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Abstract

The existence of a Dimension Reduction (DR) subspace is a common assumption in regres-

sion analysis when dealing with high-dimensional predictors. The estimation of such a DR

subspace has received considerable attention in the past few years, the most popular method

being undoubtedly the Sliced Inverse Regression. We propose in this paper a new estimation

procedure of the DR subspace by assuming that the joint distribution of the predictor and the

response variables is a finite mixture of distributions. The new method is compared through

a simulation study to some classical methods.

Keywords: Dimension reduction, Maximum likelihood estimates, Mixture of distributions,

Sliced Inverse Regression.

1 Introduction

Regression analysis concerns inference on the conditional distribution of a response variable Y ∈ Rq

given the value X = x of a vector of predictors X ∈ Rp. For instance, a classical problem is the

nonparametric estimation of the conditional mean function E(Y |X) for which a popular estimator,

when the dimension p is not too large, has been proposed by Nadaraya [22] and Watson [30].

When the dimension p becomes large, the so-called “curse of dimensionality” problem arises and
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inference on the conditional distribution of Y given X = x becomes difficult. A common proce-

dure when dealing with a high-dimensional predictor X is to determine a subspace S ⊂ Rp, with

dim(S) = d ≤ p, that carries all the information that X has about Y . Such a subspace S is called a

Dimension Reduction (DR) subspace. It is spanned by the columns of a full rank matrix Γ ∈ Rp×d

such that X and Y are conditionally independent given ΓtX. A DR subspace always exists since

the trivial choice Γ = Ip is possible, but does not produce a reduction of dimension. Under minor

conditions (see Cook [6]), the intersection of two DR subspaces is still a DR subspace and the in-

tersection of all DR subspaces is called the central subspace. As seen in Li [19], a regression model

admitting a central subspace is given by Y = g(ΓtX, ε), where ε is a random value independent of

X and g : Rd+1 7→ Rq is an arbitrary function.

One of the earliest method to estimate the central subspace (i.e. a matrix Γ) is the Sliced In-

verse Regression (SIR) procedure introduced by Li [19]. This method is based on the estimation of

Var(E(X|Y )) using a set {Sh, h = 1, . . . ,H} of non-overlapping slices that cover the range of Y .

The asymptotic properties of SIR and related methods are derived for instance by Saracco [24, 25].

The SIR central subspace estimator is motivated in Li [19] by a geometric property of the covari-

ance matrix Var(E(X|Y )). Another way to understand the SIR method is proposed in Cook [8]

where Γ is interpreted as a parameter of an inverse regression model. This model is equivalent to

assume that, for all h = 1, . . . ,H, the conditional distribution of X given Y ∈ Sh is a multivari-

ate Gaussian distribution. Considering n independent replications of the random vector (X,Y ),

Bernard-Michel et al. [3] and Szretter and Yohai [28] show that the maximum likelihood estimator

of Γ corresponds to the SIR estimator of the central subspace. This inverse regression model is

also used by Bernard-Michel et al. [3] to propose a Gaussian regularized version of SIR which is

applied to a real data set in Bernard-Michel et al. [4].

The situation when the response variable Y is multivariate (i.e. when dim(Y ) = q > 1) has

received less attention in the literature. The main difficulty of applying SIR in this setting lies in
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the construction of the non-overlapping slices. However, some adaptions of SIR to a multivariate

framework have been proposed. For instance, a multivariate version of SIR where slices are re-

placed by k-means clusters is proposed in Setodji and Cook [27]. Hsing [15] describes a version of

SIR for which the slices are built using a nearest neighbors approach. Yin and Bura [34] propose

a moment based dimension reduction for multivariate data. More recently, Coudret et al. [11]

present another extension of SIR that clusters components of a multivariate response variable Y

that are related to the same DR subspace.

It is also well known that dimension reduction methods based on the first moment (as it is the case

with the SIR method) fail to recover a symmetric dependency. This situation occurs for instance

when the link function g in the Li’s regression model is symmetric (see Cook and Weisberg [10]).

A first tentative to overcome this limitation is proposed in Hsing and Carroll [16] who estimate

the central subspace using an estimator of E(Var(X|Y )) instead of Var(E(X|Y )). One can also

mention the following methods: Sliced Average Variance Estimation (SAVE) which is based on

the second order moment of the conditional distribution of X given Y (see Cook [10]), Principal

Hessian Directions (pHd) (Li [20]), Graphical Regression (Cook [7]), Minimum Average Variance

Estimation (MAVE) (Xia et al. [32], Directional Regression (Li and Wang [17]), Sliced Regression

(Wang and Xia [29]), Likelihood Acquired Directions (LAD) (Cook and Forzani [9]) and many

others. Convex combinations of some of the previous methods are investigated in Gannoun and

Saracco [13] and Ye and Weiss [33]. Note that most of these methods have been introduced for the

case of a univariate response variable Y . A few extensions to the multivariate case can be found

in Aragon [2] and Li et al. [21].

The goal of this paper is to propose a new dimension reduction approach. In few words, we

assume that the whole joint distribution of (X,Y ) is a finite mixture of distributions, parametrized

in such a way that it allows inference on the central subspace. The proposed method avoids the

choice of non-overlapping slices and is thus well adapted to the presence of a multivariate response
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variable Y . Moreover the proposed method is able to recover a symmetric dependency. Notice

that the use of models based on mixtures of distributions has been already proposed in the context

of dimension reduction, only for a univariate response Y . For example, Scrucca [26] assumes that

the conditional distribution of X given Y ∈ Sh is a finite mixture of Gaussian distributions. Reich

et al. [23], in a Bayesian framework, propose a mixture model for the conditional distribution of a

real-valued response Y given X with a probit model on the weights.

The rest of the paper is organized as follows. In Section 2, the new dimension reduction model is

introduced and an estimation of its parameters is provided. A comparison with existing methods

is given in Section 3. A simulation study is proposed in Section 4 where our new estimation pro-

cedure is compared to previous approaches. A real dataset is treated in Section 5. All the proofs

are postponed to the appendix.

2 The Dimension reduction estimation procedure

2.1 The proposed model

We assume in what follows that the random vector (X,Y ) ∈ Rp×Rq admits a probability density

function (pdf) fX,Y (x, y) with respect to the Lebesgue measure. Our aim is to estimate a full rank

matrix Γ ∈ Rp×d such that the columns of Γ form a basis of a DR subspace of dimension d ≤ p.

For that purpose, for an integer M ≥ d + 1, we suppose that the joint distribution of (X,Y ) is a

mixture of M distributions involving Γ. More specifically, for some unknown positive component

weights π1, . . . , πM summing to 1 we state that

fX,Y (x, y) =

M∑
m=1

πmfm(x, y|Γ), (1)

where for each m ∈ {1, . . . ,M}, fm(·, ·|Γ) is a pdf. To ensure that (1) is a dimension reduction

model (i.e. that X and Y are conditionally independent given ΓtX) we assume in addition that

there exist functions (not necessarily pdf) g(·) and hm(·, ·), m = 1, . . . ,M such that

fm(x, y|Γ) = g(x)hm(Γtx, y). (2)
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Indeed, it is easy to check that under (1) with fm(·, ·|Γ) as in (2), the pdf of the conditional

distribution of Y given {X = x} is

f(y|X = x) =

M∑
m=1

πmg(x)hm(Γtx, y)

/(
g(x)

M∑
m=1

πm

∫
hm(Γtx, z)dz

)

=

M∑
m=1

πmhm(Γtx, y)

/
M∑
m=1

πm

∫
hm(Γtx, z)dz ,

which depends on x only through Γtx. Notice that, as it is the case for all the dimension reduction

models proposed in the literature, the matrix Γ is identifiable only up to a right product by any

d × d regular matrix whereas the corresponding spanned subspace, the true goal of inference, is

identifiable.

The advantage of assuming that the joint distribution of (X,Y ) is a mixture distribution will

clearly appear in Section 3 where a comparison with other dimension reduction methods is done.

Of course, without assuming a parametric form for the functions {fm(·, ·|Γ), m = 1, . . . ,M},

the estimation of Γ is impossible. We introduce now a natural example of parametric mixture

distribution that will be used in the rest of the paper. We assume that, for each m = 1, ...,M ,

the pdf fm(·, ·|Γ) is the product of a p-dimensional Gaussian pdf with mean ξ + V Γβm ∈ Rp (for

ξ ∈ Rp and βm ∈ Rd) and covariance matrix V ∈ Rp×p and a q-dimensional Gaussian pdf with

mean αm ∈ Rq and covariance matrix Wm ∈ Rq×q. The distribution of (X,Y ) is the Gaussian

mixture

fX,Y (x, y) =

M∑
m=1

πmϕp(x|ξ + V Γβm;V )ϕq(y|αm;Wm), (3)

where ϕk(·|µ; Φ) denotes the pdf of a multivariate Gaussian distribution with mean µ ∈ Rk and

covariance matrix Φ ∈ Rk×k. Note that for each m ∈ {1, . . . ,M} the pdf of the m-th component

fm(x, y|Γ) = ϕp(x|ξ + V Γβm;V )ϕq(y|αm;Wm) satisfies (2) with

g(x) =
1

(2π)p/2|V |1/2
exp

[
−1

2
(x− ξ)tV −1(x− ξ)

]
(4)

for x ∈ Rp and, for (x, y) ∈ Rp×q,

hm(Γtx, y) = exp

[
βtm(Γtx− Γtξ)− 1

2
βtmΓtV Γβm

]
ϕq(y|αm;Wm). (5)
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The expression for the conditional mean of X given that it comes from the m-th component

distribution, ξ+V Γβm, is present in many works dedicated to dimension reduction. It is used e.g.

in Cook [8] (Sec. 3.1) in a regression setting, for the case where V is the identity matrix. The

general expression was introduced in Bernard-Michel et al. [3] to define their model of Gaussian

sliced inverse regression.

The parameters of the Gaussian mixture model (3) are Γ (which is the parameter of interest),

Θ = (ξ, V ) and Θm = (βm, αm,Wm) for m = 1, . . . ,M . It is of course possible to consider more

parsimonious models. For instance, one can assume that the covariance matrix in ϕq(y|αm;Wm)

is given by Wm = v2Iq for some real parameter v > 0. This parsimonious model will be used in

the simulation study and for the real data example. Finally note that the extension of the model

to other types of response variables, such as binary variables, is possible by replacing in (3) the

pdf’s ϕq(y|αm;Wm), m = 1, ...,M by appropriate distributions.

The next section is devoted to the estimation of the parameters involved in (3).

2.2 Maximum likelihood estimation

Let (X,Y ) be a random vector with pdf given by (3). Let (x, y) := ((x1, y1), . . . , (xn, yn)) be the

observations of n independent copies of the random vector (X,Y ). We propose to estimate the full

rank matrix Γ spanning the DR subspace by its maximum likelihood estimator. Our goal is thus

to maximize the likelihood function

L ((x, y) |Γ,Θ, (πm,Θm)m=1,...,M ) =

n∏
i=1

M∑
m=1

πmg(xi)hm(Γtxi, yi)

with respect to Γ, Θ, Θm and πm, m = 1, . . . ,M where the parametric functions g(·) and

{hm(·, ·), m = 1, . . . ,M} are defined in (4) and (5). To achieve this maximization we use the

Expectation-Maximization (EM) algorithm (see Dempster et al. [12]). The idea behind this algo-

rithm is the following. We introduce a latent variable Z taking values in {1, . . . ,M} with P(Z =

m) = πm and such that the conditional pdf of (X,Y ) given Z = m is fm(x, y|Γ) = g(x)hm(Γtx, y).

The EM algorithm is an iterative procedure maximizing the expectation of the complete log-

likelihood, i.e the log-likelihood of the random vector (X,Y, Z).
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Note that for the Gaussian mixture model (3), a problem related to the identifiability of the

parameters arises: for any γ ∈ Rd, the distribution is unchanged by the reparameterization ξ̃ =

ξ+ V Γγ and β̃m = βm − γ since ξ+ V Γβm = ξ̃+ V Γβ̃m. To overcome this problem, it is assumed

in what follows that βM = 0.

To describe the estimator of the DR subspace provided by the EM algorithm we first introduce

the following notations: let

x̄ =
1

n

n∑
i=1

xi and Σ̂n =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)t

be the empirical mean and variance matrix of X. For i = 1, . . . , n and m = 1, . . . ,M , let zi,m be

the estimator of P(Z = m|(X,Y ) = (xi, yi)) provided by the EM algorithm and let Ĉn be the p×p

matrix defined by

Ĉn =

M∑
m=1

π̂m(x̄m − x̄)(x̄m − x̄)t,

where

π̂m =
1

n

n∑
i=1

zi,m and x̄m =
1

nπ̂m

n∑
i=1

zi,mxi.

The expression for zi,m is given in Lemma 1 of the Appendix, where it is also shown that π̂m is

the maximum likelihood estimator of πm. Furthermore, x̄m can be interpreted as an estimator of

E(X|Z = m) and Ĉn as an estimator of the variance matrix C := Var(E(X|Z)).

Theorem 1. Assume that model (3) holds. The maximum likelihood estimator of the DR subspace

SΓ is the space spanned by the d eigenvectors corresponding to the d largest eigenvalues of the

matrix Σ̂−1
n Ĉn.

Roughly speaking, Theorem 1 entails that the maximum likelihood estimator of Γ maximizes the

between group variance of X where the groups are the M latent classes.

The EM algorithm is detailed in the Appendix. In particular, Proposition 1 in Appendix gives all

the maximum likelihood estimates of the parameters of model (3) required by the M-step of the

algorithm.
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3 Comparison with other models

According to Theorem 1, the proposed estimator of the DR subspace is based on a spectral de-

composition of an estimator of the p× p matrix Σ−1C where Σ = Var(X) and C = Var(E(X|Z)).

In fact many reduction methods are based on a spectral decomposition of a matrix. This is the

case for example of the classical SIR method of Li [19] and of the more recent MSIR method of

Scrucca [26] that uses mixtures of distributions. We give here some details on the similarities and

the differences between these two methods and the proposed method.

SIR approach As shown for instance in Bernard-Michel et al. [3], for a univariate response Y ,

the estimate of Γ obtained by the SIR procedure of Li [19] maximizes the likelihood function of

the model given by

fX,Y (x, y) =

H∑
h=1

I{y∈Sh}ϕp(x|ξ + V Γβh;V )fY (y), (6)

where fY (·) is an arbitrary pdf function and where {Sh, h = 1, . . . ,H} are non-overlapping slices

covering the range of Y . These slices have to be chosen by the user on the only basis of the observed

distribution of Y . The SIR method estimates Γ by a spectral decomposition of an estimator of the

p× p matrix Σ−1C(SIR) where the matrix C(SIR) = Var(E(X|Y )) is estimated by

Ĉ(SIR)
n =

H∑
h=1

nh
n

((
1

nh

∑
i:Yi∈Sh

xi

)
− x̄

)((
1

nh

∑
i:Yi∈Sh

xi

)
− x̄

)t
,

with nh the number of observed Y ′i s in slice Sh, h = 1, . . . ,H. Hence, the SIR estimator of Γ

is obtained by maximizing the between group variance of X where the groups are the H non-

overlapping slices {Sh, h = 1, . . . ,H}.

MSIR approach A recent contribution to dimension reduction can be found in Scrucca [26]

that describes a model-based SIR (MSIR) procedure. The idea here is to replace each Gaussian

component in model (6) by a mixture of Gaussian distributions in order to deal with more complex

situations. For a univariate response Y and for non-overlapping slices {Sh, h = 1, . . . ,H}, the

model that is considered is

fX,Y (x, y) =

H∑
h=1

I{y∈Sh}

Jh∑
j=1

qh,jϕp(x|µh,j ; Σh,j)fY (y) (7)
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where, for each h = 1, . . . ,H, the reals {qh,j , j = 1, . . . , Jh} are summing to 1, the vectors

µh,j ∈ Rp and the matrices Σh,j ∈ Rp×p, j = 1, . . . , Jh, are unknown parameters. The DR

subspace is defined as the space spanned by the d eigenvectors associated to the largest eigenvalues

of the matrix Σ−1C(MSIR) where C(MSIR) = Var(E(X|Y,Z∗)), Z∗ being the latent variable giving

the mixture components in the slices. This matrix C(MSIR) is estimated by

Ĉ(MSIR)
n =

H∑
h=1

Jh∑
j=1

nh
n
q̂h,j (µ̂h,j − µ̂) (µ̂h,j − µ̂)

t

with

µ̂ =

H∑
h=1

Jh∑
j=1

nh
n
q̂h,j µ̂h,j

and where, for h = 1, . . . ,H and j = 1, . . . , Jh, q̂h,j and µ̂h,j are obtained by fitting the mix-

ture model (7). As the SIR estimator, the MSIR estimator of Γ is thus obtained by max-

imizing a between group variance of X but when the groups are the J1 + . . . + JH classes

{Sh × T
(h)
j , j = 1, . . . , Jh, h = 1, . . . ,H} where {T (h)

j , j = 1, . . . , Jh} are the latent classes

in the slice Sh.

Figure 1 illustrates the behavior of the SIR, MSIR and proposed methods on a simple example.

Here the DR subspace has dimension d = 1 and n = 200 observations of a real response variable

Y are simulated from the model Y = (ΓtX)2 + ε for p = 2, Γt = (1, 1), for values of X sampled

from a standard Gaussian distribution and for ε ∼ N (0, 1.52). The SIR method considers E(X|Y )

and approximates this conditional expectation by fitting within each slice Sh, h = 1, ...,H, a single

Gaussian distribution on the observations of X. Thus a well known drawback of this method is

that it is inefficient when Y is a symmetric function of ΓtX, as here, since in this case E(X|Y ) is

constant. The MSIR approach uses a mixture of distributions within each slice. The corresponding

model is thus clearly more flexible than the SIR model (6), in particular can handle the case of

a symmetric dependency. But it still depends on a choice of non-overlapping slices and thus

it is difficult to adapt this method to multivariate response variables. Notice also that the MSIR

estimator for Γ proposed by Scrucca [26] cannot be interpreted as a maximum likelihood estimator.

By contrast with these methods, the proposed procedure does not need pre-defined slices and is
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Figure 1: Plot of observed values of (Y,ΓtX) for the model Y = (ΓtX)2 + ε. The SIR method uses

slices on the range of Y (delimited by dashed lines), here constructed from empirical quantiles of the

observations. The MSIR method allows to use a mixture of distributions within each slice (the different

symbols correspond to the classification given by the use of the mixture of distributions). The proposed

method does not need slices and uses a mixture of distributions for (X,Y ).
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fully data-driven. The slices are replaced by theM latent classes of the mixture model (1) which are

estimated by the EM algorithm. As mentioned in the introduction, this is the main motivation of

using a mixture model for the joint distribution of (X,Y ). As a consequence, the proposed method

is well adapted to the case of multivariate response variables and can tackle complex situations

like for instance a symmetric relationship between Y and ΓtX.

4 Simulation study

In this section we examine the performance of the proposed method via a simulation study. The

algorithm used here corresponds to model (3) where the conditional distribution of Y given that it

comes from componentm of the mixture is Gaussian with mean αm and common covariance matrix

Wm = v2Iq. The unknown parameters of this parsimonious model are the matrices Γ ∈ Rp×d and

V ∈ Rp×p, the vector ξ ∈ Rp, the scalar v2 > 0, the M − 1 vectors βm in Rd and the M vectors

αm in Rq.

In practice, to run the EM algorithm, a starting value for each quantity zi,m is needed. To avoid

local maxima and to get a more precise result, several starting values are used, retaining the esti-

mation returned by the algorithm with the highest likelihood. Several ways are possible to define

these different starting values. We have considered hierarchical clustering with different agglom-

eration methods and projection of the xi’s on the DR subspace provided by the SIR or SAVE

methods.

We list below the simulation designs that are used along this simulation study. Notice that they

are classical for the study of a dimension reduction method, the datasets are not designed to fit

the proposed model.

• Univariate case (q = 1): let X be a standard Gaussian random vector of dimension p and

let ε be a random value independent of X and following a normal distribution with mean 0 and

standard deviation 0.2. For a given full rank matrix Γ ∈ Rp×d and for a function G : Rd+1 7→ R,

the response variable Y is given by the model Y = G(ΓtX, ε). In the following designs, the matrix
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Γ and the functions G are taken as in Li and Wang [17]. More precisely, we take p = 6, d = 2,

Γt =

 1 1 1 0 0 0

1 0 0 0 1 3

 ,

with G(Γtx, ε) given by, if (γ1, γ2) = Γtx,

Design 1: 0.4γ2
1 + 3 sin(γ2/4) + ε Design 2: 3[sin(γ1/4) + sin(γ2/4)] + ε

Design 3: 0.4γ2
1 + |γ2|1/2 + ε Design 4: 3 sin(γ2/4) + (1 + γ1)2ε.

The next design is considered for instance in Li [19]. We take p = 10, d = 2,

Γt =

 1 0 0 . . . 0

0 1 0 . . . 0

 , (8)

with G(Γtx, ε) given by, if (γ1, γ2) = Γtx,

Design 5: 3γ1

[
0.5 + (γ2 + 1.5)2

]−1
+ ε.

• Multivariate case (q > 1): To study the performance of the proposed method when the

response Y is multivariate we consider four simulation designs used in Setodji and Cook [27]. Here

again, X is a standard Gaussian random vector of dimension p and ε is a standard Gaussian

vector of dimension q independent of X. The response variable Y is given by G(ΓtX, ε) where

G : Rd+q 7→ Rq. In the two following designs, we take p = 4, q = 4, d = 1, Γt = (1, 1, 1, 1) with

G(Γtx, ε) given by, if γ = Γtx and ε = (ε1, ε2, ε3, ε4),

Design 6:
γ

10
+

(
ε1 exp

( γ
10

)
, ε2 exp

(
2− 3γ

10

)
, ε3 exp

(γ
5

)
, ε4 exp

(
1− γ

10

))
.

Design 7:
(
ε1 exp

( γ
10

)
, ε2 exp

(
2− 3γ

10

)
, ε3 exp

(γ
5

)
, ε4 exp

(
1− γ

10

))
.

For the last simulation designs, we take p = 10, q = 2, d = 2, the matrix Γ as in (8) and with

G(Γtx, ε) given by, if (γ1, γ2) = Γtx and ε = (ε1, ε2),

Designs 8 and 9:
(
γ1(γ1 + γ2 + 1) + σε1, γ1[0.5 + (γ2 + 1.5)2]−1 + σε2

)
,

with σ = 1/2 for Design 8 and σ = 1 for Design 9.
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Let P be the matrix of projection on the true DR subspace and P̂ the matrix of projection on the

estimated DR subspace. Following Li et al. [18] and Scrucca [26], to measure the accuracy of the

proposed method, we calculate the Euclidean norm of P − P̂ which is defined as the maximum

singular value of (P−P̂ )(P−P̂ ). This norm have values in the interval (0, 1) and can be interpreted

as a sine of the maximal angle between the true and the estimated DR subspaces. The results

presented hereafter are calculated over 100 data replications.

4.1 Choice of M

We first examine how the proposed method performs depending on the choice for the number M

of components in the mixture. For this, we run the algorithm for different data size values and for

values of M going from 3 to 40 components.
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Figure 2: Choice of M . Design 1: Quantiles of order 0.25, 0.5 and 0.75 (solid lines) and means (diamonds)

of the matrix distances as a function of M for data sizes n = 70, 100 and 300.

In Figure 2 we report for the design 1 the quartiles and the means of the matrix distances for three

data sizes n = 70, 100 and 300. The errors decrease with M until they reach a plateau. Then, as

seen in the case n = 70 and n = 100, the results deteriorate when the number of components is

too large for the data size. The results look insensitive to the choice of a “reasonable” value for

M , reasonable value that is sufficiently large to apprehend the link function and not too big with

respect to n and the values for p, q and d.

In practice, since the true DR subspace is not known, one can look for a reasonable M by checking

13



the stability of the estimates. Another possibility is to do a cross-validation to verify if the model

recovers well the link function. Nevertheless such practices are computationally expensive. Here-

after we will use in this section the choice by default M = b2n0.5c that appears to work well for

the simulations.

4.2 Comparison with other methods

Next we compare the performance of the proposed method with other methods for dimension

reduction on the different simulation designs. For the case of a univariate response variable we

consider the classical methods SIR and SAVE that are implemented in the R package dr (see

Weisberg [31]), the method LAD of Cook and Forzani [9] that is implemented in the R package

ldr (see Adragni and Raim [1]) and the method MSIR implemented in the R package msir (see

Scrucca [26]).

Our method SIR SAVE LAD MSIR

Design 1 n = 100 0.203 (0.070) 0.765 (0.212) 0.425 (0.164) 0.340 (0.169) 0.533 (0.300)

n = 300 0.085 (0.027) 0.675 (0.267) 0.181 (0.064) 0.149 (0.049) 0.171 (0.081)

Design 2 n = 100 0.745 (0.230) 0.814 (0.196) 0.819 (0.173) 0.727 (0.227) 0.853 (0.153)

n = 300 0.364 (0.194) 0.663 (0.213) 0.710 (0.220) 0.335 (0.173) 0.721 (0.210)

Design 3 n = 100 0.440 (0.257) 0.926 (0.101) 0.382 (0.173) 0.272 (0.155) 0.844 (0.206)

n = 300 0.108 (0.045) 0.915 (0.106) 0.158 (0.049) 0.107 (0.032) 0.783 (0.252)

Design 4 n = 100 0.743 (0.205) 0.839 (0.202) 0.787 (0.197) 0.755 (0.221) 0.902 (0.128)

n = 300 0.300 (0.176) 0.795 (0.195) 0.526 (0.238) 0.420 (0.224) 0.900 (0.139)

Design 5 n = 100 0.779 (0.189) 0.686 (0.165) 0.952 (0.064) 0.828 (0.143) 0.782 (0.140)

n = 300 0.376 (0.117) 0.391 (0.107) 0.874 (0.127) 0.459 (0.158) 0.454 (0.117)

Table 1: Mean and standard error (in parenthesis) of the matrix distances.

In Table 1 we report the means and standard errors of the matrix distances calculated over 100

data replications. The values of M for the proposed method are fixed by default (M = 20 for the
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data size n = 100 and M = 34 for the data size n = 300). We run the SIR and SAVE methods,

for each data replication, for a number of slices H between 3 and 40. For each of these methods

we report the results corresponding to the number H that gives the smaller mean of the data

distances. We proceed similarly for LAD, for a number of slices H between 3 and 12 when n = 100

and between 3 and 25 for n = 300 (fixing d to its true value). Finally the reported results for

the MSIR method are the one obtained by the default value for H in the R function. Clearly, the

proposed method performs very well compared to the other methods since it gives generally the

best results, or a result close the the best one, except for design 3 when n = 100 and design 5 when

n = 100 (even if the best result for SIR, SAVE and LAD over several number of slices are reported).

Our method SIR SAVE

Design 6 n = 100 0.366 (0.176) 0.667 (0.242) 0.863 (0.171)

n = 300 0.139 (0.067) 0.362 (0.205) 0.803 (0.199)

Design 7 n = 100 0.369 (0.139) 0.841 (0.176) 0.861 (0.165)

n = 300 0.185 (0.082) 0.822 (0.186) 0.821 (0.191)

Design 8 n = 200 0.342 (0.112) 0.509 (0.142) 0.770 (0.188)

n = 400 0.194 (0.056) 0.339 (0.087) 0.562 (0.189)

Design 9 n = 200 0.661 (0.197) 0.783 (0.174) 0.867(0.141)

n = 400 0.401 (0.158) 0.596 (0.179) 0.697 (0.183)

Table 2: Mean and standard error (in parenthesis) of the matrix distances.

For the case q > 1 we compare the proposed method only with SIR and SAVE as LAD and MSIR

consider only univariate response variables. The results are given in Table 2. The values of M

are fixed by default (M = 28 for the data size n = 200 and M = 40 for the data size n = 400).

Again, the reported values for SIR and SAVE correspond to the best among the results of these

methods for a number of slices H between 3 and 15. Here again the proposed method compares

very favorably to the others. This is particularly true for design 6 and design 7 where the high
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dimension of Y , q = 4, makes difficult the construction of slices.

4.3 Choice of the dimension of the DR subspace

The estimation of the dimension d of a DR subspace is an important issue for a dimension-reduction

method. To answer this question, many methods related to SIR use the sequential chi-squared test

procedure introduced by Li [19] based on the test statistic

Λd = n

p∑
j=d+1

λ̂j

where the values λ̂j , j = 1, ..., p, denote the observed eigenvalues of the eigen decomposition of the

estimator of Σ−1C(SIR). Under some conditions on the distribution of X (see Bura and Cook [5]),

concerning the SIR method, this statistic is known to have an asymptotic chi-squared distribution

if d is the true dimension. For other methods than SIR, or when the conditions are not satisfied,

the null distribution of this statistics can be explored via a Monte-Carlo-type procedure as in the

general permutation test of Cook and Weisberg [10].

Such a method could be adapted to our case, but the Monte-Carlo study that needs many starts of

the EM algorithm is computationally expensive in practice. We consider here the use of a simple

sequential procedure based on the study of the decay of the eigen values. Let λ̂d0j , j = 1, ..., p, denote

the observed eigen values of Σ̂−1
n Ĉn when d is fixed to d0. As described in the proof of Proposition 1

in the Appendix section, these eigen values are such that 1 ≥ λ̂d01 ≥ λ̂d02 ≥ ... ≥ λ̂d0p ≥ 0. If the

dimension d of the true DR subspace is greater than d0 then λ̂d0d0 is expected to be significantly

much larger than λ̂d0d0+1, ..., λ̂
d0
p . Comparing the observed eigen values with values equally spaced

between 1 and 0, we can estimate the dimension of the DR subspace as

d̂ = max

{
d : λ̂dd ≥ 1− d

p+ 1

}
. (9)

This procedure is called EIV in the rest of the paper.

Another approach for dimension selection is to use an information criterion such as BIC or AIC.

This has been considered in various works dedicated to dimension reduction that use a likelihood,
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see e.g. Cook and Forzani [9]. For each d we calculate a penalized likelihood

BIC(d) = L̂− 0.5k(d) log(n)

AIC(d) = L̂− k(d)

where L̂ denotes the maximum value of the likelihood and where k(d) denotes the number of free

parameters changing with d. Since in our model the parameters concerned by d are the matrix

Γ ∈ Rp×d, identifiable only up to a right product by any regular matrix D ∈ Rd×d, and the M − 1

vectors βm in Rd, we set k(d) = d(p− d+M − 1). For each criterion, the dimension selected is the

d that returns the maximum value.

We evaluate the performances of these procedures on some simulations. We consider the designs 1,

3, 6 and 8 that give, according to Tables 1 and 2, a relatively good estimation of the DR subspace

when d is known and that cover different situations. For each of these designs and for 5 data

sizes, n = 100, 200, 300, 400 and n = 500, we calculate the number of times that each procedure

estimates the correct dimension d over 100 data replications. We report the ratios of good answers

in Figure 3. Shortly, the results are globally satisfactory since these ratios tend to grow with n.

From these simulations there is not a clear ranking of these procedures of the estimation of d. The

results of AIC and EIV look overall similar. If the procedure based on BIC can work very well

in some situations, as for the design 6, it can be outclassed by the procedure based on AIC for

relatively small data sizes, as seen with designs 3 and 8.

5 Real data

To illustrate the use of the proposed method in a multivariate context we consider the Minneapolis

schools dataset. This dataset is described in Cook [7] and concerns the performance of students in

n = 63 Minneapolis schools along with some various social and economic variables. It is studied,

among others, in Yin and Bura [34] or more recently in Coudret et al. [11]. We follow these authors

and consider a q = 4 dimensional response variable Y that consists of the percentages of students

in a school scoring above and below average on standardized fourth and sixth grade reading com-
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Figure 3: Choice of d. Ratio of good answers for different values of n for the procedure EIV, and the

procedures based on AIC and BIC.

prehension tests, denoted Y4Below, Y4Above, Y6Below and Y6Above. As in Yin and Bura [34] the

percentage of students scoring about average is not used since the sum of this with the percentages

above and below average is 100%. There are p = 8 potential predictors. The first seven are the

squared root of the percentages of: children receiving an aid called AFDC, children who do not

live with both parents, people in the area of a school who completed high school, people who suffer

for poverty, minority, mobility and pupils who attend school regularly. The eighth predictor is the

mean number of pupils for each teacher. Notice that the small data size and the dimension of Y

makes the construction of slices tricky: the SIR and SAVE methods implemented in the package
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dr are ineffective in this situation.
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Figure 4: Minneapolis schools dataset. Eigen values obtained for d = 1 and d = 2.

The choice by default M = b2n0.5c used in the simulations of the previous section gives here

M = 15. This number being maybe too large for a so small data size, n = 63, we report hereafter

the results obtained for the choice M = 10 (the results obtained for values of M around 10 are

very similar).

We first look at the dimension of the DR subspace. We report in Figure 4 the eigen values of

Σ̂−1
n Ĉn for d = 1 and d = 2. Clearly, going from d = 1 to d = 2, the addition in the model of a

new dimension for the DR subspace does not increase significantly the second largest eigen value.

The observed value for λ2
2 is close to λ1

2 and is smaller than 1 − 2/(p + 1). Thus the procedure

EIV based on (9) estimates here d = 1. The procedure based on AIC gives also d = 1 while the

procedure based on BIC is not helpful here since it returns d = 7, thus does not indicates the

existence of a DR subspace of small dimension. The fact that a single linear combination of the

predictors carries all the information that X has about Y is a common conclusion in many works

studying this dataset. Next we consider the DR subspace for d = 1.

We report in Table the estimated coefficients of Γ. These results suggest that the 6th and the

8th variables, namely the square root of the percent of mobility and the pupil-teacher ratio, are
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AFDC BthPts HS Poverty Minority Mobility Attend PT.ratio

Non Stand. -0.50 -1.60 1.72 3.39 -0.74 -0.22 -12.96 -0.04

Stand -0.92 -1.15 1.62 1.90 -1.55 -0.18 1.03 -0.06

Table 3: Estimated coefficients of Γ. The first line gives the estimated coefficients returned by the method,

the second line gives these coefficients standardized by the standard deviations of the original predictors.

maybe here negligible relatively to the other variables. A simple way to judge the validity of the

estimated DR subspace is to verify visually if there exists an underlying function linking the single

linear combination X0 = ΓtX and Y . The scatterplot of the four responses and the estimated X0

of the predictors is given in Figure 5. It suggests that, similarly to the results described in Yin and

Bura [34], the responses variables could be described by monotonous quadratic or linear functions

of X0. On this scatterplot notice that the link between the response variables corresponding to

the sixth grade reading comprehension tests and X0 is more evident than the links between the

variables corresponding to the fourth grade reading comprehension tests and X0.

6 Conclusion

We have presented in this paper a model-based dimension reduction method. The model assumes

that the whole joint distribution of (X,Y ) is a finite mixture of distributions parametrized such

that the matrix Γ is estimable. The model can handle multivariate response variables and is able

to recover the DR subspace in the case of a regression symmetric relationship. A canonical choice

is to use Gaussian distributions for the components of the mixture. We have presented for this

case a procedure to estimate the parameters of the model, that involves an EM algorithm. In a

simulation study the proposed method appeared to outperform existing ones for some designs and,

globally, to performs at least equally to them.

We have also addressed in this paper the problem of the choice of the dimension d of the DR

subspace. Following existing works for dimension reduction we have considered the use of the

classical information criteria AIC and BIC. We have also proposed a simple procedure based on
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Figure 5: Minneapolis schools dataset. Scatterplot matrix of the four responses and the estimated single

linear combination X0 of the predictors.

the eigen values returned by the algorithm.

A future direction of work could concerns the extension of the model to handle non-continuous

response variables. As noticed in Section 2 it is possible using appropriate functions hm(·), m =

1, . . . ,M . Such an extension should be straightforward to consider binary regression or, more

generally, the classification problem.
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7 Appendix - Proof of Theorem 1

We first give a result on the eigenvalue decomposition of a product of two symmetric matrices that

will be useful for the proof of Theorem 1.

Lemma 1. Let A and B be p× p symmetric matrices and assume that A is regular.

i) The matrix AB is diagonalizable with non-negative real eigenvalues λ1, . . . , λp.

ii) Let P be the orthonormal matrix whose columns are the eigenvectors of the symmetric matrix

A1/2BA1/2. One has Q−1ABQ = L where Q = A1/2P and L = diag(λ1, . . . , λp).

iii) For each d ≤ p, denote by U a p × d matrix whose columns are d different columns of Q. If

max{λ1, . . . , λp} < 1 the matrix V = A−1 −A−1ULU tA−1 is a definite positive matrix.

Proof − The proof is based on the fact that AB is similar to the symmetric matrix A1/2BA1/2

since

A1/2
(
A1/2BA1/2

)
A−1/2 = AB.

i) The proof is straightforward.

ii) Since A1/2BA1/2 is a symmetric matrix, there exist an orthonormal matrix P such that PLP t =

A1/2BA1/2. It is then straightforward to check that Q−1ABQ = L where Q−1 = P tA−1/2.

iii) Without loss of generality, assume that the columns of D are the eigenvectors associated to the

d first eigenvalues of AB. Since QtA−1Q = Ip, it is easy to check that U tA−1Q = [Id, 0d×(p−d)]

where 0p×q is the zero p× q matrix. Using the fact that QtA−1Q = Ip, the matrix QtV Q is then

a diagonal matrix with diagonal given by (1 − λ1, . . . , 1 − λd, 1, . . . , 1). Since Q is regular and

max{λ1, . . . , λp} < 1 the conclusion is straightforward.

Before proving Theorem 1, let us recall the iterative procedure of the EM algorithm. Let Θ(s), Γ(s)

and {(π(s)
m ,Θ

(s)
m ), m = 1, . . . ,M} be the estimated parameters of the model obtained at iteration

s of the algorithm and let, for all m = 1, . . . ,M and i = 1, . . . , n,

z
(s)
i,m =

π
(s)
m gm((Γ(s))txi|Γ(s),Θ

(s)
m )hm(yi|Γ(s),Θ

(s)
m )

M∑
j=1

π
(s)
j gj((Γ(s))txi|Γ(s),Θ

(s)
j )hj(yi|Γ(s),Θ

(s)
j )

.
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In what follows we assume that, at each iteration of the algorithm, there is no empty component. At

iteration s+1, the new estimated parameters Θ(s+1), Γ(s+1) and {(π(s+1)
m ,Θ

(s+1)
m ), m = 1, . . . ,M}

are the values maximizing with respect to Θ, Γ and {(πm,Θm), m = 1, . . . ,M} the expectation of

the completed log-likelihood function

n∑
i=1

M∑
m=1

z
(s)
i,m log

[
πmg(xi|Θ)gm(Γtxi|Γ,Θm)hm(yi|Γ,Θm)

]
. (10)

This procedure is iterated until convergence of the algorithm. This convergence is assessed by

looking at the difference of contiguous estimates of the maximized log-likelihood.

The next result provides the expressions of the maximum likelihood estimators of the parameters

of model (3). The following notations are required: for all i = 1, . . . , n and m = 1, . . . ,M , let

zi = (zi,1, . . . , zi,M−1)t ∈ RM−1 and let D be the p× (M − 1) matrix defined by:

D =
1

n

n∑
i=1

(xi − x̄)(zi − z̄)t with z̄ =
1

n

n∑
i=1

zi.

We introduce the (M − 1)× (M − 1) matrix F = diag(z̄)− z̄z̄t. Note that F is regular with

F−1 = diag(1/z̄) +

(
1

n

n∑
i=1

zi,M

)−1

Ω, (11)

where Ω is the (M − 1)× (M − 1) matrix whose entries are all equal to one. Denote L the d× d

diagonal matrix of the d largest eigenvalues of the matrix Σ̂−1
n DF−1Dt. According to Lemma 1,

these eigenvalues are non-negative real values. Let also U , a p × d matrix corresponding to the

first d columns of the matrix Σ−1/2A where A is the orthonormal matrix whose columns are the

eigenvectors of the matrix Σ−1/2DF−1DtΣ−1/2. The columns of this matrix U are eigenvectors of

the matrix Σ̂−1
n DF−1Dt.

Proposition 1. Under model (3), the maximum likelihood estimators are given by:

i) V̂ = Σ̂n − Σ̂nULU
tΣ̂n,

ii) Γ̂ = U(U tV̂ U)−1/2,

iii) the vectors β̂1, . . . , β̂M−1 that are the columns of the matrix Γ̂tDF−1,
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iv) ξ̂ = x̄− V̂ Γ̂
(
F−1DtΓ̂

)t
z̄,

v) (π̂1, . . . , π̂M−1)t = z̄,

vi) α̂m and Ŵm that are the weighted maximum likelihood estimators maximizing:

n∑
i=1

zi,m

(
−1

2
log |Wm|+ log h(W−1/2

m (x− αm))

)
.

Proof − Hereafter B denotes the d× (M − 1) matrix with columns β1,...,β(M−1). We also use the

notations D̃ = D + x̄z̄t and F̃ = F + z̄z̄t.

The values ξ̂, V̂ , B̂ and Γ̂ maximizing the completed log-likelihood function (10) are the values

minimizing the function

G(ξ, V,B,Γ) = ln |V |+ 1

n

n∑
i=1

(xi − x̄)tV −1(xi − x̄) + (x̄− ξ)tV −1(x̄− ξ)

−2Tr(D̃tΓB) + 2ξtΓBz̄ + Tr(F̃BtΓtV ΓB).

Annulling the gradients of G leads to the equations

−V̂ −1x̄+ V̂ −1ξ̂ + Γ̂B̂z̄ = 0, (12)

−D̃B̂t + ξ̂z̄tB̂t + V̂ Γ̂B̂F̃ B̂t = 0, (13)

V̂ −1 − V̂ −1
[
Σ̂n + (x̄− ξ̂)(x̄− ξ̂)t

]
V̂ −1 + Γ̂B̂F̃ B̂tΓ̂t = 0, (14)

−D̃tΓ̂ + z̄ξ̂tΓ̂ + F̃ B̂tΓ̂tV̂ Γ̂ = 0. (15)

From (12) we get ξ̂ = x̄− V̂ Γ̂B̂z̄ and replacing in (13) and (14) leads to:

DB̂t = V̂ Γ̂B̂F B̂t, (16)

V̂ = Σ̂n − V̂ Γ̂B̂F B̂tΓ̂tV̂ . (17)

Furthermore, from (15), one has B̂ = (Γ̂tV̂ Γ̂)−1Γ̂tDF−1. Note that the function G(·) and the

equations (12) to (15) are unchanged multiplying Γ̂ by any d× d regular matrix. In what follows,

we thus take Γ̂ such that Γ̂tV̂ Γ̂ = Id proving iii). Replacing B̂ in the expression of ξ̂ leads to iv).

If we multiply on the right (17) by Γ̂, using the equality (16) and the constraint Γ̂tV̂ Γ̂ = Id, we get

Σ̂nΓ̂ = V̂ Γ̂ +DB̂t and V̂ Γ̂ = DB̂t(B̂F B̂t)−1.
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Combining these equalities and replacing B̂ by its expression entails that

Γ̂T = Σ̂−1
n DF−1DtΓ̂, (18)

where we have introduced the d× d matrix T given by

T =
[
Id + (B̂F B̂t)−1

]−1

= B̂F B̂t
[
Id + B̂F B̂t

]−1

.

Notice that, multiplying (17) on the left by Γ̂t and on the right by Γ̂, we have B̂F B̂t+ Id = Γ̂tΣ̂nΓ̂

and thus

T = Id − (Γ̂tΣ̂nΓ̂)−1. (19)

Since T is a symmetric matrix, there exists an orthonormal matrix Q such that QtTQ is a diagonal

matrix ∆. According to (18), Γ̂Qt∆ = Σ̂−1
n DF−1DtΓ̂Qt and thus, the d columns of Γ̂ span an

eigensubspace of the matrix Σ̂−1
n DF−1Dt. Denoting by λ1, . . . , λd the diagonal of ∆, we want to

show that the minimun of G(ξ, V,B,Γ) is given by

G(ξ̂, V̂ , B̂, Γ̂) = ln |Σ̂n|+
d∑
k=1

ln(1− λk) + p. (20)

Note that, from (19),

∆ = Id −
(
QΓ̂tΣ̂nΓ̂Q−1

)−1

, (21)

and thus, since Σ̂n is definite positive, λ1, . . . , λd are smaller than 1. A consequence of equality (20)

is that Γ̂ span the eigen subspace associated to the d largest eigenvalues of the matrix Σ̂−1
n DF−1Dt.

First, from (17), ln |V̂ | = ln |Σ̂n| − ln |Ip + Γ̂(Λ̂ + B̂F B̂t)Γ̂tV̂ |. Using Sylvester’s identity we get

|Ip + Γ̂B̂F B̂tΓ̂tV̂ |−1 = |(B̂F B̂t)−1T | = |Id − T |.

Thus, using (21), entails

ln |V̂ | = ln |Σ̂n|+ ln |Id −∆| = ln |Σ̂n|+
d∑
k=1

ln(1− λk). (22)

Furthermore, using (17)

1

n

n∑
i=1

(xi − x̄)tV̂ −1(xi − x̄) = Tr(Σ̂nV̂
−1) = p+ Tr(Γ̂tDF−1DtΓ̂), (23)
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and, using iv) and the constraint on Γ̂,

(x̄− ξ̂)tV̂ −1(x̄− ξ̂) = z̄tB̂tB̂z̄. (24)

Using iii),

Tr(D̃tΓ̂B̂) = Tr(Γ̂tDF−1D̃tΓ̂) = Tr(Γ̂tDF−1DtΓ̂) + x̄tΓ̂B̂z̄. (25)

Finally, using iii), iv) and the constraint on Γ̂ leads to

ξ̂tΓ̂B̂z̄ = x̄tΓ̂B̂z̄ − z̄tB̂tB̂z̄ (26)

and

Tr((F + z̄z̄t)B̂tΓ̂tV̂ Γ̂B̂) = Tr(B̂F B̂t) + Tr(z̄tB̂tB̂z̄) = Tr(Γ̂tDF−1DtΓ̂) + z̄tB̂tB̂z̄. (27)

Collecting (22) to (27) yield to equation (20). We are now interested in the proof of i) and ii). Let

V0 = Σ̂n−Σ̂nULU
tΣ̂n and take Γ̂ = U(U tV0U)−1/2. First, from Lemma 1, since all the eigenvalues

of Σ−1DF−1Dt are smaller than 1, the matrix V0 is symmetric and definite positive. Next, using

again Lemma 1 and equation (19), the matrix T is diagonal and thus Γ̂ satisfies (18) with T = L

proving ii). Finally, it is easy to see that V0 can be expressed as V0 = Σ̂n− Σ̂nΓ̂LΓ̂tΣ̂n and simple

calculations give that

V0 + V0Γ̂B̂F B̂tΓ̂tV0 = Σ̂n.

Hence, V0 verifies (17) and i) is proved. The end of the proof is straightforward.

Remarks −

1) The maximum likelihood estimator of Γ is normalized in order to have Γ̂tV̂ Γ̂ = Id.

2) If we consider the parcimonious model obtain by taking V = σ2Ip with σ2 > 0 an unknown

parameter, the previous lemma remains true (with a very similar proof) by replacing V̂ by σ̂2Ip

where

σ̂2 =
1

n[p+ Tr(DF−1DtUU t)]

n∑
i=1

(xi − x̄)t(xi − x̄).

3) If we take for h(·) the q-dimensional pdf of a standard Gaussian distribution, the maximum

likelihood estimators in vi) are given for m = 1, . . . ,M by:

α̂m =

n∑
i=1

zi,myi

/
n∑
i=1

zi,m and Ŵm =
1

n

n∑
i=1

M∑
m=1

zi,m(yi − α̂m)(yi − α̂m)t.
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Assuming that Wm = v2Iq, the maximum likelihood estimator of Wm is v̂2Iq with

v̂2 =
1

nq

n∑
i=1

M∑
m=1

zi,m(yi − α̂m)t(yi − α̂m).

Proof of Theorem 1 − It suffices to show that

DF−1Dt =

M∑
m=1

π̂m(x̄m − x̄)(x̄m − x̄)t.

First, using the point v) of Lemma 1, the j-th column of D is given by

1

n

n∑
i=1

(xi − x̄)(zi,j − π̂j) = π̂j(x̄j − x̄).

Hence, from (11),

DF−1Dt =

M−1∑
m=1

π̂m(x̄m − x̄)(x̄m − x̄)t +
1

π̂M
DΩDt.

Remark that all the columns of DΩ are given by

M−1∑
m=1

π̂m(x̄m − x̄) = −π̂M (x̄M − x̄),

since
M∑
m=1

π̂m(x̄m − x̄) = x̄− x̄ = 0.

Taking account of Ω2 = (M − 1)Ω,

1

π̂M
DΩDt =

1

(M − 1)π̂M
(DΩ)(DΩ)t = π̂M (x̄m − x̄)(x̄m − x̄)t,

which concludes the proof.
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