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Abstract The paper presents a local study of bifurcations in

a class of piecewise-smooth steady-state problems for which

the regions of smooth behaviour permit analytical expres-

sions. A system of piecewise-linear equations capturing the

essential features of the branching scenarios around points

of non-smoothness is derived under the assumptions that (i)

the points lie in the intersection of the boundaries of the

regions where the gradients of the respective smooth se-

lections have the full rank, (ii) there is no solution branch

whose tangential direction is tangent to the boundary of any

of the regions. The simplest cases of this system are studied

in detail and the most probable branching scenarios are de-

scribed. A criterion for detecting bifurcation points is pro-

posed and a procedure for its realisation in the course of

numerical continuation of solution curves of large problems

is designed. Application of the general frame to discretised

plane contact problems with Coulomb friction is explained.

Simple as well as more realistic model examples of bifurca-

tions are shown.
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1 Introduction

The steady-state bifurcation problem:

Find yyy ∈U such that

HHH(yyy) = 000,

}

(P)

where U ⊂ R
N+1 and HHH : U → R

N , has been the subject

of large number of studies in the last decades (see, e.g., [4,

Section 24] and the references therein). If HHH is smooth, say

continuously differentiable, this problem is quite well under-

stood from the theoretical point of view and a great variety

of methods has been constructed for its numerical treatment.

On the other hand, there are many equilibrium problems

in economics and diverse engineering fields, whose mod-

els lead naturally to a system of non-smooth equations [3,

27,14]. For instance, let us mention discretised frictionless

and frictional contact problems in solid mechanics, which

are of our specific interest. In general, important classes of

variational inequalities, complementarity problems and con-

strained optimisation problems can be reformulated in this

way.

Nevertheless, the question of bifurcations of solutions

of such problems when they depend on a parameter is very

much open to our knowledge: The local existence and first-

order approximation of branches of solutions of variational

inequalities were studied and methods of numerical contin-

uation of the branches were proposed in [10,9,23]. But the

subject of branching was not touched at all there. The pa-

pers [25,29,22] deal with the analysis of bifurcations in con-

strained optimisation problems, their numerical detection as

well as branch switching. However, difficulties related to

non-smoothness are circumvented to great extent by con-

sidering a set of points that are more general than station-

ary ones. Bifurcations of static equilibrium curves of fric-

tionless contact problems were studied in [7,28,20], where
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the tangential directions of curves emanating from points of

non-smoothness were determined by a certain mixed linear

complementarity problem and a method based on resolution

of this problem was proposed for branch switching during

numerical continuation.

In our recent paper [21], we analysed local continuation

of solution curves of Problem (P) with HHH piecewise C1

(PC1) and we developed a method of numerical continua-

tion for this case. We established also some particular results

for plane contact problems with Coulomb friction, whose

formulation as a non-smooth system fits perfectly the PC1-

setting. Techniques of numerical continuation for frictional

plane contact problems can be found also in [19,17,16]. But

no special care was taken of bifurcation points in these pa-

pers.

Besides, there is a vast amount of existing literature on

bifurcations in piecewise-smooth dynamical systems (see [6]

and the references therein). Since much more phenomena

can be observed in dynamical systems than in the steady-

state ones, the literature is restricted almost entirely to bi-

furcations occurring on boundaries between two regions of

smooth behaviour of the function involved. This situation is

not of much interest in the steady-state case as we shall show

later on.

The present paper deals with the case of Problem (P)

where HHH belongs to a class of PC1-functions with analytical

expressions for the regions of smooth behaviour (see As-

sumption 1 for the precise definition). It focuses on branch-

ing occurring in solutions lying in intersections of the bound-

aries of two or more regions. By exploiting the structure of

the set of points of non-smoothness, we complete our local

description of the solution set around such a boundary so-

lution from [21] under certain non-degeneracy assumptions.

It is worth mentioning that despite the conditions imposed

in our definition, the considered subclass of PC1-functions

remains still quite general and suitable for the formulation

of plane contact problems with Coulomb friction.

The outline of our study is the following: In Section 2,

bifurcation points of (P) are analysed in general and a sys-

tem of piecewise-linear equations capturing the essential fea-

tures of the branching scenarios around certain types of bound-

ary solutions, the so-called border-collision solutions, is de-

rived. Its simplest cases are then studied in detail, the most

probable branching scenarios are shown and a bifurcation

criterion based on our observations is proposed. The aim of

Section 3 is to present a procedure for realisation of this cri-

terion in the course of numerical continuation. Application

of the general frame to plane contact problems with friction

is demonstrated in Section 4. Finally, model examples of bi-

furcations are shown in Section 5.

The following notation is used throughout the paper: The

interior of a set A is denoted by Å or intA, the closure by A,

the boundary by ∂A, the exterior by extA and the orthogonal

complement by A⊥. The gradients of a real-valued function

f and a vector-valued function fff at a point x̄xx are written

as ∇ f (x̄xx) and ∇∇∇ fff (x̄xx), respectively. If fff is a function of two

variables xxx and yyy, ∇∇∇xxx fff (x̄xx, ȳyy) stands for the partial gradient

of fff with respect to xxx at (x̄xx, ȳyy). We use systematically the

convention that xi and fi are the ith component of a vector xxx

and the ith component function of a vector-valued function

fff , respectively.

Furthermore, let us recall essentials from theory of PC1-

functions from [27]:

Definition 1 A function HHH : U → R
N , U ⊂ R

M , is PC1 if it

is continuous and for every ȳyy ∈U , there exist an open neigh-

bourhood O ⊂ U of ȳyy and a finite family of C1-functions

HHH(i) : O → R
N , i ∈ I (ȳyy), such that

∀yyy ∈ O : HHH(yyy) ∈ {HHH(i)(yyy); i ∈ I (ȳyy)}.

The functions HHH(i) are termed selections of HHH at ȳyy.

One can show that every PC1-function is B-differentiable,

that is, it is directionally differentiable and the directional

derivative of HHH at yyy in the direction zzz (denoted by HHH ′(yyy;zzz))

satisfies:

lim
zzz→000

‖HHH(yyy+ zzz)−HHH(yyy)−HHH ′(yyy;zzz)‖

‖zzz‖
= 0.

A special case of PC1-functions are piecewise-linear func-

tions. These are continuous functions whose selections are

linear, that is, of the form yyy 7→ AAA(i)yyy for some matrices AAA(i).

It holds that the directional derivative HHH ′(yyy; .) of a PC1-

function HHH is a piecewise-linear function.

2 Theoretical Analysis

Our study of bifurcations of Problem (P) is restricted to the

functions HHH specified by (see Fig. 1 for illustration):

Assumption 1 Let HHH : U →R
N be a PC1-function such that

every ȳyy ∈U meets one of the following two conditions:

(i) HHH is a C1-function in an open neighbourhood O of ȳyy;

(ii) there exist an open neighbourhood O of ȳyy and finite fam-

ilies of C1-selections HHH(i) and regions D(i), i ∈ I (ȳyy), satis-

fying

HHH = HHH(i) in D(i), D(i) = {yyy ∈ O; GGG(i)(yyy)≤ 000} (1)

for some C1-functions GGG(i) : O → R
Mi . Moreover,

GGG(i)(ȳyy) = 000, ∀i ∈ I (ȳyy), (2)

∇G
(i)
j (ȳyy) 6= 000, ∀i ∈ I (ȳyy), j = 1, . . . ,Mi, (3)

⋃

i∈I (ȳyy)

D(i) = O, (4)

D̊(i)∩ D̊( j) = /0, ∀i, j ∈ I (ȳyy), i 6= j. (5)
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Fig. 1 Example of regions of smoothness of HHH from Assumption 1(ii).

Let us note that the function class determined by this as-

sumption is very close to the ones termed piecewise smooth

in [2, Appendix I] and [3]. In particular, the expression (1)

is natural for PC1-functions whose component functions are

of max-min type or involve projections onto intervals (see

[3] and Section 4 for examples).

To start with our analysis, we modify slightly the defini-

tion of a bifurcation point for smooth functions from [4].

Definition 2 Let J be an open interval containing s̄, and

ccc : J → R
N+1 be a curve such that HHH(ccc(s)) = 000 for any

s∈ J. The point ccc(s̄) is called a bifurcation point of the equa-

tion HHH = 000 if there exists an ε > 0 such that every neigh-

bourhood of ccc(s̄) contains zero points of HHH that are not on

ccc(s̄− ε, s̄+ ε).

Let ȳyy be a known solution of (P). The classical implicit-

function theorem guarantees that if there is only one selec-

tion of HHH at ȳyy, that is, HHH is smooth there, and its gradient has

the full row rank, then there exists locally a unique (smooth)

solution curve. Hence, ȳyy may be a bifurcation point only in

one of the following three cases:

(i) The gradient of the only selection is rank-deficient at ȳyy.

(ii) There are two or more selections at ȳyy and all of them

have a full-row rank gradient at ȳyy.

(iii) There are two or more selections at ȳyy and at least one of

them has a rank-deficient gradient at ȳyy.

The first case leads to well-established theory of smooth

bifurcations whereas in the second case, the solution set of

(P) is composed of parts of unique solution curves of HHH(i)=

000 for individual selections HHH(i) around ȳyy. The third case can

be viewed as a combination of the first two ones, where

some selections may contribute to the whole solution set

with more than one solution curve, and this seems to be the

most rare. This motivates us to focus on the second case,

that is, purely non-smooth bifurcations. Henceforth, we shall

consider a fixed solution ȳyy lying on the boundary of two or

more regions D(i) from Assumption 1(ii), a so-called bound-

ary solution, and we shall assume the following:

Assumption 2 The gradient ∇∇∇HHH(i)(ȳyy) of any selection HHH(i),

i ∈ I (ȳyy), has the full rank.

2.1 Border-Collision Normal Form

Following [6, Subsection 3.1.3] and imposing another non-

degeneracy condition, which will be specified later on, we

shall derive a simplified system that captures the essential

features of the branching scenarios around the boundary so-

lution ȳyy. The system will consist of piecewise-linear equa-

tions.

Firstly, we introduce new co-ordinates ỹyy := yyy − ȳyy and

pass to

H̃HH(ỹyy) := HHH(ỹyy+ ȳyy), H̃HH
(i)
(ỹyy) := HHH(i)(ỹyy+ ȳyy),

G̃GG
(i)
(ỹyy) := GGG(i)(ỹyy+ ȳyy), Õ := O−{ȳyy},

D̃(i) := {ỹyy ∈ Õ; G̃GG
(i)
(ỹyy)≤ 000}

so that the boundary solution ȳyy is translated to 000.

Since every PC1-function is B-differentiable, we can ex-

pand H̃HH about 000 as

H̃HH(ỹyy) = H̃HH(000)+ H̃HH
′
(000; ỹyy)+ooo(ỹyy).

Inserting H̃HH(000) = 000 and neglecting the term ooo(ỹyy), we obtain

the following simplification of (P):

H̃HH
′
(000; ỹyy) = 000. (6)

Next, we shall give an explicit expression for H̃HH
′
(000; ỹyy).

For this purpose, we set

AAA(i) := ∇∇∇H̃HH
(i)
(000) = ∇∇∇HHH(i)(ȳyy), (7)

BBB(i) := ∇∇∇G̃GG
(i)
(000) = ∇∇∇GGG(i)(ȳyy), (8)

C(i) := {ỹyy ∈ R
N+1; BBB(i)ỹyy ≤ 000}, (9)

I
′ := {i ∈ I (ȳyy); C̊(i) 6= /0}. (10)

Theorem 1 Under Assumption 1,
⋃

i∈I ′

C(i) = R
N+1, (11)

C̊(i) = {ỹyy ∈ R
N+1; BBB(i)ỹyy < 000}, ∀i ∈ I

′, (12)

C̊(i)∩C( j) = /0, ∀i, j ∈ I
′, i 6= j, (13)

H̃HH
′
(000; ỹyy) = AAA(i)ỹyy, ∀ỹyy ∈C(i), ∀i ∈ I

′. (14)

Proof First, we shall show that
⋃

i∈I (ȳyy)

C(i) = R
N+1. (15)

Let ỹyy ∈ R
N+1 be arbitrarily chosen. Since Õ is a neighbour-

hood of 000, which is covered by {D̃(i)}i∈I (ȳyy) by (4), and

I (ȳyy) is finite, there exists i0 ∈ I (ȳyy) and {rn} ⊂ R, rn →

0+, such that rnỹyy ∈ D̃(i0) for any n, that is, G̃GG
(i0)(rnỹyy) ≤ 0.

From here and (2),

BBB(i0)ỹyy = ∇∇∇G̃GG
(i0)(000)ỹyy = lim

n→∞

G̃GG
(i0)(rnỹyy)− G̃GG

(i0)(000)

rn

≤ 0,
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that is, ỹyy ∈C(i0). This yields (15).

Second, suppose that C̊(i0) = /0 and ỹyy ∈ C(i0). Then due

to (15),

ỹyy ∈
⋃

i∈I (ȳyy)\{i0}

C(i) =
⋃

i∈I (ȳyy)\{i0}

C(i) =
⋃

i∈I (ȳyy)\{i0}

C(i)

and (11) follows by induction.

To prove (12), it suffices to verify

C̊(i) ⊂ {ỹyy ∈ R
N+1; BBB(i)ỹyy < 000}, i ∈ I

′.

Suppose for contradiction that there is ỹyy ∈ C̊(i) and an index

j ∈ {1, . . . ,Mi} with BBB
(i)
j ỹyy = 0, where BBB

(i)
j stands for the jth

row of BBB(i). Then one can find a neighbourhood Ṽ of ỹyy such

that for any z̃zz ∈ Ṽ ,

BBB
(i)
j z̃zz ≤ 0,

BBB
(i)
j (z̃zz− ỹyy)≤ 0.

This implies

BBB
(i)
j zzz = 0, ∀zzz ∈ R

N+1,

which contradicts to (3), and (12) is valid.

Next, take ỹyy ∈ C̊(i), i ∈ I ′, and r > 0 sufficiently small.

From the mean-value theorem,

∥

∥G̃GG
(i)
(rỹyy)− G̃GG

(i)
(000)−∇∇∇G̃GG

(i)
(000)rỹyy

∥

∥

≤ sup
t∈[0,1]

∥

∥

(

∇∇∇G̃GG
(i)
(trỹyy)−∇∇∇G̃GG

(i)
(000)
)

rỹyy
∥

∥

≤ r sup
t∈[0,1]

∥

∥∇∇∇G̃GG
(i)
(trỹyy)−∇∇∇G̃GG

(i)
(000)
∥

∥‖ỹyy‖,

and the continuous differentiability of G̃GG
(i)

together with (2)

ensures that

G̃GG
(i)
(rỹyy) = G̃GG

(i)
(000)+∇∇∇G̃GG

(i)
(000)rỹyy+ooo(r)

= r
(

BBB(i)ỹyy+ooo(1)
)

. (16)

This and (12) yield that for any r > 0 small enough, G̃GG
(i)
(rỹyy)<

0, that is, rỹyy ∈ D̃(i). Hence,

H̃HH
′
(000; ỹyy) = lim

r→0+

H̃HH(rỹyy)− H̃HH(000)

r

= lim
r→0+

H̃HH
(i)
(rỹyy)− H̃HH

(i)
(000)

r
= ∇∇∇H̃HH

(i)
(000)ỹyy = AAA(i)ỹyy,

which holds for an arbitrary ỹyy ∈ C̊(i). Since C̊(i) 6= /0 by the

definition of I ′, and C(i) is a closed convex, one has C̊(i) =

C(i). Combining this with the continuity of the function ỹyy 7→

H̃HH
′
(000; ỹyy), one arrives at (14).

Finally, let ỹyy ∈ C̊(i) ∩C( j), i, j ∈ I ′, i 6= j. In virtue of

the equality C̊( j) = C( j), one can find z̃zz ∈ C̊(i) ∩ C̊( j), and

arguing as in (16), one gets r > 0 such that rz̃zz ∈ D̊(i)∩ D̊( j).

This contradicts to (5). ⊓⊔

The previous theorem is completed by the following ex-

ample, which shows that the indices from I (ȳyy) \I ′ not

only may but even have to be omitted from calculation of

H̃HH
′
.

Example 1 Let HHH : R2 → R be given by

HHH(yyy) = HHH(1)(yyy) =−y1 − y3
1 − y2

in D(1) = {yyy ∈ R
2; −y3

1 − y2 ≤ 0, y1 ≤ 0},

HHH(yyy) = HHH(2)(yyy) =−y2

in D(2) = {yyy ∈ R
2; −y1 ≤ 0,−y2 ≤ 0},

HHH(yyy) = HHH(3)(yyy) = y2

in D(3) = {yyy ∈ R
2; y2 ≤ 0,−y1 ≤ 0},

HHH(yyy) = HHH(4)(yyy) =−y1 − y3
1 + y2

in D(4) = {yyy ∈ R
2; y1 ≤ 0,−y3

1 + y2 ≤ 0},

HHH(yyy) = HHH(5)(yyy) =−y1

in D(5) = {yyy ∈ R
2; y3

1 − y2 ≤ 0, y3
1 + y2 ≤ 0}

and take ȳyy = 000. Then

C(5) = {yyy ∈ R
2; y2 = 0}

but

HHH ′(ȳyy;(1,0)) = 0 6=−1 = ∇∇∇HHH(5)(ȳyy)(1,0). ⊓⊔

Finally, we shall show that (6) captures correctly the es-

sential features of the solution set of H̃HH = 000 around 000, and so

the one of HHH = 000 around ȳyy. More precisely, we shall see that

it determines completely the tangential directions of the so-

lution curves of (P) emanating from ȳyy. To this end, we shall

need a non-degeneracy condition that prevents the solutions

of (6) from being contained in the boundaries of the cones

C(i), and consequently, the tangential directions of solution

branches of (P) from being tangent to the boundaries of the

regions D(i). Such cases seem to occur rarely.

Assumption 3 Let

Ker∇∇∇HHH(i)(ȳyy)∩
(

Mi
⋃

j=1

{

∇G
(i)
j (ȳyy)

}⊥
)

= {000}, ∀i ∈ I (ȳyy).

Regarding [6], let us call the boundary solutions satisfy-

ing this condition border-collision solutions.

Theorem 2 Let Assumptions 1, 2 and 3 hold and set

I
′′ := {i ∈ I (ȳyy); KerAAA(i)∩C̊(i) 6= /0}.

Then the solution set of H̃HH
′
(000; ỹyy) = 000 coincides either with

{000} if I ′′ = /0, or with the union ∪i∈I ′′ ∪r≥0 rỹyy(i), where

each ỹyy(i) is arbitrarily chosen from KerAAA(i)∩C̊(i).
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In the first case, there exists a neighbourhood of 000 such

that the solution set of H̃HH = 000 contains only 000 in it. In the sec-

ond case, there are δ (i) > 0 and C1-curves ccc(i) : [0,δ (i))→

R
N+1, i ∈ I ′′, such that

(i) ccc(i)(0) = 000, (ii)
(

ccc(i)
)′

+
(0) ∈

⋃

r>0

rỹyy(i),

(iii) ∀s ∈ (0,δ (i)) : ccc(i)(s) ∈ ˚̃D(i),











(17)

and the solution set of H̃HH = 000 coincides with the union ∪i∈I ′′

Imccc(i) in a vicinity of 000.

Proof From Theorem 1 and Assumption 3, it is readily seen

that ỹyy satisfies H̃HH
′
(000; ỹyy) = 000 iff ỹyy = 000 or there exists i ∈ I ′

such that ỹyy ∈ KerAAA(i) ∩ C̊(i). The first part of the assertion

then follows immediately from Assumption 2 and (12).

For the second part, Assumption 1 guarantees that the

solution set {ỹyy ∈ Õ; H̃HH(ỹyy) = 000} is contained in ∪i∈I (ȳyy){ỹyy ∈

Õ; H̃HH
(i)
(ỹyy) = 000}. So, consider i ∈ I (ȳyy) fixed.

In virtue of Assumption 2, N columns of ∇∇∇H̃HH
(i)
(000) are

linearly independent. We shall consider for definiteness the

case when these are the first N columns, that is, ∇∇∇(ỹ1,...,ỹN)H̃HH
(i)
(000)

is non-singular, the other cases being analogous. Accord-

ing to the implicit-function theorem, H̃HH
(i)

= 000 determines a

unique implicit function ỹN+1 7→ (ỹ1(ỹN+1), . . . , ỹN(ỹN+1))

in a vicinity of 000. Defining,

ccc : s 7→ (ỹ1(s), . . . , ỹN(s),s),

one gets from the chain rule that

000 = ∇∇∇H̃HH
(i)
(ccc(0))ccc′(0) = ∇∇∇H̃HH

(i)
(000)ccc′(0),

that is, ccc′(0) ∈ Ker∇∇∇H̃HH
(i)
(000) = KerAAA(i). By Assumption 3,

∇
⊤G̃

(i)
j (000)ccc′(0) 6= 0, j = 1, . . . ,Mi.

Take j fixed and consider the case ∇
⊤G̃

(i)
j (000)ccc′(0) < 0.

There exist ε > 0 and η > 0 such that

∀ỹyy ∈ B(ccc′(0),η) : ∇
⊤G̃

(i)
j (000)ỹyy <−ε, (18)

where B(ccc′(0),η) stands for the closed ball centred at ccc′(0)

with the radius η . The mean-value theorem gives for any

r > 0 sufficiently small,

|G̃
(i)
j (rỹyy)− G̃

(i)
j (000)−∇

⊤G̃
(i)
j (000)rỹyy|

≤ sup
t∈[0,1]

‖∇G̃
(i)
j (trỹyy)−∇G̃

(i)
j (000)‖‖rỹyy‖. (19)

Denoting

M := max{‖ỹyy‖; ỹyy ∈ B(ccc′(0),η)},

one can find η1 > 0 such that

∀z̃zz ∈ B(000,η1) : ‖∇G̃
(i)
j (z̃zz)−∇G̃

(i)
j (000)‖ ≤

ε

M
. (20)

0

c′(0)

B(c′(0), η)

C
B(0, δ′)

δ′/R

Fig. 2 The intersection C ∩B(000,δ ′).

Combining (19) with (2) and (20), one obtains for R :=

η1/M that

∀r ∈ (0,R) ∀ỹyy ∈ B(ccc′(0),η) :

rỹyy ∈ B(000,η1),

|G̃
(i)
j (rỹyy)−∇

⊤G̃
(i)
j (000)rỹyy| ≤ rε.

This together with (18) yields

∀r ∈ (0,R) ∀ỹyy ∈ B(ccc′(0),η) : G̃
(i)
j (rỹyy)< 0. (21)

Next, introduce a cone C and a real δ ′ by

C :=
⋃

r>0

rB(ccc′(0),η),

δ ′ := Rmin{‖ỹyy‖; ỹyy ∈ B(ccc′(0),η)} (> 0 by (18)).

It is readily seen from (21) and Fig. 2 that

∀ỹyy ∈ C ∩B(000,δ ′) : G̃
(i)
j (ỹyy)< 0. (22)

Making use of the differentiability and continuity of ccc,

one can take δ j > 0 sufficiently small so that

∀s ∈ (0,δ j) :
ccc(s)− ccc(0)

s
∈ B(ccc′(0),η),

ccc(s)− ccc(0) ∈ B(000,δ ′).

Inserting ccc(0) = 000, one can see from here that

∀s ∈ (0,δ j) : ccc(s) ∈ C ∩B(000,δ ′),

and (22) leads to

∀s ∈ (0,δ j) : G̃
(i)
j (ccc(s))< 0.

Reducing δ j if necessary, one can show by analogous rea-

soning that

∀s ∈ (−δ j,0) : G̃
(i)
j (ccc(s))> 0.

Clearly, the last two inequalities are reversed in the case

∇
⊤G̃

(i)
j (000)ccc′(0)> 0. Repeating the argumentation for all in-

dices j, one gets δ (i)> 0 guaranteeing that for any j ∈{1, . . . ,
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Mi},

G̃
(i)
j (ccc(s))> 0, ∀s ∈ (−δ (i),0),

and G̃
(i)
j (ccc(s))< 0, ∀s ∈ (0,δ (i)), if ∇

⊤G̃
(i)
j (000)ccc′(0)< 0,

G̃
(i)
j (ccc(s))< 0, ∀s ∈ (−δ (i),0),

and G̃
(i)
j (ccc(s))> 0, ∀s ∈ (0,δ (i)), if ∇

⊤G̃
(i)
j (000)ccc′(0)> 0.

Three different cases may occur for the index i still kept

fixed:

1. ∇
⊤G̃

(i)
j (000)ccc′(0)< 0 for any j. In this case,

ccc′(0) ∈ KerAAA(i)∩C̊(i),

ccc(s) ∈ ˚̃D(i) for any s ∈ (0,δ (i)),

ccc(s) 6∈ D̃(i) for any s ∈ (−δ (i),0).

Hence, i ∈ I ′′,

ccc′(0) ∈
⋃

r>0

rỹyy(i)

(with ỹyy(i) from the first part of the assertion), and (17) is

satisfied for ccc(i) := ccc [0,δ (i)). One obtains immediately that

{ỹyy ∈ Õ; H̃HH(ỹyy) = 000}∩{ỹyy ∈ Õ; H̃HH
(i)
(ỹyy) = 000} coincides with

Imccc(i) in a vicinity of 000.

2. ∇
⊤G̃

(i)
j (000)ccc′(0)> 0 for any j. In an analogous way, (17) is

satisfied for ccc(i) : [0,δ (i)) ∋ s 7→ ccc(−s) and {ỹyy ∈ Õ; H̃HH(ỹyy) =

000}∩{ỹyy∈ Õ; H̃HH
(i)
(ỹyy) = 000} coincides with Imccc(i) in a vicinity

of 000.

3. ∇
⊤G̃

(i)
j (000)ccc′(0) < 0 for some j and ∇

⊤G̃
(i)
j (000)ccc′(0) > 0

for the others j. In this case,

ccc′(0) 6∈C(i), ccc(s) 6∈ D̃(i) for any s ∈ (−δ (i),0)∪ (0,δ (i)),

i 6∈ I ′′ and {ỹyy ∈ Õ; H̃HH(ỹyy) = 000} ∩ {ỹyy ∈ Õ; H̃HH
(i)
(ỹyy) = 000}

shrinks to {000} in a vicinity of 000.

The second part of the theorem is then proved by getting

together the respective cases for all i ∈ I (ȳyy). ⊓⊔

To summarise, we arrive at the following simplified sys-

tem for branching in a border-collision solution of (P), the

so-called border-collision normal form (omitting the tildes

for brevity of notation in what follows):

Find yyy ∈ R
N+1 such that

FFF(yyy) = 000,

}

(NF)

where FFF : RN+1 →R
N is a piecewise-linear function defined

by

FFF(yyy) := AAA(i)yyy, yyy ∈C(i), i ∈ I
′, (23)

with AAA(i), C(i) and I ′ introduced in (7)–(10).

It is worth noticing that (6) is exactly the first-order sys-

tem (P ′) from [21, Subsection 2.1] shifted to 000. The rela-

tion between (P) and (P ′) was studied for a general PC1-

function HHH. Among others, scenarios resulting from viola-

tion of Assumption 3 were shown in op.cit., Example 1.

Some criteria guaranteeing the existence and uniqueness of

solutions of (P ′) can be found in that paper and in refer-

ences therein either. Nevertheless, it seems to be still diffi-

cult to prove a general assertion determining completely the

structure of solutions of (P ′) or of its special case (NF) al-

though these are already simplifications of (P). That is why

we shall investigate more closely the simplest cases of (NF),

which are most likely to occur.

2.2 The Simplest Branching Scenarios

In this subsection, we shall consider Problem (NF) with a

general piecewise-linear function FFF defined by (23), where

I ′ = {1, . . . ,L} for some L ∈ N, AAA(i) ∈ R
N×(N+1) are arbi-

trary matrices and C(i) are given by (9) with arbitrary ma-

trices BBB(i) ∈ R
Mi×(N+1). In accordance with Assumptions 2

and 3 and Theorem 1, we shall suppose that (11)–(13) hold

and

C̊(i) 6= /0, rankAAA(i) = N, ∀i ∈ I
′,

KerAAA(i)∩
(

Mi
⋃

j=1

{

BBB
(i)⊤
j

}⊥
)

= {000}, ∀i ∈ I
′, (24)

where BBB
(i)
j stands for the jth row vector of BBB(i).

We shall examine possible branching scenarios in the

cases with L ∈ {2,3,4} and Mi ∈ {1,2}. Moreover, intro-

ducing the block matrix BBB ∈ R
(M1+···+ML)×(N+1) as

BBB =







BBB(1)

...

BBB(L)






,

we shall restrict ourselves to the cases with rankBBB ∈ {1,2}.

In these cases, C(i), i ∈ I ′, can be represented by their pro-

jections into a two-dimensional space. Indeed, let V be any

two-dimensional space containing ImBBB⊤ if rankBBB = 1, and

V = ImBBB⊤ if rankBBB = 2. Then yyy lies in C(i) if and only if

Pyyy lies in PC(i), where P denotes the orthogonal projection

onto V , and

PC(i) = {zzz ∈V ; BBB(i)zzz ≤ 000}.

This will simplify our considerations. In particular, omitting

superfluous inequalities if necessary, we may assume that

rankBBB(i) = Mi.

Our study will be based on the following elementary re-

sult:
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Lemma 1 Let FFF : RN+1 → R
n be a piecewise-linear func-

tion with two selections such that

FFF(yyy) = AAA(i)yyy, yyy ∈C(i), i = 1,2,

C(1) = {yyy ∈ R
N+1; bbb⊤yyy ≤ 0}, C(2) = {yyy ∈ R

N+1; bbb⊤yyy ≥ 0}

for some AAA(i) ∈ R
N×(N+1) and bbb ∈ R

N+1 with

rankAAA(i) = N, KerAAA(i)∩{bbb}⊥ = {000}, i = 1,2. (25)

Then any two vectors yyy(i) ∈ KerAAA(i)∩C̊(i), i = 1,2, satisfy

det

(

AAA(1)

−yyy(1)⊤

)

det

(

AAA(2)

yyy(2)⊤

)

> 0.

Proof Since bbb 6= 000 by (25), there exists an orthonormal ba-

sis {qqq1, . . .qqqN+1} of R
N+1 with qqq1 = bbb/‖bbb‖, and one can

introduce a coordinate transformation TTT : RN+1 →R
N+1 by

TTT : yyy 7→ ŷyy := QQQyyy

with a matrix QQQ whose rows are formed by qqq⊤1 , . . . ,qqq
⊤
N+1.

Then, one can define a piecewise-linear function F̂FF : RN+1 →

R
N by

F̂FF(ŷyy) := FFF(TTT−1(ŷyy)) = FFF(QQQ⊤ŷyy)

with selections F̂FF
(i)

= FFF(i) ◦TTT−1 and regions Ĉ(i) = TTT (C(i)),
i = 1,2. Clearly,

Ĉ(1) = {ŷyy ∈ R
N+1; ŷ1 ≤ 0}, Ĉ(2) = {ŷyy ∈ R

N+1; ŷ1 ≥ 0},

and one can write

F̂FF(ŷyy) =

{

ÂAA
(1)
1 ŷ1 + ÂAA

(1)
2 ŷyy2 if ŷ1 ≤ 0,

ÂAA
(2)
1 ŷ1 + ÂAA

(2)
2 ŷyy2 if ŷ1 ≥ 0

with ÂAA
(i)
1 ∈ R

N , ÂAA
(i)
2 ∈ R

N×N , (ÂAA
(i)
1 , ÂAA

(i)
2 ) := AAA(i)QQQ⊤ and

ŷyy2 := (ŷ2, . . . , ŷN+1).

As F̂FF is continuous, we have ÂAA
(1)
2 = ÂAA

(2)
2 , and we shall

denote it simply by ÂAA2. Moreover, we claim that it is non-

singular. In view of

(

ÂAA
(1)
1 ÂAA2

1 000

)

=

(

AAA(1)

qqq⊤1

)

QQQ⊤,

it suffices to show that the matrix
(

AAA(1)

qqq⊤1

)

is non-singular. But

from the imposed assumptions, KerAAA(1) is spanned by yyy(1)

and yyy(1) ∈ C̊(1), which entails that qqq⊤1 yyy(1) < 0. Thus, qqq1 /∈

(KerAAA(1))⊥ = ImAAA(1)⊤. Taking into account that rankAAA(1)

equals N, one deduces that rank(AAA(1)⊤ qqq1) must equal N+1,

that is, (AAA(1)⊤ qqq1) is non-singular and so are its transpose as

well as ÂAA2.

Now, if one takes (ŷ
(i)
1 , ŷyy

(i)
2 ) :=TTT (yyy(i))=QQQyyy(i), then ÂAA

(i)
1 ŷ

(i)
1

+ ÂAA2ŷyy
(i)
2 = 000, which gives

ŷyy
(i)
2 =−ŷ

(i)
1 ÂAA

−1

2 ÂAA
(i)
1 .

Here, ŷ
(1)
1 < 0 and ŷ

(2)
1 > 0 as ŷyy(1) and ŷyy(2) are from ˚̂C(1) and

˚̂C(2), respectively. This yields finally:

det

(

AAA(1)

−yyy(1)⊤

)

det

(

AAA(2)

yyy(2)⊤

)

= det

(

ÂAA
(1)
1 ÂAA2

−ŷ
(1)
1 −ŷyy

(1)⊤
2

)

detQQQdet

(

ÂAA
(2)
1 ÂAA2

ŷ
(2)
1 ŷyy

(2)⊤
2

)

detQQQ

=
(

−ŷ
(1)
1

)

det

(

ÂAA
(1)
1 ÂAA2

1 −
(

ÂAA
−1

2 ÂAA
(1)
1

)⊤

)

· ŷ
(2)
1 det

(

ÂAA
(2)
1 ÂAA2

1 −
(

ÂAA
−1

2 ÂAA
(2)
1

)⊤

)

> 0

because

det

(

ÂAA
(i)
1 ÂAA2

1 −
(

ÂAA
−1

2 ÂAA
(i)
1

)⊤

)

= det

(

ÂAA
(i)
1 ÂAA2

1+
(

ÂAA
−1

2 ÂAA
(i)
1

)⊤
ÂAA
−1

2 ÂAA
(i)
1 000

)

= (−1)N+2
(

1+
∥

∥ÂAA
−1

2 ÂAA
(i)
1

∥

∥

2)
det ÂAA2. ⊓⊔

Let us now describe all possible cases of (NF) under the

restrictions introduced above.

I. LLL === 222.

Invoking that C(1) and C(2) are closed convex polyhedral

cones satisfying (11)–(13), one can see that necessarily M1 =

M2 = 1, and

C(1)= {yyy∈R
N+1; bbb⊤yyy≤ 0}, C(2)= {yyy∈R

N+1; bbb⊤yyy≥ 0}

for some 000 6= bbb ∈ R
N+1. As bbb⊤yyy 6= 0 for any yyy ∈ KerAAA(i) \

{000} by (24), one can find yyy(i) ∈ KerAAA(i)∩C̊(i), i = 1,2, and

the solution set of (NF) consists of two rays generated by

yyy(1) and yyy(2):

2
⋃

i=1

⋃

r≥0

ryyy(i)

(Fig. 3). Furthermore, direct application of Lemma 1 gives:

det

(

AAA(1)

−yyy(1)⊤

)

det

(

AAA(2)

yyy(2)⊤

)

> 0.

If this condition holds, we shall say that the solution rays

are coherently oriented, if the converse inequality holds, we

shall speak about incoherent orientation.
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0

y(1)

y(2)

C(1)

C(2)

Fig. 3 Solution set in Case I.

0

b1

b2
C(1)

C(2)

C(3)

Fig. 4 Structure of the regions in

Case II.

A simple example (with N = 1):

F(yyy) = (y1)++ y2 =

{

y2 if y1 ≤ 0,

y1 + y2 if y1 ≥ 0.

II. LLL === 333, MMM1 === 111.

One can see that the only possibility under the imposed re-

strictions is: M2 = M3 = 2, and

C(1) = {yyy ∈ R
N+1; bbb⊤1 yyy ≤ 0},

C(2) = {yyy ∈ R
N+1; bbb⊤1 yyy ≥ 0, bbb⊤2 yyy ≤ 0},

C(3) = {yyy ∈ R
N+1; bbb⊤1 yyy ≥ 0, bbb⊤2 yyy ≥ 0}

for some linearly independent vectors bbb1,bbb2 ∈ R
N+1 (see

Fig. 4). Due to the continuity of FFF ,

FFF(1) =FFF(2) in C(1)∩C(2) = {yyy∈R
N+1; bbb⊤1 yyy= 0, bbb⊤2 yyy≤ 0},

and the linearity of FFF(1) and FFF(2) entails

FFF(1) = FFF(2) in {yyy ∈ R
N+1; bbb⊤1 yyy = 0}= {bbb1}

⊥.

By analogous argumentation, one gets

FFF(1) = FFF(3) in {bbb1}
⊥,

and consequently, FFF(2) = FFF(3) in {bbb1}
⊥. On the other hand,

one can deduce also that FFF(2) = FFF(3) in {bbb2}
⊥. From here,

one obtains that

FFF(2) = FFF(3) in span({bbb1}
⊥∪{bbb2}

⊥) = R
N+1

because bbb1 and bbb2 are linearly independent. This means that

there are only two distinct selections, in fact, and one recov-

ers exactly the situation from Case I.

III. LLL === 333, MMMi === 222, iii === 111,,,222,,,333.

In this case, one can write

C(1) = {yyy ∈ R
N+1; bbb⊤1 yyy ≤ 0, bbb⊤2 yyy ≤ 0},

C(2) = {yyy ∈ R
N+1; bbb⊤2 yyy ≥ 0, bbb⊤3 yyy ≤ 0},

C(3) = {yyy ∈ R
N+1; bbb⊤1 yyy ≥ 0, bbb⊤3 yyy ≥ 0},

where any two of the vectors bbb1,bbb2,bbb3 ∈ R
N+1 are linearly

independent, and

C(1)∩C(2) = {yyy ∈ R
N+1; bbb⊤1 yyy ≤ 0, bbb⊤2 yyy = 0}, (26)

C(2)∩C(3) = {yyy ∈ R
N+1; bbb⊤2 yyy ≥ 0, bbb⊤3 yyy = 0},

C(1)∩C(3) = {yyy ∈ R
N+1; bbb⊤1 yyy = 0, bbb⊤2 yyy ≤ 0}

by the convexity of each C(i) (Fig. 5(a)).

First, we shall show that (NF) cannot have three distinct

solution rays in this case: Suppose for contradiction that

yyy(i) ∈ KerAAA(i)∩C̊(i), i = 1,2,3,

taking into account (24). Owing to the continuity of FFF and

(26),

FFF(1) =FFF(2) in C(1)∩C(2) = {yyy∈R
N+1; bbb⊤1 yyy≤ 0, bbb⊤2 yyy= 0},

and the linearity of FFF(1) and FFF(2) implies that

FFF(1) = FFF(2) in {yyy ∈ R
N+1; bbb⊤2 yyy = 0}.

Hence, defining

C(12)= {yyy∈R
N+1; bbb⊤2 yyy≤ 0}, C(21)= {yyy∈R

N+1; bbb⊤2 yyy≥ 0},

one obtains

FFF(1) = FFF(2) in C(12)∩C(21), yyy(1) ∈ C̊(12), yyy(2) ∈ C̊(21).

It follows from Lemma 1 when applied to the piecewise-

linear function defined to be FFF(1) in C(12) and FFF(2) in C(21)

that

det

(

AAA(1)

−yyy(1)⊤

)

det

(

AAA(2)

yyy(2)⊤

)

> 0. (27)

By similar reasoning, one also gets

det

(

AAA(3)

−yyy(3)⊤

)

det

(

AAA(2)

yyy(2)⊤

)

> 0, (28)

det

(

AAA(3)

−yyy(3)⊤

)

det

(

AAA(1)

yyy(1)⊤

)

> 0, (29)

and the product of (27), (28) and (29) leads to a contradic-

tion.

One can exclude the scenario with exactly one solution

ray, as well: For definiteness, suppose that

yyy(1) ∈ KerAAA(1)∩C̊(1), KerAAA(i)∩C(i) = {000}, i = 2,3.

Making use of (24), one can find yyy(2) and yyy(3) such that

yyy(2) ∈ KerAAA(2), bbb⊤2 yyy(2) > 0, bbb⊤3 yyy(3) > 0,

yyy(3) ∈ KerAAA(3), bbb⊤3 yyy(3) > 0, bbb⊤1 yyy(3) < 0.
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0

b1

b2

b3C(1)

C(2)

C(3)

(a)

0

y(1)

y(2)

y(3)

C(1)

C(2)

C(3)

(b)

Fig. 5 Case III: (a) structure of the regions; (b) scenario with one so-

lution ray.

(the so-called virtual solutions; see Fig. 5(b)). Taking C(12)

and C(21) as before, one recovers (27) by the same reasoning.

Further, defining

C(23)= {yyy∈R
N+1; bbb⊤3 yyy≤ 0}, C(32)= {yyy∈R

N+1; bbb⊤3 yyy≥ 0},

and using Lemma 1 for the piecewise-linear function intro-

duced as FFF(2) in C(23) and FFF(3) in C(32) with −yyy(2) ∈ C̊(23)

and yyy(3) ∈ C̊(32), one deduces that

det

(

AAA(2)

yyy(2)⊤

)

det

(

AAA(3)

yyy(3)⊤

)

> 0. (30)

Eventually, one gets in a similar way that

det

(

AAA(1)

−yyy(1)⊤

)

det

(

AAA(3)

−yyy(3)⊤

)

> 0. (31)

Comparing (27), (30) and (31), one arrives at a contradic-

tion.

On the other hand, examining the scenario with two dis-

tinct solution rays, one can conclude that it is admissible,

the two rays being coherently oriented. The second admis-

sible scenario is that (NF) has only a trivial solution. Simple

examples of these two scenarios follow.

(i) Trivial solution set:

F(yyy) = y1 + y2 −3P[(y1)+,+∞)(y2)

=











y1 + y2 if y1 ≤ 0, y2 ≤ 0,

y2 −2y1 if y1 ≥ 0, y1 ≥ y2,

y1 −2y2 if y2 ≥ 0, y2 ≥ y1.

(ii) Two solution rays:

F(yyy) = y1 + y2 +P[(y1)+,+∞)(y2)

=











y1 + y2 if y1 ≤ 0, y2 ≤ 0,

2y1 + y2 if y1 ≥ 0, y1 ≥ y2,

y1 +2y2 if y2 ≥ 0, y2 ≥ y1.

IV. LLL === 444, MMM1 === 111.

The only possible situation under our considerations is: Mi =

2, i = 2,3,4, and

C(1) = {yyy ∈ R
N+1; bbb⊤1 yyy ≤ 0},

C(2) = {yyy ∈ R
N+1; bbb⊤1 yyy ≥ 0, bbb⊤2 yyy ≤ 0},

C(3) = {yyy ∈ R
N+1; bbb⊤2 yyy ≥ 0, bbb⊤3 yyy ≤ 0},

C(4) = {yyy ∈ R
N+1; bbb⊤1 yyy ≥ 0, bbb⊤3 yyy ≥ 0}

for some bbb1,bbb2,bbb3 ∈ R
N+1 such that any two of them are

linearly independent and

C(3) ⊂ {yyy ∈ R
N+1; bbb⊤1 yyy ≥ 0}

(Fig. 6).

Thanks to (24), the intersection KerAAA(1)∩C̊(1) is always

non-empty, that is, (NF) has at least one solution ray. One

can show in a similar way as in Case III that the scenarios

with exactly one and three solution rays are not possible.

The solution set consists of either two or four solution rays.

If there are only two rays, they are always coherently ori-

ented. If there are four rays, the rays in any two adjacent

cones are coherently oriented whereas the rays in any two

opposite cones are incoherently oriented.

Examples:

(i) Solution rays in two adjacent cones:

F(yyy) = 4y1 + y2 +2P[−(y1)+,(y1)+](y2)

=























4y1 + y2 if y1 ≤ 0,

4y1 +3y2 if |y2| ≤ y1,

2y1 + y2 if y2 ≤−y1 ≤ 0,

6y1 + y2 if y2 ≥ y1 ≥ 0.

(ii) Solution rays in two opposite cones:

F(yyy) = y2 +2P[−(y1)+,(y1)+](y2)

=























y2 if y1 ≤ 0,

3y2 if |y2| ≤ y1,

y2 −2y1 if y2 ≤−y1 ≤ 0,

y2 +2y1 if y2 ≥ y1 ≥ 0.

(iii) Four solution rays:

F(yyy) =−y2 +2P[−(y1)+,(y1)+](y2)

=























−y2 if y1 ≤ 0,

y2 if |y2| ≤ y1,

−y2 −2y1 if y2 ≤−y1 ≤ 0,

−y2 +2y1 if y2 ≥ y1 ≥ 0.

V. LLL === 444, MMMi === 222, iii === 111,,,222,,,333,,,444.

One can write
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0

b1

b2

b3

C(1)

C(2)
C(3)

C(4)

Fig. 6 Case IV.

0

b1

b2

b3

b4

C(1)

C(2)

C(3)

C(4)

Fig. 7 Case V.

C(1) = {yyy ∈ R
N+1; bbb⊤1 yyy ≤ 0, bbb⊤2 yyy ≤ 0},

C(2) = {yyy ∈ R
N+1; bbb⊤2 yyy ≥ 0, bbb⊤3 yyy ≤ 0},

C(3) = {yyy ∈ R
N+1; bbb⊤3 yyy ≥ 0, bbb⊤4 yyy ≤ 0},

C(4) = {yyy ∈ R
N+1; bbb⊤1 yyy ≥ 0, bbb⊤4 yyy ≥ 0}

with bbb1,bbb2,bbb3,bbb4 ∈ R
N+1 such that the couples {bbb1,bbb2},

{bbb2,bbb3}, {bbb3,bbb4} and {bbb4,bbb1} are linearly independent and

C(1)∩C(2) = {yyy ∈ R
N+1; bbb⊤1 yyy ≤ 0, bbb⊤2 yyy = 0},

C(2)∩C(3) = {yyy ∈ R
N+1; bbb⊤2 yyy ≥ 0, bbb⊤3 yyy = 0},

C(3)∩C(4) = {yyy ∈ R
N+1; bbb⊤3 yyy ≥ 0, bbb⊤4 yyy = 0},

C(4)∩C(1) = {yyy ∈ R
N+1; bbb⊤1 yyy = 0, bbb⊤4 yyy ≥ 0}.

(Fig. 7).

The scenarios with one and three solution rays lead to

contradictions, again, whereas the ones with two or four so-

lution rays are admissible with the same orientation of the

rays as in Case IV. In addition, the solution set may contain

only the zero vector in this case.

Examples:

(i) Trivial solution set:

F(yyy) =−y1 − y2 +2(y1)++2(y2)+

=























−y1 − y2 if y1 ≤ 0, y2 ≤ 0,

y1 − y2 if y1 ≥ 0, y2 ≤ 0,

y1 + y2 if y1 ≥ 0, y2 ≥ 0,

−y1 + y2 if y1 ≤ 0, y2 ≥ 0.

(ii) Solution rays in two adjacent cones:

F(yyy) = y1 − y2 +2(y1)++2(y2)+

=























y1 − y2 if y1 ≤ 0, y2 ≤ 0,

3y1 − y2 if y1 ≥ 0, y2 ≤ 0,

3y1 + y2 if y1 ≥ 0, y2 ≥ 0,

y1 + y2 if y1 ≤ 0, y2 ≥ 0.

(ii) Solution rays in two opposite cones:

F(yyy) = y1 + y2 +2(y1)++2(y2)+

=























y1 + y2 if y1 ≤ 0, y2 ≤ 0,

3y1 + y2 if y1 ≥ 0, y2 ≤ 0,

3y1 +3y2 if y1 ≥ 0, y2 ≥ 0,

y1 +3y2 if y1 ≤ 0, y2 ≥ 0.

(ii) Four solution rays:

F(yyy) =−y1 + y2 +2(y1)+−2(y2)+

=























−y1 + y2 if y1 ≤ 0, y2 ≤ 0,

y1 + y2 if y1 ≥ 0, y2 ≤ 0,

y1 − y2 if y1 ≥ 0, y2 ≥ 0,

−y1 − y2 if y1 ≤ 0, y2 ≥ 0.

2.3 Bifurcation Criterion

We have observed in the previous subsection that incoherent

orientation of solution rays occurs only in the scenarios with

four branches, that is, only when 000 is a bifurcation point

of (NF). This leads us to a criterion for detecting border-

collision bifurcation points of Problem (P), which we shall

describe in this subsection. We shall use the notation from

Subsection 2.1.

Let Assumptions 1, 2 and 3 hold and let ccc : J → R
N+1

be a solution curve of (P) defined on an open interval J

containing s̄ by

ccc(s) =











ccc(i1)(s̄− s)+ ȳyy if s < s̄,

ȳyy if s = s̄,

ccc(i2)(s− s̄)+ ȳyy if s > s̄

for some C1-curves ccc(i1) and ccc(i2) from Theorem 2.

Plainly,

ccc′−(s̄) =−
(

ccc(i1))′+(0), ccc′+(s̄) =
(

ccc(i2))′+(0),

and according to Theorem 2,

−ccc′−(s̄) ∈ KerAAA(i1)∩C̊(i1), ccc′+(s̄) ∈ KerAAA(i2)∩C̊(i2).

By (23) and (7),

FFF(−ccc′−(s̄)) =−AAA(i1)ccc′−(s̄) =−∇∇∇HHH(i1)(ccc(s̄))ccc′−(s̄) = 000,

FFF(ccc′+(s̄)) = AAA(i2)ccc′+(s̄) = ∇∇∇HHH(i2)(ccc(s̄))ccc′+(s̄) = 000,

which particularly means that both −ccc′−(s̄) and ccc′+(s̄) solve

(NF).

The analysis from the previous subsection suggests us

to introduce a bifurcation criterion for Problem (P) at the
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H = H(i1)

c c(s̄) c′
−
(s̄)

Fig. 8 Determination of the region

for seeking a new smooth branch.

c(i1) c(s̄)

c(i2)
yk−1

tk−1

yk
tk

Fig. 9 Numerical continuation

of ccc.

border-collision solution ccc(s̄) as the condition on incoherent

orientation of the one-sided tangents −ccc′−(s̄) and ccc′+(s̄):

det

(

∇∇∇HHH(i1)(ccc(s̄))

ccc′−(s̄)
⊤

)

det

(

∇∇∇HHH(i2)(ccc(s̄))

ccc′+(s̄)
⊤

)

< 0. (32)

Recall that in the cases corresponding to the simplest

scenarios, this condition is never satisfied when ccc is com-

posed of the only two smooth solution branches of (P) em-

anating from ȳyy. It is satisfied only if there are four smooth

solution branches and ccc is formed by the branches from mu-

tually opposite regions. In addition, consider a smooth solu-

tion curve ccc with ccc(s̄) = ȳyy such that HHH is smooth there. Then

ccc′−(s̄) = ccc′+(s̄), there is only one selection of HHH in a vicin-

ity of ccc(s̄), that is, HHH = HHH(i1) = HHH(i2), and (32) is clearly

satisfied neither.

Let us mention that in [21, Subsection 2.2], we proposed

a numerical strategy for finding a new smooth solution branch

when one smooth branch ending at a boundary solution ccc(s̄)=

ȳyy is recovered. The strategy consists in seeking a new branch

in the region of smoothness lying in the tangential direction

of the recovered branch, see Fig. 8. When using that strategy,

one could expect that it is the branch in the opposite region

that is to be found the most likely if ȳyy lies in the intersection

of four regions. Thus, the potential bifurcation is likely to be

detected by the criterion proposed here.

Finally, consider that one traces numerically the solu-

tion curve ccc, namely, that one computes a sequence {yyyk}

of points lying approximately on it, and a sequence {tttk}
of approximations of the corresponding tangent vectors. We

shall suppose that HHH is smooth at each yyyk, for simplicity,

as it is hardly possible to encounter exactly a point where

HHH is not smooth. Further, let a boundary solution ccc(s̄) lie

between yyyk−1 and yyyk such that yyyk−1, yyyk approximate some

solutions on ccc(i1) and ccc(i2), respectively (Fig. 9). Assuming

that both yyyk−1 and yyyk are close to ccc(s̄) and tttk−1, tttk are good

approximations of ccc′−(s̄) and ccc′+(s̄), respectively, we arrive

at the following test for detecting border-collision bifurca-

tions based on (32):

det

(

∇∇∇HHH(yyyk−1)

ttt⊤k−1

)

det

(

∇∇∇HHH(yyyk)

ttt⊤k

)

< 0. (33)

Let us mention that the obtained test is the same as the stan-

dard one for detecting the so-called (smooth) simple bifur-

cation points (see, for example, [4, Section 24]).

3 Numerical Realisation of the Bifurcation Test

The finite-dimensional problem (P) arises typically from

discretisation of a parameter-dependent problem of infinite

dimension and its size N may become quite large. In such

cases, it may not be clear how to determine numerically the

sign of the product of the determinants appearing in (33).

The aim of this section is to propose a technique requiring

resolution of a sequence of linear systems instead.

Our approach is based on the following observation, which

was employed for a test of simple bifurcation points in [15].

Lemma 2 Let JJJ ∈R
(N+1)×(N+1), bbb, ccc ∈R

N+1 and d ∈R be

such that the matrix MMM ∈ R
(N+2)×(N+2) defined by

MMM :=

(

JJJ bbb

ccc⊤ d

)

(34)

is non-singular. Introduce τ ∈ R implicitly via

MMM

(

vvv

τ

)

=

(

000

1

)

.

Then

τ =
detJJJ

detMMM
.

Proof The assertion follows directly from Cramer’s rule.

⊓⊔

Next, let yyyk−1, yyyk, tttk−1 and tttk be given so that both deter-

minants appearing in (33) are non-zero, and let bbb, ccc ∈ R
N+1

and d ∈ R be fixed. Set

JJJ(α) := (1−α)

(

∇∇∇HHH(yyyk−1)

ttt⊤k−1

)

+α

(

∇∇∇HHH(yyyk)

ttt⊤k

)

, (35)

MMM(α) :=

(

JJJ(α) bbb

ccc⊤ d

)

(36)

for any α ∈ [0,1], and whenever MMM(α) is non-singular, take

τ(α) satisfying

MMM(α)

(

vvv(α)

τ(α)

)

=

(

000

1

)

. (37)

Then

τ(α) =
detJJJ(α)

detMMM(α)
,

and observing that

JJJ(0) =

(

∇∇∇HHH(yyyk−1)

ttt⊤k−1

)

, JJJ(1) =

(

∇∇∇HHH(yyyk)

ttt⊤k

)

,
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one can test (33) equivalently by comparing the signs of

detJJJ(0) and detJJJ(1).
Suppose for a while that bbb, ccc and d are chosen so that

detJJJ(α) = 0 =⇒ detMMM(α) 6= 0, α ∈ (0,1), (38)

detMMM(0),detMMM(1) 6= 0. (39)

Then detMMM(α) is a non-zero polynomial in α , and τ(α) is

a well-defined function with τ(0) and τ(1) finite. Further-

more, the sign changes of detJJJ(α) are characterised by pass-

ing of τ(α) through 0 whereas the sign changes of detMMM(α)

by sign changes of τ(α) caused by a singularity. Since these

two cases can be easily distinguished, we are lead to the

following idea for testing (33): To follow the behaviour of

τ(α) when α passes through [0,1] and to monitor the sign

changes of detJJJ(α).
It remains to find suitable bbb, ccc and d. Our choice will be

based on a classical result [13], [24, Lemma 5.6]:

Lemma 3 Let MMM ∈ R
(N+2)×(N+2) be given by (34). Neces-

sary and sufficient conditions for its non-singularity are:

(i) d 6= ccc⊤JJJ−1bbb if JJJ is non-singular.

(ii) dimKerJJJ = 1,bbb /∈ ImJJJ and ccc /∈ ImJJJ⊤ if JJJ is singular.

As detJJJ(0) and detJJJ(1) are supposed to be non-zero,

detJJJ(α) is a non-zero polynomial in α of order at most N+

1, and it has a finite number of roots in (0,1) (possibly zero).

Denoting them α1, . . . ,αnr , one can ensure (38) and (39) by

the following assumption:

Assumption 4 Let

(i) dimkerJJJ(αi) = 1, i = 1, . . . ,nr;

(ii) bbb /∈ ImJJJ(αi),ccc /∈ ImJJJ⊤(αi), i = 1, . . . ,nr;

(iii) d 6= ccc⊤JJJ−1(0)bbb,ccc⊤JJJ−1(1)bbb.

To start with investigation of these conditions, we shall

analyse the part (i) in the cases of the simplest scenarios

from Subsection 2.2.

Firstly, consider that yyyk−1 and yyyk in question belong to

solution branches in adjacent regions of HHH meeting at ȳyy and

corresponding to one of Cases I–V. Without loss of general-

ity, one can write

∇∇∇HHH(yyyk−1) = ∇∇∇HHH(1)(yyyk−1), ∇∇∇HHH(yyyk) = ∇∇∇HHH(2)(yyyk),

and setting

AAA(1) = ∇∇∇HHH(1)(ȳyy), AAA(2) = ∇∇∇HHH(2)(ȳyy),

one has according to the analysis in Subsection 2.2 that

rankAAA(1) = rankAAA(2) = N,

AAA(1)yyy = AAA(2)yyy,

∀yyy ∈ R
N+1 with bbb⊤yyy = 0 for some 000 6= bbb ∈ R

N+1,
(

AAA(1)

bbb⊤

)

is non-singular.

Proceeding as in the proof of Lemma 1 and introduc-

ing an orthonormal basis {qqq1, . . .qqqN+1} of RN+1 with qqq1 =

bbb/‖bbb‖, one can define

ÂAA
(i)

:= AAA(i)QQQ⊤, i = 1,2,

with the rows of QQQ ∈R
(N+1)×(N+1) formed by qqq⊤1 , . . . ,qqq

⊤
N+1.

One deduces as before that

ÂAA
(i)

= (ÂAA
(i)
1 , ÂAA2), i = 1,2,

where ÂAA
(i)
1 ∈ R

N , ÂAA2 ∈ R
N×N and rank ÂAA2 = N. For an arbi-

trary α ∈ (0,1),

(

(1−α)ÂAA
(1)
1 +αÂAA

(2)
1 , ÂAA2

)

= (1−α)ÂAA
(1)

+αÂAA
(2)

=
(

(1−α)AAA(1)+αAAA(2)
)

QQQ⊤

and consequently,

N = rank
(

(1−α)ÂAA
(1)

+αÂAA
(2))

≤ min
{

rank
(

(1−α)AAA(1)+αAAA(2)
)

, rankQQQ⊤
}

,

N ≤ rank
(

(1−α)∇∇∇HHH(1)(ȳyy)+α∇∇∇HHH(2)(ȳyy)
)

.

If both yyyk−1 and yyyk are sufficiently close to ȳyy, standard con-

tinuity argumentation yields that

N ≤ rank

(

(1−αi)∇∇∇HHH(yyyk−1)+αi∇∇∇HHH(yyyk)

(1−αi)ttt
⊤
k−1 +αittt

⊤
k

)

= rankJJJ(αi),

i = 1, . . . ,nr.

This shows that Assumption 4(i) is always satisfied for yyyk−1

and yyyk from adjacent regions.

Secondly, consider that yyyk−1 and yyyk belong to solution

branches in opposite regions meeting at ȳyy and corresponding

to Case IV or V. Let

∇∇∇HHH(yyyk−1) = ∇∇∇HHH(1)(yyyk−1), ∇∇∇HHH(yyyk) = ∇∇∇HHH(3)(yyyk),

AAA(i) = ∇∇∇HHH(i)(ȳyy), i = 1,2,3.

Similarly as before, one can suppose that

rankAAA(i) = N, i = 1,3,

and find linearly independent bbb1, bbb2 ∈ R
N+1 such that

AAA(1)yyy = AAA(2)yyy, ∀yyy ∈ R
N+1 with bbb⊤1 yyy = 0,

AAA(2)yyy = AAA(3)yyy, ∀yyy ∈ R
N+1 with bbb⊤2 yyy = 0,

(

AAA(1)

bbb⊤1

)

is non-singular.

In this case, one can take qqq1 := bbb1/‖bbb1‖, qqq2 := bbb2/‖bbb2‖,

pick out an orthonormal basis {qqq3, . . .qqqN+1} of {qqq1,qqq2}
⊥,
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and compose QQQ∈R
(N+1)×(N+1) from the row vectors qqq⊤1 , . . . ,

qqq⊤N+1. Then one can define

ÂAA
(i)

:= AAA(i)QQQ−1, i = 1,2,3. (40)

It is easy to verify that the columns of QQQ−1 are q̃qq1, q̃qq2,qqq3, . . . ,
qqqN+1 with q̃qq1 and q̃qq2 determined uniquely by

q̃qq1, q̃qq2 ∈ span{qqq1,qqq2}, qqq⊤i q̃qq j = δi j, i, j = 1,2.

Further, one can show that

ÂAA
(1)

= (ÂAA
(1)
1 , ÂAA

(1)
2 , ÂAA3), ÂAA

(2)
= (ÂAA

(3)
1 , ÂAA

(1)
2 , ÂAA3),

ÂAA
(3)

= (ÂAA
(3)
1 , ÂAA

(3)
2 , ÂAA3)

for some ÂAA
(1)
1 , ÂAA

(1)
2 , ÂAA

(3)
1 , ÂAA

(3)
2 ∈ R

N , ÂAA3 ∈ R
N×(N−1) and

rank ÂAA3 = N −1. As a consequence, if both yyyk−1 and yyyk are

sufficiently close to ȳyy,

N−1≤ rank

(

(1−αi)∇∇∇HHH(yyyk−1)+αi∇∇∇HHH(yyyk)

(1−αi)ttt
⊤
k−1 +αittt

⊤
k

)

= rankJJJ(αi),

i = 1, . . . ,nr,

that is, dimkerJJJ(αi) ≤ 2. Assumption 4(i) may be violated

for some αi, in general.

Nevertheless, if dimkerJJJ(α) = 2 for some α ∈ (0,1),
then

(1−α)ÂAA
(1)
j +αÂAA

(3)
j ∈ Im ÂAA3,

ÂAA
(3)
j ∈

α −1

α
ÂAA
(1)
j + Im ÂAA3

for j = 1,2. By (40),

ÂAA
(i)
j = AAA(i)q̃qq j = ∇∇∇HHH(i)(ȳyy)q̃qq j, i = 1,3, j = 1,2,

ÂAA3 = AAA(1)QQQ−1
3 = ∇∇∇HHH(1)(ȳyy)QQQ−1

3 ,

where the columns of QQQ−1
3 ∈ R

(N+1)×(N−1) are formed by

qqq3, . . . ,qqqN+1. From here, a necessary condition for violation

of Assumption 4(i) reads

∇∇∇HHH(3)(ȳyy)q̃qq j ∈ r∇∇∇HHH(1)(ȳyy)q̃qq j + Im
(

∇∇∇HHH(1)(ȳyy)QQQ−1
3

)

for some r ∈ (−∞,0), r the same for both j = 1,2. One can

conclude that this situation seems to be rare: if it satisfied for

j = 1 and some r, ∇∇∇HHH(3)(ȳyy)q̃qq2 has to lie in r∇∇∇HHH(1)(ȳyy)q̃qq2 +

Im
(

∇∇∇HHH(1)(ȳyy)QQQ−1
3

)

, which is an (N −1)-dimensional affine

space in R
N .

Once (i) in Assumption 4 being fulfilled, both ImJJJ(αi)

and ImJJJ⊤(αi) from (ii) are N-dimensional subspaces of RN+1

for any i = 1, . . . ,nr. Therefore, (ii) is satisfied whenever bbb

and ccc are out of certain finite unions of N-dimensional sub-

spaces of RN+1.

Finally, if bbb and ccc are chosen in accordance with (ii), (iii)

is met for d different from two specific values.

One can conclude that there seem to be practically no

restrictions on the choice of bbb, ccc and d so one can suppose

Assumption 4 to hold when choosing them randomly. We

propose the following numerical procedure for testing Con-

dition (33):

Algorithm 1

Input: yyyk−1, yyyk, tttk−1, tttk ∈R
N+1, δmax > δmin > 0, δinc > 1>

δdec > 0.

Step 1: Set nch := 0, α := 0, τ0 := 106, τ−1 := 106, δ :=

δmin, and choose bbb, ccc ∈ R
N+1 and d ∈ R randomly.

Step 2: Set

JJJ :=(1−α)

(

∇∇∇HHH(yyyk−1)

ttt⊤k−1

)

+α

(

∇∇∇HHH(yyyk)

ttt⊤k

)

, MMM :=

(

JJJ bbb

ccc⊤ d

)

.

Step 3: Solve

MMM

(

vvv

τ

)

=

(

000

1

)

.

Step 4: If ττ0 < 0 and |τ0|< |τ−1|, set nch := nch +1.

Step 5: If |τ − τ0| is large, set δ := max{δdecδ ,δmin}, oth-

erwise if |τ − τ0| is small, set δ := min{δincδ ,δmax}.

Step 6: If α < 1, set α := min{α +δ ,1}, τ−1 := τ0, τ0 := τ

and go to Step 2.

Step 7: If nch is odd, print “bifurcation detected”.

Here, the last two values of τ are stored in τ0 and τ−1,

and nch serves for counting the sign changes of detJJJ. It is

increased only if ττ0 < 0 and |τ0| < |τ−1| simultaneously

because it is expected that τ has passed through a singularity

in the case of |τ0| ≥ |τ−1|. Therefore, odd nch at the end

indicates opposite signs of det
(

∇∇∇HHH(yyyk−1)

ttt⊤k−1

)

and det
(

∇∇∇HHH(yyyk)

ttt⊤k

)

.

The values of α are increased by the current values of

the variable δ . The latter one is bounded by δmin and δmax

and adapted by the scale factors δinc and δdec according to

the latest values of τ . This adaptivity serves for effective

treatment of the singularities of τ , which are characterised

by large |τ − τ0|. Since it is highly improbable to encounter

exactly a value of α with MMM(α) singular, we take no care of

this possibility.

4 Application to Plane Contact Problems with Friction

Let us consider static deformation of an elastic body whose

reference configuration is the closure of a bounded domain

Ω ⊂ R
2. Let the boundary ∂Ω be Lipschitz-continuous and

split into three disjoint relatively open subsets ΓD, ΓN and

Γc. The deformation of the body will be denoted by ϕϕϕ , and it

can be expressed alternatively in terms of the displacement

uuu as ϕϕϕ = iiiddd +uuu, where iiiddd stands for the identity mapping.

The displacement uuuD being imposed on ΓD, the body in

the deformed configuration ϕϕϕ(Ω) is subject to body forces

of the density fff ϕϕϕ , and surface forces of the density hhhϕϕϕ act on
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ϕ(Ω)

ϕ(ΓD)

ϕ(ΓN ) ϕ(ΓN )

ϕ(Γc)

O

hϕ

ν

τ

Fig. 10 Geometry of the problem.

ϕϕϕ(ΓN). We suppose that the prescribed displacement and the

forces depend on a real parameter γ , that is, uuuD = uuuD(xxx,γ),

fff ϕϕϕ = fff ϕϕϕ(xxxϕϕϕ ,γ) and hhhϕϕϕ = hhhϕϕϕ(xxxϕϕϕ ,γ), where xxx and xxxϕϕϕ stand

for points in the initial and the deformed configuration, re-

spectively.

The points from Γc may come into contact with a fixed

curved rigid obstacle represented by a closed set O ⊂ R
2,

the contact being described by unilateral conditions and the

Coulomb friction law. We assume that there exist a neigh-

bourhood V of ∂O and a differentiable function g : V → R

such that ϕϕϕ(Γc)⊂V , ∇g 6= 000 in V and

g(xxx)> 0, ∀xxx ∈V ∩ intO,

g(xxx) = 0, ∀xxx ∈ ∂O,

g(xxx)< 0, ∀xxx ∈V ∩ extO.

Then one can extend the unit inward normal ννν and the unit

tangent τττ to the obstacle from ∂O to V as

ννν(xxx) =
∇g(xxx)

‖∇g(xxx)‖
, τττ(xxx) = (−ν2(xxx),ν1(xxx))

(see Fig. 10).

The classical formulation of the parametrised equilib-

rium problem reads as follows:

Find uuu ∈ Uad such that

divσσσ(xxx)+ fff (xxx,γ) = 000, xxx ∈ Ω ,

σσσ(xxx) = σ̂σσ(xxx, III +∇∇∇uuu(xxx)), xxx ∈ Ω ,

uuu(xxx) = uuuD(xxx,γ), xxx ∈ ΓD,

σσσ(xxx)nnn(xxx) = hhh(xxx,γ), xxx ∈ ΓN ,

g(xxx+uuu(xxx))≤ 0, Tν(xxx)≤ 0,

g(xxx+uuu(xxx))Tν(xxx) = 0,

}

xxx ∈ Γc,

|Tτ(xxx)| ≤ −F (xxx)Tν(xxx),

uτ(xxx) 6= 0 =⇒ Tτ(xxx) = F (xxx)Tν(xxx)
uτ(xxx)

|uτ(xxx)|
,











xxx ∈ Γc,























































































(41)

where γ varies over an interval of interest. The set Uad of

kinematically admissible displacements is introduced by

Uad := {vvv : Ω → R
2 “smooth enough”;

iiiddd + vvv is injective in Ω , det(III +∇∇∇vvv)> 0 in Ω},

the first Piola-Kirchhoff stress tensor is denoted by σσσ , its

response function characterising the material of the elastic

body by σ̂σσ and III is the identity matrix. Further, nnn stands for

the unit outward normal vector along ∂Ω and

fff (xxx,γ) = det(III +∇∇∇uuu(xxx)) fff ϕϕϕ(xxx+uuu(xxx),γ),

hhh(xxx,γ) = det(III +∇∇∇uuu(xxx))‖(III +∇∇∇uuu(xxx))−⊤nnn(xxx)‖hhhϕϕϕ(xxx+uuu(xxx),γ)

are the densities of the volume and surface forces related to

the reference configuration. Finally,

Tν(xxx) = TTT (xxx) ·ννν(xxx+uuu(xxx)), Tτ(xxx) = TTT (xxx) · τττ(xxx+uuu(xxx))

are the components of the first Piola-Kirchhoff stress vector

TTT (xxx) = σσσ(xxx)nnn(xxx) in the directions ννν and τττ , F is a non-

negative function representing the friction coefficient and

uτ(xxx) = uuu(xxx) · τττ(xxx+uuu(xxx))

is the tangential displacement.

Discretisation of this problem is done by applying a La-

grange finite-element method to a mixed variational formu-

lation of (41) with Lagrange multipliers enforcing the Dirich-

let and the contact boundary conditions. In particular, we

consider the nodal approximation of the contact conditions

written in terms of projections proposed in [1]. This leads to

the discrete problem in the form of (P):

Find yyy := (γ,uuu,λλλ D,λλλ ν ,λλλ τ) ∈ R
1+2(nΩ+nD+nc)

such that

HHH(yyy) = 000,











(42)

where HHH : R1+2(nΩ+nD+nc) → R
2(nΩ+nD+nc) is defined by

HHH(yyy)

:=













AAA(uuu)−LLL(γ,uuu)−BBB⊤
Dλλλ D −BBB⊤

ν (uuu)λλλ ν −BBB⊤
τ (uuu)λλλ τ

BBBDuuu−UUUD(γ)

λν , j − (λν , j −g j(uuu))−, j = 1, . . . ,nc

λτ, j −P[F j(λν , j−g j(uuu))−,−F j(λν , j−g j(uuu))−]

(

λτ, j

− (BBBτ(uuu)uuu) j

)

, j = 1, . . . ,nc













.

Here uuu ∈ R
2nΩ is the vector of the nodal displacements,

λλλ D ∈ R
2nD is the Lagrange multiplier corresponding to the

Dirichlet condition, and λλλ ν ∈R
nc and λλλ τ ∈R

nc are the nor-

mal and tangential Lagrange multipliers on the contact zone,

respectively. Furthermore, AAA(uuu) and LLL(γ,uuu) are the vectors

of the internal elastic and external applied forces, respec-

tively, and BBBD is the kinematic transformation matrix linking

uuu with the Lagrange multiplier λλλ D. The matrices BBBν(uuu) and

BBBτ(uuu), depending on the actual position of the body, asso-

ciate the vector of the nodal displacements with the vectors

of the nodal displacements in the directions ννν and τττ , re-

spectively. The vector UUUD(γ) corresponds to the prescribed

displacement on ΓD, g j(uuu) are the values of g for the actual
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positions of the contact nodes, and F j are the values of the

friction coefficient in these nodes. Finally, (.)− and P[a,b](.)
stand for the projections onto the intervals (−∞,0] and [a,b],

respectively.

Since both projections involved are PC1-function, HHH is

also PC1 under the following assumption:

Assumption 5 Let AAA, LLL and UUUD be C1-functions and g be

of class C2.

Then one can construct selections HHH(i) of HHH following [5],

the idea being similar to finding possible evolutions of the

quasi-static problem in [11]:

Let ȳyy = (γ̄, ūuu, λ̄λλ D, λ̄λλ ν , λ̄λλ τ) ∈ R
1+2(nΩ+nD+nc) be an arbi-

trary but fixed point and introduce subsets of the index set

of all contact nodes I := {1, . . . ,nc} as follows:

If = { j ∈ I; λ̄ν , j −g j(ūuu)> 0},

Ic = { j ∈ I; λ̄ν , j −g j(ūuu)< 0},

Iz = { j ∈ I; λ̄ν , j −g j(ūuu) = 0},

I0 = { j ∈ I; F j = 0},

Is = { j ∈ I;

F j > 0, |λ̄τ, j − (BBBτ(ūuu)ūuu) j|<−F j(λ̄ν , j −g j(ūuu))−},

Il = { j ∈ I;

F j > 0, |λ̄τ, j − (BBBτ(ūuu)ūuu) j|>−F j(λ̄ν , j −g j(ūuu))−},

Ii = { j ∈ I;

F j > 0, |λ̄τ, j − (BBBτ(ūuu)ūuu) j|=−F j(λ̄ν , j −g j(ūuu))−}.

Apparently, if ȳyy is a solution of (42), If is composed of the

indices of the nodes not in contact (free), Ic of the indices of

the nodes in strong contact, Iz of the indices of the nodes in

grazing contact (with zero contact forces), I0 of the indices

of the nodes with vanishing friction, Is of the indices of the

nodes in strong stick, Il of the indices of the nodes in non-

zero slip, and Ii of the indices of the nodes in impending

slip.

In virtue of Assumption 5, the functions uuu 7→ g j(uuu) and

uuu 7→ BBBτ(uuu) are continuous. It is then readily seen that if

Iz ∪ (Ic ∩ Ii) = /0, there exists a neighbourhood O of ȳyy where

HHH is C1. Otherwise, let If
z and Ic

z be some index sets form-

ing a decomposition of Iz, Is
ci and Il

ci sets forming a decom-

position of Ic ∩ Ii, and Ics
zi , Icl+

zi and Icl−
zi sets forming a fur-

ther decomposition of Ic
z ∩ Ii. We associate these decomposi-

tions with a function HHH(i) : R1+2(nΩ+nD+nc) →R
2(nΩ+nD+nc),

i = i(If
z, I

c
z , I

s
ci, I

l
ci, I

cs
zi , I

cl+
zi , Icl−

zi ), defined by

HHH(i)(yyy)

:=

























AAA(uuu)−LLL(γ,uuu)−BBB⊤
Dλλλ D −BBB⊤

ν (uuu)λλλ ν −BBB⊤
τ (uuu)λλλ τ

BBBDuuu−UUUD(γ)
(

λν , j, j ∈ If ∪ If
z

g j(uuu), j ∈ Ic ∪ Ic
z

)









λτ, j, j ∈ If ∪ If
z ∪ I0

(BBBτ(uuu)uuu) j, j ∈ Is ∪ Is
ci ∪ Ics

zi

λτ, j − s jF j(λν , j −g j(uuu)),

j ∈ ((Ic ∪ Ic
z )∩ Il)∪ Il

ci ∪ Icl+
zi ∪ Icl−

zi

































,

where

s j =











−sgn(λ̄τ, j − (BBBτ(ūuu)ūuu) j)

if j ∈ ((Ic ∪ Ic
z )∩ Il)∪ Il

ci,

±1 if j ∈ Icl±
zi .

(43)

Observe that if HHH(i)(yyy) = HHH(yyy) = 000 in addition to HHH(ȳyy) = 000,

If
z and Ic

z correspond to the nodes that are in grazing con-

tact for ȳyy, and not in contact and in contact, respectively,

for yyy. Similarly, Is
ci and Il

ci correspond to the nodes in strong

contact with impending slip for ȳyy, and in stick and slip, re-

spectively, for yyy. Finally, Ics
zi , Icl+

zi and Icl−
zi correspond to the

nodes in grazing contact with impending slip for ȳyy, and in

strong contact with stick, positive and negative slip, respec-

tively, for yyy.

Due to the continuity of the functions uuu 7→ g j(uuu) and

uuu 7→ BBBτ(uuu), one can find a neighbourhood O of ȳyy such that

HHH = HHH(i) in D(i),

where

D(i) =
⋂

j∈Iz∪(Ic∩Ii)

D
(i)
j ,

D
(i)
j :=



















































































{yyy ∈ O; λν , j −g j(uuu)≥ 0} if j ∈ If
z,

{yyy ∈ O; λν , j −g j(uuu)≤ 0} if j ∈ Ic
z \ Ii,

{yyy ∈ O; s j(λτ, j − (BBBτ(uuu)uuu) j)≤ F j(λν , j −g j(uuu))}

if j ∈ Il
ci,

{yyy ∈ O; s j(λτ, j − (BBBτ(uuu)uuu) j)≥ F j(λν , j −g j(uuu))}

if j ∈ Is
ci,

{yyy ∈ O; F j(λν , j −g j(uuu))≤ λτ, j − (BBBτ(uuu)uuu) j

≤−F j(λν , j −g j(uuu))} if j ∈ Ics
zi ,

{yyy ∈ O; λν , j −g j(uuu)≤ 0, s j(λτ, j − (BBBτ(uuu)uuu) j)

≤ F j(λν , j −g j(uuu))} if j ∈ Icl+
zi ∪ Icl−

zi

with s j defined by (43) and s j = −sgn(λ̄τ, j − (BBBτ(ūuu)ūuu) j) if

j ∈ Is
ci.

The set {HHH(i)}i∈I (ȳyy) of selections of HHH at ȳyy then con-

sists of HHH(i) corresponding to all combinations of If
z and Ic

z
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forming a decomposition of Iz, Is
ci and Il

ci forming a decom-

position of Ic ∩ Ii, and Ics
zi , Icl+

zi and Icl−
zi forming a decompo-

sition of Ic
z ∩ Ii. In view of the interpretation of the index sets

mentioned above, there is a one-to-one correspondence be-

tween the selections HHH(i) and divisions of the contact nodes

that are in grazing contact or impending slip for ȳyy according

to the respective contact modes for roots yyy of HHH(i) (provided

that both ȳyy and yyy solve (42)).

Introducing GGG(i) according to the definition of D(i), one

can easily verify that Assumption 1(ii) from the abstract

frame is fulfilled. It even holds for I ′ from (10) that I ′ =
I (ȳyy) for any ȳyy ∈ R

1+2(nΩ+nD+nc). Observe that under As-

sumption 2, Assumption 3 ensures that in this setting, all so-

lution branches emanating from ȳyy have strict contact modes

of all nodes, that is, without any grazing contact or impend-

ing slip (see Theorem 2).

Set n1 := #(Iz ∩ Il)+#(Ic ∩ Ii) and n2 := #(Iz ∩ Ii). From

the general simplest cases described in Subsection 2.2, the

following ones occur in Problem (42):

ad I. LLL === 222: n1 = 1, n2 = 0 (either one node in grazing con-

tact with non-vanishing slip or one node in strong con-

tact with impending slip);

ad IV. LLL === 444, MMM1 === 111, MMMi === 222, iii === 222,,,333,,,444: n1 = 0, n2 = 1

(one node in grazing contact with impending slip);

ad V. LLL === 444, MMMi === 222, iii === 111,,,222,,,333,,,444: n1 = 2, n2 = 0 (two nodes

in grazing contact with non-vanishing slip or two nodes

in strong contact with impending slip or one node in

grazing contact with non-vanishing slip and one node

in strong contact with impending slip).

To add, the considerations here can be simply modified

to the continuation problem proposed in [21, Section 3],

which is a bit more general than the parametrised static prob-

lem presented here. Application of Theorem 2 to that contin-

uation problem then gives a description of solution branches,

which completes Theorem 3, op. cit.

Remark 1 The Dirichlet boundary condition is enforced via

a Lagrange multiplier in the present model so that it can

be simply parametrised. However, if the Dirichlet condition

does not depend on the parameter, it can be prescribed with-

out any significant changes directly in the discrete problem.

Let us also note that our abstract frame does not require

nodal approximation of the contact conditions either. It cov-

ers also discrete problems arising from their integral approx-

imation (after using a numerical quadrature if necessary).

5 Model Examples

In Sub-subsection 5.1.1, the preceding theory will be illus-

trated on a very simple contact problem, which corresponds

to a parametrisation of the example from [18, Section 4]

ΓD
ΓNh

Γc

O x1

x2

0

Ω

ν

τ

Fig. 11 Geometry of the problem with the triangular body.

and can be treated analytically. Subsequently, our numeri-

cal studies of bifurcations in more realistic models will be

presented in Sub-subsection 5.1.2 and Subsection 5.2. The

computations for the latter models were performed with the

finite-element library GetFEM++ [26]. In particular, Algo-

rithm 1 was used with δmax = 10−3, δmin = 10−6, δinc = 2

and δdec = 0.1, and |τ − τ0| in Step 5 of the algorithm was

compared to

τref := 0.02max{|τ(1)− τ(0)|,10−8}

with τ(α) defined by (37), α ∈ {0,1}. The magnitude of

|τ − τ0| was considered to be large when it was greater than

τref, and it was considered as small when it was smaller than

0.5τref.

5.1 Triangular Body

Let us consider contact of an isosceles triangle with a flat

foundation (Fig. 11) in the framework of small-deformation

elasticity with Lamé constants λ , µ > 0. The triangle being

fixed along ΓD and volume forces being neglected, the model

is parametrised via the surface force hhh = hhh(γ) = γ(h1,h2)

with h1 and h2 constant. The friction coefficient F > 0 is

supposed to be constant.

5.1.1 Discretisation with a Single Linear Element

First, we take a model formed by a single linear triangular

finite element with the Dirichlet condition on ΓD prescribed

directly so that all degrees of freedom of the model are re-

lated to the node in 000.

This model leads to Problem (42) with HHH : R5 → R
4,

which can be written as

HHH(yyy) :=









auν −buτ + γL2 −λν

−buν +auτ − γL1 −λτ

λν − (λν −uν)−
λτ −P[F (λν−uν )−,−F (λν−uν )−](λτ −uτ)









,

yyy := (γ,uν ,uτ ,λν ,λτ) ∈ R
5,
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D(1)

D(2)

D(3)

D(4)

λτ − uτ

λν − uν

0

λτ − uτ = F (λν − uν) λτ − uτ = −F (λν − uν)

F

1

F

1

Fig. 12 Structure of the regions for the simple model.

with a := (λ + 3µ)/2, b := (λ + µ)/2 and the load vector

LLL(γ) = γ(L1,L2).

Let us take ȳyy = 000, which corresponds to grazing contact

with impending slip of the only contact node, and results

thus in the most complex situation. According to the previ-

ous section, HHH = HHH(i) in D(i), i ∈ I (ȳyy) = {1,2,3,4}, with

D(1) := {yyy ∈ R
5; λν −uν ≥ 0},

D(2) := {yyy ∈ R
5; λν −uν ≤ 0, λτ −uτ ≤ F (λν −uν)},

D(3) := {yyy ∈ R
5; F (λν −uν)≤ λτ −uτ ≤−F (λν −uν)},

D(4) := {yyy ∈ R
5; λν −uν ≤ 0,−F (λν −uν)≤ λτ −uτ},

HHH(1)(yyy) :=









auν −buτ + γL2 −λν

−buν +auτ − γL1 −λτ

λν

λτ









,

HHH(2)(yyy) :=









auν −buτ + γL2 −λν

−buν +auτ − γL1 −λτ

uν

Fuν −Fλν +λτ









,

HHH(3)(yyy) :=









auν −buτ + γL2 −λν

−buν +auτ − γL1 −λτ

uν

uτ









,

HHH(4)(yyy) :=









auν −buτ + γL2 −λν

−buν +auτ − γL1 −λτ

uν

−Fuν +Fλν +λτ









(Fig. 12). In this case, Problem (P) coincides with (NF)

with AAA(i) = ∇∇∇HHH(i)(ȳyy) and C(i) = D(i), i ∈ I ′ = {1,2,3,4}.

Regarding Assumption 2, one can verify without any

difficulties that the gradients ∇∇∇HHH(i)(ȳyy) have always the full

rank for i = 1,2,3 whereas ∇∇∇HHH(4)(ȳyy) is so provided that

bL1 −aL2 6= 0 or F 6=
a

b
.

Further, Assumption 3 holds if

bL1 −aL2 6= 0 and L1 ±FL2 6= 0. (44)

This shows that only particular cases are excluded from our

general analysis.

Clearly, the branching scenarios in ȳyy correspond to Case

IV from Subsection 2.2. There are always at least two solu-

tion rays under satisfaction of (44), and one obtains by el-

ementary calculations that there are even four solution rays

if

F >
a

b
and (L1 −FL2)(aL2 −bL1)> 0.

Considering the case

F >
a

b
and L1 > FL2 and aL2 > bL1

for definiteness (the case L1 < FL2 and aL2 < bL1 being

symmetric), one can compute that the solution rays of (P)

are generated by

yyy(1) :=
(

1,
bL1 −aL2

a2 −b2
,

aL1 −bL2

a2 −b2
,0,0

)

(no contact),

yyy(2) :=
(

−1,0,−
L1 +FL2

a+bF
,

bL1 −aL2

a+bF
,F

bL1 −aL2

a+bF

)

(contact-positive slip),

yyy(3) := (1,0,0,L2,−L1) (contact-stick),

yyy(4) :=
(

1,0,
L1 −FL2

a−bF
,

aL2 −bL1

a−bF
,F

bL1 −aL2

a−bF

)

(contact-negative slip),

(45)

yyy(i) ∈ D̊(i). Hence, there is one solution ray with γ negative

and there are three solution rays with γ positive. Further-

more,

det

(

∇∇∇HHH(1)(ȳyy)

yyy(1)⊤

)

,det

(

∇∇∇HHH(3)(ȳyy)

yyy(3)⊤

)

> 0,

det

(

∇∇∇HHH(2)(ȳyy)

yyy(2)⊤

)

,det

(

∇∇∇HHH(4)(ȳyy)

yyy(4)⊤

)

< 0,

which implies that the solution ray generated by yyy(1) is co-

herently oriented with the ones generated by yyy(2) and yyy(4)

but incoherently oriented with the one generated by yyy(3) and

so forth.

5.1.2 Discretisation with a Refined Mesh

Next, we consider a problem obtained for a refined mesh

of the triangular body to show that the bifurcation behaviour

from the simple example preserves in a great extent for prob-

lems coming from more realistic discretisations. Namely,

the legs of the triangle are considered to be 1 m long and

a uniform mesh with 4096 linear triangles and 64 contact

nodes is used for the discretisation of the triangle. Further, it

is set λ = 100 GN/m2, µ = 82 GN/m2, hhh(γ)= γ(−26 GN/m2,

−7.5 GN/m2) and F = 1.7.
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Fig. 14 Bifurcation diagrams.

With the aid of the method of piecewise-smooth numer-

ical continuation proposed in [21], we have found four solu-

tion branches of the problem corresponding to (42) and ema-

nating from ȳyy= 000: one with γ negative and three with γ posi-

tive. They correspond to a partial contact and slip of the body

to the right, and to no contact, contact-stick and contact-slip

to the left of the most left contact node (see Fig. 13). Ac-

cording to the obvious analogy of these branches with the

ones from the simple model generated by yyy(1), . . . ,yyy(4) from

(45), they are denoted as branch 2, branch 1, branch 3 and

branch 4, respectively, here and in what follows.

The bifurcation diagrams in Fig. 14 were obtained by

plotting the normal and tangential displacements of the most

left contact node of the body. One can see from the upper di-

agram that some components of different branches may co-

incide (branches 3 and 4 in this case) although the branches

do not coincide completely. Especially, this happens for so-

lution components corresponding to the normal displace-

ment (or the x2-coordinate of the displacement) and to the

normal contact stress at the nodes that are in contact and not

in contact with the foundation, respectively, for two different

branches simultaneously.

When yyyk−1 and yyyk are chosen from various branches,

computations with Algorithm 1 show that the numbers of

the roots of JJJ(α) defined by (35) in [0,1] vary from zero to

0

x1

x2

ν

τ

hh

Γc

ΓN

ΓD

ΓN

Ω

O

40

80

Fig. 16 Geometry of the problem with the rectangular body.

two: There is no root for yyyk−1, yyyk from the pairs {branch 1,

branch 2} and {branch 2, branch 3}, one root for {branch 1,

branch 3} and {branch 2, branch 4}, and two roots for {branch 1,

branch 4} and {branch 3, branch 4}. Hence, one can con-

clude that branch 1 is coherently oriented with branches 2

and 4 and incoherently oriented with branch 3 and so forth.

Let us emphasise that the orientations remain the same from

the simple example although the overall situation is much

more complex now – there are 464 regions intersecting at ȳyy

in the present problem!

In the vast majority of our tests, there was no singu-

larity of τ(α) introduced by (37) in [0,1], that is, no root

of MMM(α) defined by (36) when there was no root of JJJ(α)

(see Fig. 15(a) for a typical behaviour of τ(α) in this case).

Further, one and two roots of JJJ(α) were usually closely

accompanied by one and two roots of MMM(α), respectively

(Figs. 15(b) and 15(c)).

5.2 Rectangular Body

Finally inspired by [12], we consider contact of a rectangu-

lar block that is 40 mm wide and 80 mm high with a flat

foundation, see Fig. 16. A plane-strain approximation of the

nonlinear Ciarlet-Geymonat constitutive law [8, Chapter 4]

is used:

σ̂σσ(xxx,FFF) = (σ̃σσ(F̃FF))1≤i, j≤2, F̃FF =

(

FFF 000

000 1

)

, FFF ∈ R
2×2,

σ̃σσ(F̃FF) = 2b
(

tr(F̃FF
⊤

F̃FF)
)

III +2(a−bF̃FFF̃FF
⊤
)F̃FF

+
(

2cdet(F̃FF
⊤

F̃FF)−d
)

F̃FF
−⊤

, F̃FF ∈ R
3×3,

where

λ = 4000 N/mm2, µ = 120 N/mm2, a = 30 N/mm2

and

b =
µ

2
−a, c =

λ

4
−

µ

2
+a, d =

λ

2
+µ.

The body is fixed along ΓD, volume forces are neglected

while the surface forces given by the formula

hhh(xxx,γ) = γ(−2,0.12(x1 −20))
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(a) Branch 1. (b) Branch 2.

(c) Branch 3. (d) Branch 4.

Fig. 13 Solutions with |γ|= 1: (b) γ =−1; (a), (c), (d) γ = 1.

(a) No root of JJJ(α) in [0,1]. (b) One root of JJJ(α) in [0,1]. (c) Two roots of JJJ(α) in [0,1].

Fig. 15 Typical behaviours of τ(α).

(in N/mm2) act on both parts of ΓN and F = 1 on Γc. The

body is discretised with a uniform mesh with 800 bilinear

squares and 21 contact nodes.

We have found six solution branches emanating from

ȳyy = 000 numerically in this problem: three with γ negative,

which correspond to forcing the body to the right and no

contact, contact-stick and contact-slip to the right of the most

right contact node, and three with γ positive, which corre-

spond to forcing the body to the left and no contact, contact-

stick and contact-slip to the left of the most left contact node

(Fig. 17).

The bifurcation diagrams in Fig. 18 were obtained by

plotting the normal and tangential displacements of the most

left contact node of the body as previously. In this case,

branches 5 and 6 coincide in the upper diagram. One can

guess from the lower diagram that some components of some



20 T. Ligurský, Y. Renard

(a) Branch 1. (b) Branch 2. (c) Branch 3.

(d) Branch 4. (e) Branch 5. (f) Branch 6.

Fig. 17 Solutions with |γ|= 1: (a), (b), (c) γ =−1; (d), (e), (f) γ = 1.

branches can be continued by the same components of some

other branches without loss of differentiability, but the upper

diagram clearly shows that this is not the case of all compo-

nents.

The numbers of the roots of JJJ(α) in [0,1] for various

pairs of branches are summarised in Table 1; they vary from

zero to two as before. Table 2 presents the resulting orien-

tations of the branches; each branch is coherently oriented

with other three branches and incoherently oriented with the

other two branches. Behaviours of τ(α) for various num-

bers of the roots of JJJ(α) do not differ significantly from

Sub-section 5.1.2.

6 Conclusion

The paper presents a complex study of bifurcations in an

important class of steady-state piecewise-smooth problems

for which the regions of smoothness permit analytical ex-

pressions (Assumption 1). Within this class and under cer-

tain non-degeneracy assumptions (Assumptions 2 and 3),

the study completes the theoretical analysis of local behaviour

of the solution set around a non-smooth point from [21]

(Theorem 2). It is worth mentioning that apart from being

interesting for theoretical study of branching via a simplified

problem, our results can also be used for constructing meth-
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Fig. 18 Bifurcation diagrams.

Table 1 Numbers of the roots of JJJ(α) in [0,1].

branch 1 2 3 4 5 6

1 1 2 0 0 1

2 1 0 0 0 1

3 2 0 1 1 2

4 0 0 1 1 2

5 0 0 1 1 0

6 1 1 2 2 0

Table 2 Orientations of the branches; the plus and minus signs stand

for the coherent and incoherent orientations, respectively.

branch 1 2 3 4 5 6

1 - + + + -

2 - + + + -

3 + + - - +

4 + + - - +

5 + + - - +

6 - - + + +

ods of numerical continuation of the predictor-corrector type

by providing (all possible) tangential predictions.

Furthermore, the most probable branching scenarios have

been described and a bifurcation criterion has been formu-

lated. Even though the criterion is based on the particular

scenarios, it is applicable generally. Its numerical realisa-

tion for large problems has been proposed and tested on

plane contact problems with friction. The advantage of the

designed algorithm for bifurcation testing is that it does not

obey analytical expressions for the regions of smoothness of

the PC1-function involved, and can be thus easily incorpo-

rated in a generic continuation routine. Let us emphasise that

although the proposed criterion does not detect bifurcations

in all possible cases, it is the first attempt to devise such a

criterion as far as we know.

All in all, we hope that our contribution illuminates the

subject of piecewise-smooth bifurcations and sets up funda-

mentals for their numerical treatment.
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