <w8+57w?7§7vn)79/\ <'LU(T)L+§, 27 )
A A A A
+9x (w{f—i—?w{f—&—?v")—w (w 1+ 5 7w0 +§7Un>>

Thus, there exists @, ,, € |w™q, w§| and (PN |wg , wT| such that
_ A A
e ] Y G R X Y

~ T A n A n n n
+01gx [ Wl1)2 + 5 W0 + 5,0 (wy —wZy)

Once again, both triplets (wg + %,w?ﬂ —2,v") and (wg + 3 Wy )y + 3,v") belong to [m, M]* x [v,v].
The monotonicity on g and g, allow to conclude with

D, = pdiga (0" 12+ 27w0 +3,0"),
C{L/Q = _N’an)\ (w() + 27w1/2 271) )

The case 7 = 1 can be treated in the exact same way, using the consistency assumption

+ wn_"_éwn_évn — wn_éwn_évn
9 1 27 1 27 gx 1 27 1 27 .

We now turn to the case where the particle’s velocity is updated from time to time, and focus on the
estimates on the velocity and acceleration of the particle.
Proposition 2.2. Suppose that the fluzes g& verify @8), () and @0) that the time step verifies
4L
—At <1, (24)

mp

Then, the sequence (u})jcznen (defined by (@)) verifies Estimates 1) and 22)), while (v")nen verifies
the following estimates:

O

vneN, v<ov" <7, (25)
and "
R Vi 2L 0
N < = oo + A o). 2
VneN, [E | € 2 (e + A+ ) (26)

The constants v and v are defined in Theorem [



Proof. We proceed by induction. Let us first remark that if the estimate (25) on v™ is fulfilled at time ¢",
the proof of Proposition [Z1] yields the L® and BV estimates on (u?+1)jez. Therefore, we focus on the

estimate on v"*!. Using Hypothesis (8], we introduce the null quantity gy (V™ 0", 0") — gi (v™, 0™, ")
and write
n+1 At n
v = +_(9A(U07U170 ) = gx (ug, ut,v™))
(/ Os(gy (V"™ + s(ug —v™),v"™ + s(ul —v™),v™))ds
: / 00" + U — ™), s(uf — "), 0")ds ).

0

and we obtain
n+1 n At ! n n — + n n n n n n n
o= SE( [ 0Mai(gT — g s — "), 0"+ s — "), 0")ds
» \Jo

1 (27)
* / (uf —v™)a(g™ — g7 (W" + s(uf —v™), 0" + s(uf — v">w">d8>

0
Suppose now that v < min(ug, uy). Then both (uf —v™) and (uf — v™) are nonnegative. Moreover,

the dissipativity assumption (IT) implies that 91(¢~ — g*) and 92(g~ — ¢g™) are also nonnegative. Hence
we have v" T > 0™ and Hypothesis @) yields

"< +2L£(071} +ur —o")
S( 4LAt) n+4LAt max(ull, ul)
Myp
<.

We now treat the case ug < v"™ < uf. The only difference is that ug — v™ is now negative. The integral
form @) of v™ ! and Hypothesis [25) yield

At At
v< vt = 2L = (v" —uf) <" <W" 4 2L = (u} — ") < %
mp myp
Once the L* bounds on (u}) ez nen and (v™)nen are proven, the bound of the particle’s acceleration (26)
is an easy consequence of the integral form of v"*1. O

Remark 2.3. Condition (24) is fulfilled for small enough A¢. Thus it is not a restriction to prove the
convergence of the scheme. However from the numerical point of view, one has to check Condition (24)) in
addition to the CFL condition ([20). This restriction is severe if the particle is very light. It is possible, at
the cost of solving a nonlinear system, to use an implicit version of Scheme () for the particle’s velocity,
ie.

;LH = uj — p(fi4a2(0" 1) fie 1/2(vn+1)) for j € 2,5 ¢ {0, 1},
U =l = (e (") = T (07)),

U?Jrl =uy — M(f3/2( ) f1/2,+( +1))7
VL = AL, (07 = f, (),
n+1 n n
T =z +v"At.
j J

In that case, we obtain Bounds (23) and (26) without Constraint (24]) on the time step. The proof is
exactly the same than the one of Proposition For example in the case where v" ! < min(u}, ul), we
obtain At
o™ <" 4 2L = (ug — "+l — o™,
myp
and thus, without any constraint on At other than (20,
o™ + 2LAL (uf 4 uf)
< L < % A
14+4L==
mp

We are now in position to extract converging subsequences of (ua) and (ha) (defined in (@) and ().
In Section [B] we will prove that their limits are solutions of the Cauchy problem () for the fully coupled
problem.

Proposition 2.4. Assume that u° belongs to BV(R) N L*(R), and that Hypothesis (I1{14) and {IBII)
are verified. Moreover, suppose that the CFL condition (20)) holds. Then there exists u in BVjoc(R4+ X R)
and h in I/VZQOCC>o (Ry) such that, up to a subsequence, the sequence (uag) converges in Li,.(Ri x R) toward
u and the sequence (hat) converges in W, >°(R) toward h as At tends to 0.
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Proof. Let us first fix a time 7' > 0 and a constant A > 0 and prove the convergence in L'([0,T] x
[~A, A]) and W' °°(]0,T]). By Proposition EI] we can use Helly’s theorem to prove the convergence in
L'([0,T] x [~A, A]) of (uat), toward a function u in BV(([0,T] x [~A, A])). Similarly Proposition
allows us to apply Arzela-Ascoli’s theorem to prove convergence in W ([0, 7]) of (ha:) to a function h
belonging to W ([0, T]). The result is extended to the whole time-space R} x R thanks to the Cantor
diagonal extraction argument. O

Remark 2.5. Up to the same subsequence, (va:) converges toward h’ in L},.. Moreover the sequence of
functions (ca¢) defined by

(t ) c. it < haz (t),
cat(t,z) = .
at ct it > hag(t),

converges in L}, toward

Ccy if t > h(t)

{c_ if £ < h(t),
Indeed, we have

A T T
/ / leae(t, @) — c(t, x)|dtdx < |cy — c_|/ |hae(t) — h(t)|dt < 20T At.
—aJo 0

A

3 Convergence of schemes consistent with a maximal part of
the germ

For now on, we suppose that all the hypotheses of Proposition 24 are fulfilled, and that both Condi-
tions (20) and (24]) are verified. The aim of this section is to prove Theorem [[L71 To that purpose, we
prove that under Condition (IZ]), which states that the fluxes gf around the particle are consistent with
a maximal subset H of the germ (see Definition [[4]), the limit (u, k) of the scheme is the solution of ().

The fact that the Cauchy problem () is well posed in BV (R) is proven in [ALSTT3]. Once we know
that Scheme ([f]) converges toward a solution of (l), the uniqueness of the solution yields that the whole
sequence (uat, hat) converges. Theorem [[7] gives a different way to prove the existence of a solution (but
not the uniqueness).

3.1 Convergence of the fluid’s part

The aim of this subsection is to prove that the limit u of (ua¢) verifies {@l). We prove in Proposition
that (u});ez nen verifies a discrete version of (). In the sequel, for all reals number a and b we denote by

aTb=max(a,b) and by alb= min(a,b).

In the following proposition, we establish a discrete entropy inequality.

Proposition 3.1. Assume that Hypothesis (IIHI9) hold (included ([IH)) and that the CFL condition (20])
is fulfilled. Then for all (c—,cy) in R?, there exists a constant A, depending only on X, |[u®||co, ||v]|co
and (c—,cy), such that for all j € Z, for all n € N, the following inequality holds:
|u7+1 —cj| = |UZL - ¢4 I G;L+1/2,— - G?—1/2,+
At Ax

A . "
< g5 5, disti((e—, ex), Ha(0")), (28)
where
Vj#0, Giriyz,— = Girio4 = Giaye,

with
n n n n n n n
Ghiie = g(uj Tej ujp Tejn,v™) — g(uf Lej, ujpr Lejr,v™),

+ +
GT/a,x = g5 (ug Teo,uy Ter,v™) — g (ug Leo, uy' Ler,v™),

c- ifj <0, 1 ifje{0,1},
¢ = o and €5 = )
c+ ifj>1, 0  otherwise.
Proof. We follow the guidelines of proofs of classical entropy inequalities. They rely on the identity
|u;hLl —cj| = u?Hch — U;L+1J_Cj.

For j € Z\ {0, 1}, we use the condensed notation u?“ = H(uj_y1,uj,uj11,v"). Hypothesis (IZ) on the
monotonicity of the fluxes and the CFL condition (20]) ensure that for every v, H is increasing with respect
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to its first three arguments. Moreover if j € Z \ {0,1}, ¢j—1 = ¢; = ¢j4+1 and we use the consistency of
the flux away from the particle (1) to write ¢; = H(c¢j—1,¢j,cj+1,v"). It follows that

n+1 _ n n n n n
uwi T Tey = H(uj_q,u),ujyr,v" ) TH(cj-1,¢4,¢541,0")
n n n n
< H(uj_1Tej—1,u) Tej,ujir Tej,v™)
n+1 n n n n n
uy Le; = H(uj_,uj, ujyr,v") LH(¢j1, ¢4, ¢i1,0")
n n n n
> H(uj_q1Llcj1,u; Lej,ujrLejpa,v™)
and that
n+1 n n n n n n n n
[u; ™" —cjl < H(uj_1Tej—1,u; Tej,ugp Tej41,v") — H(uj—y Lej—1,uf Lej,ujpy Lejpn,v™)

<uiTe —ujle; — w(Giyije — Gi_1/2)
< |uf = el = m(GFia2 — Gio1y2)
Let us now focus on the more complicated case j = 0 (the case j = 1 can be treated in the exact same

way). We denote by (é3,&") a projection of (c—,ct) = (cf,c}) on Ha(v™) for the L'-norm, and by

(€})jeznen and (G 5)jez,nen the analogues of (cj) ez and (G7;/2)jez,nen constructed with é:
vy #0, G;L+1/2,— = G?+1/2,+ = G?+1/2 = g(uj Té&j,ujy1 TE11,v") — g(uy L&, ufty Léjr1,v"),

e + P ~ + ~ -
GT/a,x = gy (ug Téo,uy Tér,v™) — g (ug Léo, uy Lér,v™).

Let us first remark that

lug ™ — co| — |ug — col < |ug™ — & +|& — col — |Jup — | — |& — col|
< |u6“r1 — ¢ = |ug — 2|+ 2|ég — col.
Thus we have
lug ™! — co| — ug — co N Giro - =Gy )
At Ax
lug™ — | —|ug — | | Gipm —Glipp 2 n
< ’ — dist _
< = B EERE L dista (oo ), Ha(07)
n,_ —G" Gy —G™ 2
i e L2 4 = distr (e o4), Ha(v™).

- Ax Ax At
Indeed, as (&, ¢T') belongs to Ha(v™), Hypothesis (5] yields that ¢ = Hx(¢% 1, &, ¢T,v™), and we obtain

as before

lug ™t — & < Juf = &| — w(Glr12 — Gio1/2)-

We now attempt to bound
Gt — é?/g,_ =g, (ug Teo,uf Ter,v™) — gx (ug Leo,ul Ler,v™)
—gx (ugTéeg,ulTey,v™) + gy (ug Lég,uy Ley,v™).

As (v™)nez is bounded (Proposition 2.2]), the maximum and minimum over n of ¢} is a bounded function
of (c—,c4) and ||v||oo. Thus the set

[min(m7 C—, C+, éﬁ? Ei)? ma‘X(My C—, C+, éﬁ? 61)12 X [27 17]'
is compact. Therefore, with L. the Lipschitz constant of g, over this set, we have
lgx (u6 Teo,ur Ter,v™) — gy (ug Tég, ui TEr,v")]
<|gx (uo Teo,ul Ter,v™) — gy (ug Tég,ur Ter,v™)|
+ |g; (U3T66L7 U?Tch Un) - g; (U3T66L7 U?T5?7 Un)l

< Ledisty (e, 1), Ha(v™)),

and similarly
lgx (ug Lo, uy Ler,v™) — gy (ug Tég, uf TeT,v")| < Ledisti((e—, c4), Ha(v™)),

which concludes the proof with A = 2L, + QAA—t’”. O

We are now in position to obtain a discrete version of ({@]).

12



Proposition 3.2. Let (¢} )jcznen be a compactly supported sequence of nonnegative reals. If @8) holds
for alln in N and j in Z, then

n+1
n P -5 ©y w5
AtAzx Z luftt — |JTJ +AmZ|u]—cJ|<p]+AtAx Z G+1/2%
JEZL,nEN iE€EZ JEZ* ,neN (29)
+AtAxZGJ+1/2+S0A7% > AAtZ dist1(c, Ha(v™))(¢o + ©1)-
neN neN

Proof. Classically, the starting point is to multiply Equation @8] by ¢} and to sum over j € Z and n € N.
Then the different terms are rearranged to bring out discrete time and space derivatives of . However,
this is not straightforward around the particle, because two different fluxes are used on its left and on its
right. The first term of (28)) yields

|u;l+1 n+1

gl =i -l n+1 ¢j — ¢ 1 0 0
> 7 = > I *CJ|T*EZ|“J'*CJ'|%7

JEZMEN JELZMEN JEZ

and the second term yields

n —Gn n
+1/2,— —1/2,+ =n 90 +1 P1 n
> Az . or= > GJ+1/2 =+ Z G1/2 N

jEZ,MEN jJEZ* neEN neN
SO]+1 n n
= E GJ+1/2 + § 1/2,— — G1/27+)
JELZ* ,neN nEN
n n
$0 ~ L1 An
+ Az 1/2,+-
neN

We almost have a discrete version of [#)). The following lemma ensures that the corrective term

00 m "
ZA_(:)E( 1/2,——G1/2,+)

neN

has the correct sign.

Lemma 3.3. If g, — g;L is nondecreasing with respect to its first two arguments then we have the dissi-
pativity property
?/2,— - G?/2,+ 2 0.

Proof of Lemma [73 Let us denote by a = ul Teo, @ = ufLco, b = ulTer and b = u} Ley, such that
a > a and b > b. The dissipativity property holds if and only if

9x (a7 b, Un) —gx (@b, Un)) > gj\_(av b, Un) - gj\_(av b, Un)v

which is a straightforward consequence of the monotonicity of g, — gi with respect to its two first
variables. 0

Let us go back to the proof of Lemma[32 Hypothesis (TJ) exactly says that g5 — g is nondecreasing
with respect to its two first arguments. Thus we can apply Lemma [3.3] to obtain

G” - G7

Jj+1/2,— j=1/24+ n <PJ+1 <,00 <p1

> Az D S R S aci
jE€Z,neN JEZ* ,neN neN

Eventually, we have
D e dista((en ), Ha () = = D disti((emen). Hav") (65 + 1)
JEZMEN neN
and (29) is obtained by regrouping all the terms and changing their signs, and multiplying by AtAz. O

Passing to the limit At — 0 in Equation (23], we obtain the following proposition.

Proposition 3.4. Ifu® belongs to BV(R)NL'(R), if the CFL condition Q) holds and if Hypothesis (I1+
[19), (included [A)), are fulfilled, then the limit u of (uat) verifies Inequality [@) for any monnegative
function ¢ in C§° (R4 x R).
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Proof. For small enough At, Condition (24) is verified. Let us fix (c_, ¢4 ) in R?, and prove that for every
nonnegative ¢ in C§°, the discrete inequality (29) converges to the continuous entropy inequality (@),
where the sequence (¢} ) cz nen is defined by ¢ = @(nAt, 7 — h™). We recall that C}' is the space-time
cell

Ci ={(nAt+s,x7_1/5+y+sv"),s € [0,At),y € [0, Ax)},

that A™ is the discrete position of the particle’s trajectory deduced from its velocity:

RN =R " AL
and that the mesh is moving with the particle: x?“ =z} +v"At. We first treat the first term of ([29).
The sequence of piecewise constant functions ((a¢) defined by

1 _ g
Cat(t,z) = % if (t,2) € C; !

converges uniformly to the function (¢,z) — (d¢p) (¢, —h(t)). Indeed, for every (¢, x) € CJ’-”LI7 there exists
t € [nAt, (n + 1)At] such that

n+ 1AL " — BT — o(nA ,xy —h"
(Can(t.) = (@)t — (o] = P DEET TR ) 2B T =D _ )1, = et

= |(8ep) (E, 2 — B™) — (Desp)(t, @ — h(t))]
S O(|t =t + & — x| + " = h(?)])
< C(At+ Az + ||hat — h|]oo)

We used the fact that x?“ —ptt = xj — h". We conclude thanks to Remark 23] :

it — o
1 j J
T S A i 2:/+JMFwM@MMx

JEZ,nEN j€zneN’ €}

:// 1i>adluar — catlCardt dx
R IR,
>// lu — ¢|(0rp)(t, & — h(t))dt dx
RJR,

On the other hand,
TN Dc/ Ryt / Garbardt da
r e<— 47 JRy

7<0,mneN

where for every (¢,z) in C}' ;5 = {(RAt + 5,25 +y +0v"s),0 < s <AL, 0 <y < Az},

A A
Ga(t,z) = G172 =g (um (t,-’v - Tx> Te—,uae (t,x + Tx) TCﬂUAt(t)>

—gx (um <t7x — %) dle_,une (t,x + %) Lc_wm(t))

oo n
Enelt,z) = %

and for every (¢, ) in CJ'-L_H/Q,

The sequence (£a:) converges uniformly to (t,x) — dup(t,z — h(t)). By continuity of translations in L',
the sequences (ua¢(t,- + £2))a¢ and (uae(t,- — &2))ar converge in Lj,,., and therefore up to extraction
almost everywhere, toward u. On the other hand, (va:) converges almost everywhere toward h’. The
consistency of the germ implies that Ga¢ converges almost everywhere to

Cc_

2 2
guTe—,uTe—,h') — glule—,ulc_,h') = sgn(u — c-) <(% — h/u> — (7 — h'c_>> .

As (uat) and (vat) are uniformly bounded in L°°, the dominated convergence theorem yields

AtAzx Z G?_H/Q%H/ / sy (u(t, ), ¢ )Owp(t, & — h(t))dt dx.
j<0,n€EN R_ /Ry

The second and fourth terms of (29)) are easily treated:

sz [uf — ¢jlp) — / [u® — ¢|p(0, z)dx
R

iE€EZ

14



and

= ST Ay
n

Eventually, we study the convergence of

))¢At(t7—%)+<ﬁm(tv%)

dt.
2

Atz dist1 (¢, Ha(v™)(e0 + 1) = 2/ dist1 (¢, Ha(var

neN Ry

ons(t,—E5)toas (6,55)
2

Clearly, converges uniformly to ¢(-,0). Moreover,

| dist1 (¢, Ha(vat)) — disti(c, Ha(h'))| = | dist1(c, (vas — b, vae — B") + Ha(R")) — disti(c, Ha(R))]
= |dist1(c — (var — B, var — '), Ha(R')) — dist1(c, Ha(R))]

< |UAt - h,|
and
Aty " dista (¢, Ha(v™)(9f + ¢1) — 2/ disty (¢, Ha(h'))g(t, 0)dt,
neN Ry
which concludes the proof. O

Remark 3.5. In [CS12|, the authors are able to derive error estimates for the Godunov scheme adapted
to a conservation law with a discontinuous flux (with respect to the space variable). The jump in such a
flux can be related to the presence of the particle in our case, and a treatment partially consistent with
the interface is also proposed in this paper. A careful investigation of the interface enables the authors
to prove adapted BV bounds, which are one of the main difficulties for obtaining error estimates. Due to
the particular fluxes we use around the particle, we can also prove here BV bounds, see Proposition 2.1
and one may expect to adapt the proof of |[CS12] and thus obtain error estimates for our numerical
methods. A

3.2 Convergence of the particle’s part

We now prove that the limit h of (hat) verifies (B). To begin with, we prove that a discrete version of ()
holds.

Proposition 3.6. Let (u})nenjez and (v")nen be given by Scheme (@). Then, for every compactly
supported sequences (£")nen and (V] )nen,jez such that 5 = Y7 =1 for all integrer n,

n _ ¢n—1 nen o pm legn—1
—mAt Z vni‘g & mv’e’ + AzAt Z uj WYy €

At S At
neN* neN* jEZ (30)
+ Ay ufP + AtAr > f " n i —VF
. J J _ j+1/2 Az
JEL neN,j#£0
Proof. We write
mY W = m Yy N+ ALY (i — Fip )€
neN neN neN
+ Amz Z uj — n+1) N(f;L+1/2 - fjn—1/2ﬂ g"%ﬁ
neN ;¢ {0,1}
+ sz [(Uo - Ug“) H(fln/z,f - ff1/2)] £
neN

+ Az Z [t —ui™) = u(fiye — fires)] €

neN

This comes from the fact that the sum of the last three lines is zero. We now rearrange the different
terms. On the one hand we have:

Z (fiv1y2 — fii12)€™ 0] = Z ff+1/2fn(¢?*¢;L+1)+anffl/27

neN,j<-1 neN,j<—1 neN

and on the other hand we have:

S e = Fir2)€ W = D flape W] = via) = > & i,

neN,j>2 neN,j>1 neN
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It follows that

my v =m0 A 30 (uf — T - AL YD [ (8] — ).

neN neN neN,jEZ neN,j#0

To conclude, we just have to rearrange the sum over n. Being careful with n = 0 we obtain

Z(Un+l _ vn)gn _ Z vn(gn—l _ gn) _ UO§0

neN neN*
and
Do —uphE T = Y (e - + Y uie’y],
neN,jez neN*,j€z JEL
and the result follows by regrouping all the terms. O

We can now pass to the limit At — 0 in Proposition B.6] to prove that h verifies ().

Proposition 3.7. Suppose that Hypothesis (IINI3) hold, and that the CFL condition [20Q) is fulfilled. For
all test functions & and ¢ such that ¥(0) = 1, the limit h of (hat) verifies Inequality (B).

Proof. Define
i =i —h") and £" = E(nAt).
Proposition applies if ¥y = YT = 1. Here, we only have

vj € {0,1}, |4} —1| < CAz.

The equality ([B0) holds up to the following corrections appearing in the left hand side:

1— nyen 1— Qpﬁ—l n—1
VAN S Akt e LRV Y PICRT)
neN* je{0,1} j€{0,1}

+AmAtZ<f_1/2£ n(1—%0) 1/10) — faE" n(d 1/)1))7

neN

which all tends to zero since ¢y — 1 = O(Az) and 97 — 1 = O(Ax). The sequence

1/)1 é-n _ Qpn lgn—l
At

Cae(t,z) = if (t,xz) € C}

converges uniformly to the function (¢,z) — ¥¢'. Indeed, by definition of the moving mesh, =7 — h"

g —1 _ p"~!. Therefore, Y= w;ﬁl and

A A S S o
At 77/1 At

which converges uniformly toward the expected function. Now, define Fa; by

A A
Fae(t,x) = g <UAt (tw — Tx) , UAL (t,az + Tx) ,vAt(t))

in such a way that for all (¢,z) in C\, s,

FAt(t, 1') = f;L+1/2.

By continuity of translations in L', the sequences (uae(t, -+ %))At and (uat(t, — Az ))At converge in L}, .,
and therefore up to extraction, almost everywhere, toward u. On the other hand, (vm) converges almost
everywhere toward h’. The consistency of the flux () implies that Fa: converges almost everywhere to

2
g(u,u, ') = % — K u.
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3.3 A family of scheme consistent with a maximal part of the germ

In this section we exhibit a family of schemes that verifies the set of Assumptions (IINI9). Let us clarify
which maximal subset of Gy is used.

Proposition 3.8. The part Hx(v) = Gx U Gi(v) is a mazimal subset of the germ.
Proof. Following [AST2| (see Equations (13) and (14) in this reference), it suffices to show that if
Zu((umyus), (v, 04)) 20 for any (v, vs) € G (0), (31)
then the stronger following property holds
Zo((u—,ut), (v—,v4)) >0 for any (v—,vi) € GA UG5 (v).

In the sequel we suppose that v = 0. The general case follows by translation. The two main arguments

are first, that Proposition [[4] implies that this is automatically verified if (u—,u4) belongs to the germ,

o2 ol
2

and second, that for all (v—,vy) in G3, < ’\2—2 In the sequel, (v—,v4+) always denotes an element

of G3. We proceed by a tedious, but not difficult, disjunction of cases.

e If u_ > X and uy > 0, then we want to prove that

R e
2 2 -
If we apply Equation ([BI)) to (X,0), we obtain that
2 _ 2 2
u- —uy A”
2 - 2

and the result follows.
e If 0 <wu_ < Xand uy > 0, then (u—,u4) belongs to the germ. Indeed, Equation (3I]) applied to
2
(u—,0) yields —uT* > 0 and therefore, u4+ = 0.

e If u_ <0 and uy > 0, then (u—,uy) belongs to the germ. Indeed, Equation (3I]) applied to (0, 0)
yields

and therefore, u— = uy = 0.
e Ifu_ <0and —A <wuy <0, then (u—,uy) belongs to the germ. Indeed, Equation (B3I applied to
2
(0, uq) yields 7“7— > 0 and therefore, u— = 0.
e I[fu_ <0 and <wuy < —)\, then we want to prove that

2
—v2

> 0.
2 2 -

and the result follows.

e If 0 <wu_ < Xand ugy < —M\, let us first suppose that u— > v_. We have to prove that

2 2 2 2
u? —vZ  ui —v
> 0.
2 + 2 -
But 0 <wv_ <wu_ and 0 > v4+ > u4, and we have the result:
2 2 2 2 2 2
v + vy < uZ +vi < u_+u+A
2 - 2 - 2
We now suppose that u— < v_. We want to prove that
2 2 2 2
u_ —v_ Uy — UVt
— > 0.
2 + 2 -
Moreover, (u—,u+) does not belong to the germ G, and therefore uy < —u_ — X\ and

2 _ 2 2 2 2 _ 2
ui —ul >2u_)\+)\ >)\_>v+ vZ
2 - 2 -2~ 2
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o If A <wu_ and ut < —A\, the result

2
+ v+
>0
2 + 2 -

is a straightforward consequence of

2 2 2 2
Uz Ur 2y VU
2 =" =73

e Eventually, if A <u_ and —A < wuq <0, let us first suppose that u4+ < vy and prove

2
+ v+
> 0.
2 + 2 -

It follows from
vi—&—v% ui—i—v% ui—i—u%
2 - 2 - 2 ’
Suppose now that u+ > v+ and uy > —u—_ + . The result

u? — 02 _ui—v+ >0
2 2
comes from
u?r —ut S —2uy + A2 S A2 < v — i
2 - 2 - 2 = 2

O

It is possible to find fluxes that verifies (I5) with H, = G1 U G3 and (J).

Proposition 3.9. The family of finite volume schemes defined by

g; (u*7 U+, U) = g(u,, min(u+ + )‘7 max(u*7 v))7 v) (32)

g¥ (u—,uy,v) = g(max(u— — A, min(uy,v)), u,v)

is consistent with Gy U G3(v) and verifies the monotonicity assumptions Blg;t >0 and ngf <0.

Proof. The proof consists in a simple verification. We first check that for all u— and u4 in R,
g3 (uyu = A,v) = g(u_, min(u-, max(u_,v)),v) = g(u_,u_,v)
and

¥ (us + A ug,v) = g(max(uy, min(uy, v)), ut,v) = glur, ut,v).

Then, we verify that for all u4 in [v — A, v],
05 (0,1,v) = glu_, min(uy + A, max(v,v)),v) = g(v,v,0)
and

¥ (v, us,v) = g(max(v — A\, min(uy,v)), us,v) = glus, ut,v)

while for every u—_ in [v,v + A,

g3 (u,v,v) = g(u_, min(v + A, max(u_,v)),v) = g(u_,u-,v)

and
gy (u—,v,v) = g(max(u_ — A, min(v,v)),v,v) = g(v,v,v).
Eventually, the monotonicity properties are implied by those on g as soon as soon as the first component

is not u4+ and the second is not u—. But if the first component is uy, then u4 < v and 825)1 =wut—v <0,
while if the second component is u_, then u— > v and 029, =u— —v > 0. O

It remains to prove that Assumption (I9) holds. This is not the case for every choice of flux g (a
counterexample can be found in [AS12]), but we can check it for three classical fluxes.

Proposition 3.10. The family of finite volume schemes B2) verifies that g5 — g;L is nondecreasing with
respect to its two first variables if g is the Godunov, the Rusanov or the Engquist—Osher numerical flux.
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111/1 111/3

Figure 3: Choice of the fluxes in the family of finite volume schemes (32).

Proof. Let us divide the phase space (u—,u+) in six zones, depending on which values are taken by g~
and g7

g(u—,u_,v) ifv<u_ <wup+ A zone I,
gy (u—,up,v) =19 g(u—,v,v) fu- <v<up+A zone 11,
glu—,ur + A v)  if uy + A <max(u—,v) zone III,
while
g(usg, ug,v) ifu_ —A<uy <w zone 1,
a¥ (u—,us,v) =< glv,us,v) ifu. —A<v<us zone 2,
g(u— — Auyg,v) if min(uy,v) <u- — X  zone 3.

These zones are depicted on Figure Bl If u, belongs to zones 1 or 2, g™ does not depends on u_ and
gy — g;r is nondecreasing with respect to its first argument. Similarly, if u— belongs to zones I or 11,
gy — g;r is nondecreasing towards its second argument. We focus on the case where u_ belongs to zone
111 or u4+ belongs to zone 3. Let us first remark that the case where u_ belongs to zone I'I] and uy is in
zone 3 reduces to the choice of flux studied in [AS12], where the monotonicity property has been proven
for the Godunov, Rusanov and Engquist—Osher scheme. Suppose that case u_ is in zone I and uy is in
zone 3. Then we have

(g; - gi)(u_7u+,’u) = g(u—,u_,v) —g(u_ = A ug,v).

For the sake of simplicity we assume that v = 0.

e If g is the Godunov flux, as u4 + A > u— > A, the Riemann problem between u_ — A and uy is a
shock traveling faster than v. It follows that
_ u_)? u_ —\)? A2
(gA—g,J\r)(u_,u+70):( 2) _ 3 ) :)\u_—7

is nondecreasing toward its first two arguments.

e If g is the Rusanov flux,

(95 —93)(u—,uy,0) =

and we have

_ U — A Uy — (u— — A U— — A
Oular = g um e 0) = = (MR - (e m A A
= u— + 3 uqg
R E—
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As u_ belongs to zone I, uy + A > u_, and the last quantity is larger than A. On the other hand,

x —(u- =X
9295 — g¥)(u—,uy,0) = _%

and this last quantity is nonnegative because u4+ belongs to zone 3.

e Eventually, if g is the Engquist—Osher scheme, the fact that 0 < u_ — A < uy implies that

(5 — o)y, 0) = L W2 X

is once again nondecreasing with respect to its first two arguments. The case where u_ is in zone
111 while u4 is in zone 1 can be treated in a symmetrical way.

O

4 Convergence of schemes only consistent with G}

In this section, we no longer require Hypothesis (I5) to be fulfilled, and prove convergence of a family of
finite volume schemes that verifies only (). The difficulty is that G3 is not a maximal part of the germ,
and we cannot prove a discrete version of (] directly. The key point is to study the convergence of the
solution of Scheme (@) for initial data in the maximal subset of the germ G5 U Gi. We then extend the
comparison argument of [AS12] to prove convergence for arbitrary initial data.

4.1 Proof of convergence

Let us now focus on fluxes that do not preserve a maximal part of the germ (in the sense of Hypoth-
esis ([8)), but only the straight line G3, i.e. that verifies (IZ) but not ([I5). Our aim is to prove the
following theorem.

Theorem 4.1. If the numerical flures around the particle are given by

{fln/2,—(u6b7u?7vn) = g(Ug,U{L + )‘71)”)7

f1/2,+(U0:U171) ):g(uo — A\ ut,v )7

where g is a numerical flux verifying (II4) and {IHI), and if the CFL condition 20) holds, Scheme (@)

converges toward the solution of ().

Proof. Let us first remark that Proposition [ZI] and Proposition did not use Hypothesis (I5)), thus we
can extract converging subsequences as we did in the previous Section. Now, consider a test function ¢
supported in {z < 0} or {& > 0}, we have i = ¢ = 0 for small enough Az. We easily obtain, as in
Proposition 3] that for all ¢ in R, for all j < —1,

|U?_1 —c| = |uf —¢ n Giiip— G
At Az

Multiplying by AtAz¢?} and summing over n € N and j < —1, we obtain as in Proposition

RV

n+1 n n n

AtAz Z |u;~hLl - c|% + sz [u) — ¢l + AtAz Z G?H/g%x% >0
JE€ZN<—1 = JEZ* n<—1
and we straightforwardly obtain that the limit w of the scheme is an entropy solution of the Burgers
equation on the sets {z < h} (and similarly on {z > h}). It remains to prove that the traces around
the particle belong to the germ for almost every time. Let us fix a time to such that A’ and the traces
u—(to) and uy(to) exist. Fix (c—,ct) in Ha(h'(to)). Our aim is to prove a discrete version of (). Let
us first suppose that (c—,c;) belongs to the straight line G5 but not to the closed square G3 (I (to)). By
continuity of h’, there exists § > 0 such that,

Vit € (to — 8,0 + 6), disti((c,cy),Gr) = dist1((c_, cq), HA(R (1))

(see Figure[ll). Up to taking a smaller §, this equality is also true at the numerical level for small enough
At, since from Proposition 2] (v, )nen converges. Therefore, passing to the limit in (29) with ¢ supported
in time in (to — §,t0 + &), we directly obtain (@]).

We now treat the case where (c—, c}) belongs to the interior of G3 (h'(to)). The principle of the proof
is to compare the numerical solution with another one, for which the initial data is much simpler as it
corresponds to an element of G (h'(to)). Since b’ is continuous, there exists § such that

Vt € (to — 6,t0 +0), (c—,cy) € G2(R'(2)
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and on the time interval (to — d,t0 + §), (@) becomes
/ / lu —c|(s,2)0:p(s, x — h(s)) + Ppr 1) (u, ¢) (s, ) 0xp(s, & — h(s))dx ds > 0. (34)
Ry JR

Up to reducing ¢ and for small enough At, this is also true at the numerical level. Now, for (uj);jez nen
and (v")nen given by the fully coupled scheme (@), consider (c') ez nen+ the sequence given by the scheme

C;H_l = C;'L 7”(9(6‘;}76‘;{%171}”) 79( ] 1 ]7vn ) fOI'j ¢ {07 1}7

CSH_I :Cgfﬂ(g(cg7c?+)\yv ) g(C 176071)”))7 (35)
;L+1 = C{L - u(g(c{ﬂ 0371}”) - g(CO - >\7 0171}”))7

with initial data

_ ifj<o,
=4 1= (36)
cy+ ifj>0.

We recall that (c—,c4) belongs to Gx(R'(to)). Simple modifications of Propositions 1 and yield

Pit — o
AtAzx Z utt — c;+1|17] + Az Z [u) — )3

JEZL,nEN At 1E€L
Vi1 — ;) o — ©b
+AtAT Y G;;I/Q”TZJ +AtA:vZG§L+1/2,+1TxO > 0.
JELZ* ,meN neN

Suppose that (¢} ) ez nen converges to c(t, x) = c-1ycp@) + 1+ 1psn) on the interval (to — 0, t0+J). Then
with @7 = ¢(t", z}) where ¢ is a test function supported in (to — d,%0 + ), we obtain (34) by passing to
the limit. We now study this convergence.

Lemma 4.2. Suppose that at iteration n, the sequence (cj)jez given by the scheme ([B3) is nondecreasing
on j <0 and on j > 1, and such that

Vj<0,c-<cf<co+X and Vj>1,cy —A<cf<cy
and
C(T)L_C;LS)H

then the same holds at iteration n + 1.

Proof. The monotonicity of (C;L+1) j<o follows from the monotonicity of Hy under the CFL condition (20)).

For 7 < —2, we have
n+1l _ n n n n n n _ n+1
;" = Hx(cj 1, c5,cjy1) < Ha(cf, i, cia) = ¢jit

As ¢ < cf + A, we also have
n+1l _ n n n n n o on n+1
T = Ha(c%a,c1,c0) < Ha(cly,cp,cf +A) =¢5™ .

Moreover, for j < —1, both c7_;, ¢ and ¢}, are between c_ and c— + A, thus the same holds at iteration
n+1. For j =0, as cy <c— (because (c_7 c+) belongs to G3(h'(to))), we conclude by remarking that

c- <cyg <ct+A<cy+A<c_+ A\

The results for positive integers j are obtained in a similar way. Let us now prove that u”Jr1 ul Tt <
We have

o™t — T = Hy (", el e+ N) — Ha(eh — A el cy)
< Hx(ch,cp,ct +A) — Ha(cg — A ety et)
<+ pLleg — (e +A)| = +pLl(cg — A) — cr
<cyg—cr+(cfr+A—c)
<A

O

For (c—,cy) in the open subset G3 (k' (to)), there exists a positive § such that h/(t) stays in the interval
(c+,c—) on the time interval (to — d,to + ). For small enough At, it is also true at the numerical level.
Up to reducing slightly &, (c—,cs) belongs to G3(v™) for small enough At and for all iteration in time
such that t" belongs to (to — d,t0 + d), and in particular cy > v™ > c_.
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Thus the limit ¢ of the scheme (B5) with initial data (B8 at time to — J is such that ¢ is larger than
h' on x < h and smaller on z > h. It allows to prove that c is, on {(¢,z) : x < h(t)}, the solution of

Bu+ 0% =0 Vit e (to—06,to +8),Ya < h(t),
u(to — 8,z) = c—  Vz < h(0) (37)
u(t,h(t)) = h'(t) Vt € (to —d,to +9).
As c_ is larger than b’ on the whole time interval, the boundary condition is inactive and the solution is
u = c—. Let us recall the definition given by Bardos, LeRoux and Nedelec in [BLNT9] of this conservation
law on a bounded domain. A function u in L is a solution of
Oru+ 0 f(u) =0 Vt>0,Vr < h(t),
u(t =0,z) =u’(z) Yz < h(0),
u(t, h(t)) = up(t) vt > 0,

if for all real x and for all nonnegative function ¢ € C§°(R4+ X R), the following inequality holds:
/ / u(t, ) — K|0sp(t, x — h(t)) + Ppr () (u(t, ), K)0z(t, x — h(t))dx dt
t>0 <h(t)

(38)
/ o 100 = Klp(0, 21+ / s~ w () [t 1)) = F(4))(0,0) 2 0.

The convergence of finite volume schemes for scalar conservation laws in a bounded domain has been
proven in [Vov(2] for instance. We are here in a favorable case: we can obtain a discrete version of (B8]
by summing (28) multiplied by At Az ¢} over n >0 and j < —1. We obtain

it =l
AtAzx Z It - Hl]Tt] + Az Z |} — &lp)

n>0,;<—1 j<-1
i1 — ¥
+AtAz Y Glarjp 0 — At > G es <0.
n>0,j<—1 n>0

Passing to the limit yields

/>0 /<h(t)|c(t7x) — K|Owp(t, x — h(t)) + Ppr)(c(t, @), K)Oup(t, x — h(t))dx dt

b e = mlpOade+ [ senln— el Ot A(07) = SG0}e(00) > 0.
<h(0) t>0
To conclude we check that

sgn (i — R ()){f(c(t, h(t) 7)) — f(K)} = —sgn(c(t, h(t) — w)){f(c(t, h(t) 7)) — f(r)}-
This relies strongly on the fact that ¢ remains larger than h’.

e If b’ < Kk < ¢, the inequality reduces to

{fe(t,h(t)7)) = F(r)} = ={f(c(t,h(t)7)) — f(K)}
which holds because f is increasing on (0, +00).

e If W' <c <k or k <h' <cthe inequality reduces to

{f(c(t,h(®)7)) = f(w)} = {f(c(t,h(t)7)) — f(r)}

—{f et h(t) 7)) = f(r)} = —{f (et h(t) 7)) = f(R)},

which are both trivial.

Remark 4.3. Of course, Theorem [£]] applies when the initial data is
u’(x) = c—1z<o + c41o>0,

with (c—,ct+) € G3(v°). In Appendix [A] we prove the convergence for this specific initial data directly,
without using the local in time comparison with the one-way scheme (B5) in which the velocity of the
particle is fixed.

A
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Appendices

A Detailed analysis when the initial data belongs to G%(v°)
Our aim in this section is to prove directly that if

uw(z) = u—lyco +uslyso and A’ =0, (39)
with (u—,uy) in G3(v°), Scheme (@) converges toward the exact solution, which in that case is given by

oy
o) = e (o0 - e ) e ()

u(t, ) = u—Lycne) + Ut lo>ne)-

In this section only and for technical reasons, we consider a finite volume scheme on a bounded space
domain [—a,a], subdivided with 2M,. cells and with periodic boundary conditions. The scheme under
consideration writes

uf“ =uj — plg(uy,uip,v") — f(uj_1,uy,v")) for j € {—Mc+1,---, M.} \ {0, 1},

ug™t = uf = p(g(up, i+ X 0" = f(uyug, o),

ui T =l — (g (ut, uf, o) = gug — A ut,om), (40)
UﬁMC = UJMC and uXIC_H = UY—LMC-H’

V=0 AL (gl uf + A ") — g(uf — A uf, "),

:v?“ =i + v At

We recall that the ratio of the time step At and the cell size Ax is equals to u. We fixed the final
time T. At each time step, four new cells (one of both part of the particle and one of each extremities
of the interval because of the periodic boundary conditions) are influenced by Scheme (40)), in the sense
that their values were constant equals to u— or u4 before. We take a large enough so that the influence
of the particle does not interact with the influence of the boundary condition, and stays in the interval
[—a/3, a/3] during the time interval [0, 7] (see Figure [d] below). This is achieved by taking a larger than

TT. The next proposition states that Scheme (@0) converges toward the solution of the fully coupled

u_ I

L

- S
\—\/—/

M. cells influenced Aga cells influenced by the

3
by the boundary particle on each side

Figure 4: Shape of the numerical solution at time 7. If a is large enough, the contribution of the particle
and of the boundary conditions remain separated.

problem ().
Proposition A.1. Suppose that the numerical flur g verifies (IHI4) and (IEHII), that

VAeR,VBEeR, gv—Av—B,v)=gv+ B,v+ A,v), (41)

and that 039 is decreasing with respect to its first two arguments. Under Condition 20)) and for the initial
data [B9), Scheme Q) converges toward the solution of () on

{t,2):t<T and —a/3+h(t)<z<a/3+h(t)}
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Proof. We prove, as we did in Section [} that (u})_as, /3<j<o converges toward the solution of (BZ), with
a Neumann boundary condition on the left of the particle. The key point is to prove that v" remains
smaller than c_ on the whole time interval [0, T], in which case the boundary condition is inactive and we
obtain the result. Similarly on the right of the particle, the boundary condition is inactive if v™ remains
larger than cy.
To prove that ¢y < v™ < c_, we apply the Crandall-Tartar lemma [CT80] to the application
T: S — S
((u) - mepr<i<nr, v°)  — ((U])-mep1<i<ar, v™).

where
S = {((bj)je{=Met1, Mo}, 0) : b1 <b2 <o <bar, Kbonrer1r Kbz <-o- Kby <bo < by + A}

Lemma A.2 (Crandall-Tartar). Let (2, 1) be a measured space, and let S be a subset of L*(Q) stable by
sup:

Y(u,v) € 8%, max(u,v) € S.
Consider a function T : S — S such that

Vu € S, ([T (w)[pr = [[ull s

Then, if T is order preserving,
1T (u) = T()llr < [lu—v||p
In our case, Q = R*Me x R and

M.

1(bs)set-ntert, ey vl = Az Y [by| +mlol.
J=—Met1

It is straightforward to verify that Scheme ([@0]) preserves the norm ||- ||y 1. The fact that T" takes its values
in S is proven exactly as in the proof of Lemma [£2 We prove in Lemma[A.4l that T is order preserving.

Applying the Crandall-Tartar lemma to ((u9),v°) and (af,v) = ((u9), = ;rc+ ), we obtain
< u— +u
—n+l n+1 —n+1 n+1 0 — +
A:vv Z |1 —u; |+ mp"T =" <m v - |
j=—Mc:+1

The result follows since 7" 1! = % (see Lemma [A3] below).

Lemma A.3. If g verifies {Il) and if the initial data is

u? = U_ Jor j <0,
uj = up forj>1,
UO _ u,+u+

)

2

then Scheme [@Q) verifies v™ = v° for all integer n.

Proof. We prove by induction the following stronger result:
U— + Ut
2
The symmetry of the initial data ensures that this is verified for n = 0. Suppose that this is verified for

some n > 0. Hypothesis (@) on the flux and the induction hypothesis yield

Yn € N,Vj <0, v =

and u”, —0v" =0v" —u
—J - J+1-

g(ug,ul +X\0") = g™ — (uf + X —0"),v" — (ug —v™),v"™)
= g(US - )\,U’f, vn)'
Hence, the velocity remains constant. A similar reasoning can be applied to the fluid velocity. Let us give
some details for j < —1:

UCLJ;I = UT—LJ' - M(Q(Uﬁjwﬁ(]’_m Un) - g(uz(j+1)7urij7 Un))

= 20" —ufyr —pfg(v" — (0" —uly), (V" = (" =l g),0")

—g(v" = (" —ul (), 0" = (V" —uly),0")]
=20" — [ufy1 + plg(20" —u” (1), 20" —ulj,0")

—g(20" —ul;, 20" —u” (jiq),0")]
= 20" = (ufsr — p[g(ufr, e, 0") = g(uf, ufir,v")])

_ n+1 n+1
=2v —Ujiq,
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and for j = 0:
up ™t

— ul — (ol — A ™) — g, ™)
=20" —ul — plgv" — (V" —ug), (0" — (V" —ug +N),v™))
—g(v" — (" —ul),v" — (V" —ug),v"™)]
= 20" — [ul + plg(2v" —uf + A, 20" — g, v"™)

—g(2v" —ug, 20" —ulq,0")]
=20" — (uf —

plg(uy, uy,v™) — g(uy + A uf,v™)])
= 20"t —

|
Lemma A.4. Suppose that Jsg is decreasing with respect to its first two arguments, and that (I2)), (20)
and @) hold. Then, if two initial data are ordered, this order is conserved after one iteration of the
scheme. More precisely, if [(u}) ez, v"] and [(4});ez, 0"] are two elements of S such that

Vji€eZ, uj <u; and v" <D,
then, if Osg is decreasing with respect to its first two arguments and if

— max|d3g| < 1,
mp
then

. n+1 —n+1
Vi€Z, uj" < U

1 —nt1
and "t <p"Tth

u™tt = H,

Proof. The case where v" is equal to 9" is a straightforward. On the one hand the monotonicity assump-
tion (I2) on g and CFL condition (20)) yield as usual
J

n n n n —n —n —-n
(uj—17uj7uj+17v ) < H)\(uj_17uj s Ujt1,V )
On the other hand,

1_)n+1 _ Un+1 — ﬂ(( +

gx — 9x )(ﬂ& ay, vn) —(gx — g;)(ug, uy, v )
mp
is nonnegative by Hypothesis ([I9).

Tt —

We now focus on the case where (u});ez is equal to (@} );ez and v™ < ¥". For j < -1l and j > 2, a
3

straightforward computation gives that there exists aj,,/, € [u],uj1] and b]_; 5 € [uf_1, uf]

—n+1 _
u; =

1
,u/ Oeg(uy, ufpy,v" + (0" — ")) — Org(ui_q,uy, 0" + (8" —v"))dt
0

1
i [ 7 =0 [Prg (0" (0~ 07))
0

—03g(ui_q,u;,v" + (0" — v"))} dt
1
= / ({;"
0

—o") [aggg(u?, a?+1/27 "+ (0" —0")) (ufp — uy)

+813g(b7,1/2, uy,v" F (" —v"))(uy — u?_l)}

Moreover, uj_; < uj < uj,, because we are considering elements of S, thus if Jsg is decreasing with
respect to its first two variables, u?“ <
ug —ut < . Eventually,

u?“. The same reasoning extends to j € {0,1} because
" "t =" ™ o (g(ug, ut + A, 0") = g(ug, ui' + A, 0"))
P
At n n -n n n n
- m_(g(u() - >\7U17’U ) _g(uO - >\7U17’U ))

P

2At

> <1 - max|83g|> (" —o"),
mp
which is nonnegative if ([42) holds.
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