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The existence of a Dimension Reduction (DR) subspace is a common assumption in regression analysis when dealing with high-dimensional predictors. The estimation of such a DR subspace has received considerable attention in the past few years, the most popular method being undoubtedly the Sliced Inverse Regression. We propose in this paper a new estimation procedure of the DR subspace by assuming that the joint distribution of the predictor and the response variables is a finite mixture of distributions. The new method is compared through a simulation study to some classical methods.

Introduction

Regression analysis concerns inference on the conditional distribution of a response variable Y ∈ R q given the value X = x of a vector of predictors X ∈ R p . For instance, a classical problem is the nonparametric estimation of the conditional mean function E(Y |X) for which a popular estimator, when the dimension p is not too large, has been proposed by Nadaraya [START_REF] Nadaraya | On estimating regression[END_REF] and Watson [START_REF] Watson | Smooth regression analysis[END_REF].

When the dimension p becomes large, the so-called "curse of dimensionality" problem arises and 1 inference on the conditional distribution of Y given X = x becomes difficult. A common procedure when dealing with a high-dimensional predictor X is to determine a subspace S ⊂ R p , with dim(S) = d ≤ p, that carries all the information that X has about Y . Such a subspace S is called a Dimension Reduction (DR) subspace. It is spanned by the columns of a full rank matrix Γ ∈ R p×d such that X and Y are conditionally independent given Γ t X. A DR subspace always exists since the trivial choice Γ = I p is possible, but does not produce a reduction of dimension. Under minor conditions (see Cook [START_REF] Cook | Graphics for regressions with a binary response[END_REF]), the intersection of two DR subspaces is still a DR subspace and the intersection of all DR subspaces is called the central subspace. As seen in Li [START_REF] Li | Sliced inverse regression for dimension reduction[END_REF], a regression model admitting a central subspace is given by Y = g(Γ t X, ε), where ε is a random value independent of X and g : R d+1 → R q is an arbitrary function.

One of the earliest method to estimate the central subspace (i.e. a matrix Γ) is the Sliced Inverse Regression (SIR) procedure introduced by Li [START_REF] Li | Sliced inverse regression for dimension reduction[END_REF]. This method is based on the estimation of Var(E(X|Y )) using a set {S h , h = 1, . . . , H} of non-overlapping slices that cover the range of Y .

The asymptotic properties of SIR and related methods are derived for instance by Saracco [START_REF] Saracco | An asymptotic theory for sliced inverse regression[END_REF][START_REF] Saracco | Asymptotics for pooled marginal slicing estimator based on SIR α approach[END_REF].

The SIR central subspace estimator is motivated in Li [START_REF] Li | Sliced inverse regression for dimension reduction[END_REF] by a geometric property of the covariance matrix Var(E(X|Y )). Another way to understand the SIR method is proposed in Cook [START_REF] Cook | Fisher lecture: Dimension reduction in regression[END_REF] where Γ is interpreted as a parameter of an inverse regression model. This model is equivalent to assume that, for all h = 1, . . . , H, the conditional distribution of X given Y ∈ S h is a multivariate Gaussian distribution. Considering n independent replications of the random vector (X, Y ), Bernard-Michel et al. [START_REF] Bernard-Michel | Gaussian regularized sliced inverse regression[END_REF] and Szretter and Yohai [START_REF] Szretter | The sliced inverse regression algorithm as a maximum likelihood procedure[END_REF] show that the maximum likelihood estimator of Γ corresponds to the SIR estimator of the central subspace. This inverse regression model is also used by Bernard-Michel et al. [START_REF] Bernard-Michel | Gaussian regularized sliced inverse regression[END_REF] to propose a Gaussian regularized version of SIR which is applied to a real data set in Bernard-Michel et al. [START_REF] Bernard-Michel | Retrieval of Mars surface physical properties from OMEGA hyperspectral images using Regularized Sliced Inverse Regression[END_REF].

The situation when the response variable Y is multivariate (i.e. when dim(Y ) = q > 1) has received less attention in the literature. The main difficulty of applying SIR in this setting lies in the construction of the non-overlapping slices. However, some adaptions of SIR to a multivariate framework have been proposed. For instance, a multivariate version of SIR where slices are replaced by k-means clusters is proposed in Setodji and Cook [START_REF] Setodji | K-means inverse regression[END_REF]. Hsing [START_REF] Hsing | Nearest neighbor inverse regression[END_REF] describes a version of SIR for which the slices are built using a nearest neighbors approach. Yin and Bura [START_REF] Yin | Moment-based dimension reduction for multivariate response regression[END_REF] propose a moment based dimension reduction for multivariate data. More recently, Coudret et al. [START_REF] Coudret | A new sliced inverse regression method for multivariate response[END_REF] present another extension of SIR that clusters components of a multivariate response variable Y that are related to the same DR subspace.

It is also well known that dimension reduction methods based on the first moment (as it is the case with the SIR method) fail to recover a symmetric dependency. This situation occurs for instance when the link function g in the Li's regression model is symmetric (see Cook and Weisberg [START_REF] Cook | Discussion of "Sliced Inverse Regression for dimension reduction[END_REF]).

A first tentative to overcome this limitation is proposed in Hsing and Carroll [START_REF] Hsing | An asymptotic theory for Sliced Inverse Regression[END_REF] who estimate the central subspace using an estimator of E(Var(X|Y )) instead of Var(E(X|Y )). One can also mention the following methods: Sliced Average Variance Estimation (SAVE) which is based on the second order moment of the conditional distribution of X given Y (see Cook [START_REF] Cook | Discussion of "Sliced Inverse Regression for dimension reduction[END_REF]), Principal Hessian Directions (pHd) (Li [20]), Graphical Regression (Cook [START_REF] Cook | Regression graphics. Ideas for studying regressions through graphics[END_REF]), Minimum Average Variance Estimation (MAVE) (Xia et al. [START_REF] Xia | An adaptive estimation of dimension reduction space[END_REF], Directional Regression (Li and Wang [START_REF] Li | On directional regression for dimension reduction[END_REF]), Sliced Regression (Wang and Xia [START_REF] Wang | Sliced regression for dimension reduction[END_REF]), Likelihood Acquired Directions (LAD) (Cook and Forzani [9]) and many others. Convex combinations of some of the previous methods are investigated in Gannoun and Saracco [START_REF] Gannoun | An Asymptotic Theory for SIR α Method[END_REF] and Ye and Weiss [START_REF] Ye | Using the bootstrap to select one of a new class of dimension reduction methods[END_REF]. Note that most of these methods have been introduced for the case of a univariate response variable Y . A few extensions to the multivariate case can be found in Aragon [START_REF] Aragon | A Gauss implementation of multivariate Sliced Inverse Regression[END_REF] and Li et al. [START_REF] Li | Dimension reduction for multivariate response data[END_REF].

The goal of this paper is to propose a new dimension reduction approach. In few words, we assume that the whole joint distribution of (X, Y ) is a finite mixture of distributions, parametrized in such a way that it allows inference on the central subspace. The proposed method avoids the choice of non-overlapping slices and is thus well adapted to the presence of a multivariate response variable Y . Moreover the proposed method is able to recover a symmetric dependency. Notice that the use of models based on mixtures of distributions has been already proposed in the context of dimension reduction, only for a univariate response Y . For example, Scrucca [START_REF] Scrucca | Model-based SIR for dimension reduction[END_REF] assumes that the conditional distribution of X given Y ∈ S h is a finite mixture of Gaussian distributions. Reich et al. [START_REF] Reich | Sufficient dimension reduction via Bayesian mixture modeling[END_REF], in a Bayesian framework, propose a mixture model for the conditional distribution of a real-valued response Y given X with a probit model on the weights.

The rest of the paper is organized as follows. In Section 2, the new dimension reduction model is introduced and an estimation of its parameters is provided. A comparison with existing methods is given in Section 3. A simulation study is proposed in Section 4 where our new estimation procedure is compared to previous approaches. A real dataset is treated in Section 5. All the proofs are postponed to the appendix.

The Dimension reduction estimation procedure

The proposed model

We assume in what follows that the random vector (X, Y ) ∈ R p × R q admits a probability density function (pdf) f X,Y (x, y) with respect to the Lebesgue measure. Our aim is to estimate a full rank matrix Γ ∈ R p×d such that the columns of Γ form a basis of a DR subspace of dimension d ≤ p.

For that purpose, for an integer M ≥ d + 1, we suppose that the joint distribution of (X, Y ) is a mixture of M distributions involving Γ. More specifically, for some unknown positive component weights π 1 , . . . , π M summing to 1 we state that

f X,Y (x, y) = M m=1 π m f m (x, y|Γ), (1) 
where for each m ∈ {1, . . . , M }, f m (•, •|Γ) is a pdf. To ensure that (1) is a dimension reduction model (i.e. that X and Y are conditionally independent given Γ t X) we assume in addition that there exist functions (not necessarily pdf) g(•) and h m (•, •), m = 1, . . . , M such that

f m (x, y|Γ) = g(x)h m (Γ t x, y). (2) 
Indeed, it is easy to check that under [START_REF] Adragni | ldr: An R Software Package for Likelihood-Based Sufficient Dimension Reduction[END_REF] with f m (•, •|Γ) as in [START_REF] Aragon | A Gauss implementation of multivariate Sliced Inverse Regression[END_REF], the pdf of the conditional

distribution of Y given {X = x} is f (y|X = x) = M m=1 π m g(x)h m (Γ t x, y) g(x) M m=1 π m h m (Γ t x, z)dz = M m=1 π m h m (Γ t x, y) M m=1 π m h m (Γ t x, z)dz ,
which depends on x only through Γ t x. Notice that, as it is the case for all the dimension reduction models proposed in the literature, the matrix Γ is identifiable only up to a right product by any d × d regular matrix whereas the corresponding spanned subspace, the true goal of inference, is identifiable.

The advantage of assuming that the joint distribution of (X, Y ) is a mixture distribution will clearly appear in Section 3 where a comparison with other dimension reduction methods is done.

Of course, without assuming a parametric form for the functions {f m (•, •|Γ), m = 1, . . . , M }, the estimation of Γ is impossible. We introduce now a natural example of parametric mixture distribution that will be used in the rest of the paper. We assume that, for each m = 1, ..., M , the pdf f m (•, •|Γ) is the product of a p-dimensional Gaussian pdf with mean ξ + V Γβ m ∈ R p (for ξ ∈ R p and β m ∈ R d ) and covariance matrix V ∈ R p×p and a q-dimensional Gaussian pdf with mean α m ∈ R q and covariance matrix

W m ∈ R q×q . The distribution of (X, Y ) is the Gaussian mixture f X,Y (x, y) = M m=1 π m ϕ p (x|ξ + V Γβ m ; V )ϕ q (y|α m ; W m ), (3) 
where ϕ k (•|µ; Φ) denotes the pdf of a multivariate Gaussian distribution with mean µ ∈ R k and covariance matrix Φ ∈ R k×k . Note that for each m ∈ {1, . . . , M } the pdf of the m-th component

f m (x, y|Γ) = ϕ p (x|ξ + V Γβ m ; V )ϕ q (y|α m ; W m ) satisfies (2) with g(x) = 1 (2π) p/2 |V | 1/2 exp - 1 2 (x -ξ) t V -1 (x -ξ) (4) 
for x ∈ R p and, for (x, y) ∈ R p×q ,

h m (Γ t x, y) = exp β t m (Γ t x -Γ t ξ) - 1 2 β t m Γ t V Γβ m ϕ q (y|α m ; W m ). (5) 
The expression for the conditional mean of X given that it comes from the m-th component distribution, ξ + V Γβ m , is present in many works dedicated to dimension reduction. It is used e.g.

in Cook [START_REF] Cook | Fisher lecture: Dimension reduction in regression[END_REF] (Sec. 3.1) in a regression setting, for the case where V is the identity matrix. The general expression was introduced in Bernard-Michel et al. [START_REF] Bernard-Michel | Gaussian regularized sliced inverse regression[END_REF] to define their model of Gaussian sliced inverse regression.

The parameters of the Gaussian mixture model (3) are Γ (which is the parameter of interest),

Θ = (ξ, V ) and Θ m = (β m , α m , W m ) for m = 1, . . . , M .
It is of course possible to consider more parsimonious models. For instance, one can assume that the covariance matrix in ϕ q (y|α m ; W m ) is given by W m = v 2 I q for some real parameter v > 0. This parsimonious model will be used in the simulation study and for the real data example. Finally note that the extension of the model to other types of response variables, such as binary variables, is possible by replacing in (3) the pdf's ϕ q (y|α m ; W m ), m = 1, ..., M by appropriate distributions.

The next section is devoted to the estimation of the parameters involved in (3).

Maximum likelihood estimation

Let (X, Y ) be a random vector with pdf given by (3). Let (x, y) := ((x 1 , y 1 ), . . . , (x n , y n )) be the observations of n independent copies of the random vector (X, Y ). We propose to estimate the full rank matrix Γ spanning the DR subspace by its maximum likelihood estimator. Our goal is thus to maximize the likelihood function

L ((x, y) |Γ, Θ, (π m , Θ m ) m=1,...,M ) = n i=1 M m=1 π m g(x i )h m (Γ t x i , y i )
with respect to Γ, Θ, Θ m and π m , m = 1, . . . , M where the parametric functions g(•) and {h m (•, •), m = 1, . . . , M } are defined in (4) and [START_REF] Bura | Estimating the structural dimension of regressions via parametric inverse regression[END_REF]. To achieve this maximization we use the Expectation-Maximization (EM) algorithm (see Dempster et al. [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF]). The idea behind this algorithm is the following. We introduce a latent variable Z taking values in {1, . . . , M } with P(Z = m) = π m and such that the conditional pdf of (X,

Y ) given Z = m is f m (x, y|Γ) = g(x)h m (Γ t x, y).
The EM algorithm is an iterative procedure maximizing the expectation of the complete loglikelihood, i.e the log-likelihood of the random vector (X, Y, Z).

Note that for the Gaussian mixture model ( 3), a problem related to the identifiability of the parameters arises: for any γ ∈ R d , the distribution is unchanged by the reparameterization ξ =

ξ + V Γγ and βm = β m -γ since ξ + V Γβ m = ξ + V Γ βm . To overcome this problem, it is assumed in what follows that β M = 0.
To describe the estimator of the DR subspace provided by the EM algorithm we first introduce the following notations: let

x = 1 n n i=1 x i and Σn = 1 n n i=1 (x i -x)(x i -x) t
be the empirical mean and variance matrix of X. For i = 1, . . . , n and m = 1, . . . , M , let z i,m be the estimator of P(Z = m|(X, Y ) = (x i , y i )) provided by the EM algorithm and let Ĉn be the p × p matrix defined by

Ĉn = M m=1 πm (x m -x)(x m -x) t ,
where

πm = 1 n n i=1 z i,m and xm = 1 nπ m n i=1 z i,m x i .
The expression for z i,m is given in Lemma 1 of the Appendix, where it is also shown that πm is the maximum likelihood estimator of π m . Furthermore, xm can be interpreted as an estimator of E(X|Z = m) and Ĉn as an estimator of the variance matrix C := Var(E(X|Z)). Roughly speaking, Theorem 1 entails that the maximum likelihood estimator of Γ maximizes the between group variance of X where the groups are the M latent classes.

The EM algorithm is detailed in the Appendix. In particular, Proposition 1 in Appendix gives all the maximum likelihood estimates of the parameters of model ( 3) required by the M-step of the algorithm.

Comparison with other models

According to Theorem 1, the proposed estimator of the DR subspace is based on a spectral decomposition of an estimator of the p × p matrix Σ -1 C where Σ = Var(X) and C = Var(E(X|Z)).

In fact many reduction methods are based on a spectral decomposition of a matrix. This is the case for example of the classical SIR method of Li [START_REF] Li | Sliced inverse regression for dimension reduction[END_REF] and of the more recent MSIR method of Scrucca [START_REF] Scrucca | Model-based SIR for dimension reduction[END_REF] that uses mixtures of distributions. We give here some details on the similarities and the differences between these two methods and the proposed method.

SIR approach As shown for instance in Bernard-Michel et al. [START_REF] Bernard-Michel | Gaussian regularized sliced inverse regression[END_REF], for a univariate response Y , the estimate of Γ obtained by the SIR procedure of Li [START_REF] Li | Sliced inverse regression for dimension reduction[END_REF] maximizes the likelihood function of the model given by

f X,Y (x, y) = H h=1 I {y∈S h } ϕ p (x|ξ + V Γβ h ; V )f Y (y), (6) 
where f Y (•) is an arbitrary pdf function and where {S h , h = 1, . . . , H} are non-overlapping slices covering the range of Y . These slices have to be chosen by the user on the only basis of the observed distribution of Y . The SIR method estimates Γ by a spectral decomposition of an estimator of the ) where the matrix C (SIR) = Var(E(X|Y )) is estimated by

p × p matrix Σ -1 C (SIR
Ĉ(SIR) n = H h=1 n h n 1 n h i:Yi∈S h x i -x 1 n h i:Yi∈S h x i -x t ,
with n h the number of observed Y i s in slice S h , h = 1, . . . , H. Hence, the SIR estimator of Γ is obtained by maximizing the between group variance of X where the groups are the H nonoverlapping slices {S h , h = 1, . . . , H}.

MSIR approach A recent contribution to dimension reduction can be found in Scrucca [START_REF] Scrucca | Model-based SIR for dimension reduction[END_REF] that describes a model-based SIR (MSIR) procedure. The idea here is to replace each Gaussian component in model ( 6) by a mixture of Gaussian distributions in order to deal with more complex situations. For a univariate response Y and for non-overlapping slices {S h , h = 1, . . . , H}, the model that is considered is

f X,Y (x, y) = H h=1 I {y∈S h } J h j=1 q h,j ϕ p (x|µ h,j ; Σ h,j )f Y (y) (7) 
where, for each h = 1, . . . , H, the reals {q h,j , j = 1, . . . , J h } are summing to 1, the vectors µ h,j ∈ R p and the matrices Σ h,j ∈ R p×p , j = 1, . . . , J h , are unknown parameters. The DR subspace is defined as the space spanned by the d eigenvectors associated to the largest eigenvalues of the matrix Σ -1 C (M SIR) where C (M SIR) = Var(E(X|Y, Z * )), Z * being the latent variable giving the mixture components in the slices. This matrix C (M SIR) is estimated by

Ĉ(MSIR) n = H h=1 J h j=1 n h n qh,j (μ h,j -μ) (μ h,j -μ) t with μ = H h=1 J h j=1 n h n qh,j μh,j
and where, for h = 1, . . . , H and j = 1, . . . , J h , qh,j and μh,j are obtained by fitting the mixture model [START_REF] Cook | Regression graphics. Ideas for studying regressions through graphics[END_REF]. As the SIR estimator, the MSIR estimator of Γ is thus obtained by maximizing a between group variance of X but when the groups are the J 1 + . . .

+ J H classes {S h × T (h) j , j = 1, . . . , J h , h = 1, . . . , H} where {T (h) j , j = 1, . . . , J h } are the latent classes in the slice S h .
Figure 1 illustrates the behavior of the SIR, MSIR and proposed methods on a simple example.

Here the DR subspace has dimension d = 1 and n = 200 observations of a real response variable

Y are simulated from the model Y = (Γ t X) 2 + ε for p = 2, Γ t = (1, 1)
, for values of X sampled from a standard Gaussian distribution and for ε ∼ N (0, 1.5 2 ). The SIR method considers E(X|Y )

and approximates this conditional expectation by fitting within each slice S h , h = 1, ..., H, a single Gaussian distribution on the observations of X. Thus a well known drawback of this method is that it is inefficient when Y is a symmetric function of Γ t X, as here, since in this case E(X|Y ) is constant. The MSIR approach uses a mixture of distributions within each slice. The corresponding model is thus clearly more flexible than the SIR model [START_REF] Cook | Graphics for regressions with a binary response[END_REF], in particular can handle the case of a symmetric dependency. But it still depends on a choice of non-overlapping slices and thus it is difficult to adapt this method to multivariate response variables. Notice also that the MSIR estimator for Γ proposed by Scrucca [START_REF] Scrucca | Model-based SIR for dimension reduction[END_REF] cannot be interpreted as a maximum likelihood estimator.
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Proposed method

Y Γ t X Figure 1: Plot of observed values of (Y, Γ t X) for the model Y = (Γ t X) 2 + ε.
The SIR method uses slices on the range of Y (delimited by dashed lines), here constructed from empirical quantiles of the observations. The MSIR method allows to use a mixture of distributions within each slice (the different symbols correspond to the classification given by the use of the mixture of distributions). The proposed method does not need slices and uses a mixture of distributions for (X, Y ).

fully data-driven. The slices are replaced by the M latent classes of the mixture model (1) which are estimated by the EM algorithm. As mentioned in the introduction, this is the main motivation of using a mixture model for the joint distribution of (X, Y ). As a consequence, the proposed method is well adapted to the case of multivariate response variables and can tackle complex situations like for instance a symmetric relationship between Y and Γ t X.

Simulation study

In this section we examine the performance of the proposed method via a simulation study. The algorithm used here corresponds to model [START_REF] Bernard-Michel | Gaussian regularized sliced inverse regression[END_REF] where the conditional distribution of Y given that it comes from component m of the mixture is Gaussian with mean α m and common covariance matrix

W m = v 2 I q .
The unknown parameters of this parsimonious model are the matrices Γ ∈ R p×d and

V ∈ R p×p , the vector ξ ∈ R p , the scalar v 2 > 0, the M -1 vectors β m in R d and the M vectors α m in R q .
In practice, to run the EM algorithm, a starting value for each quantity z i,m is needed. To avoid local maxima and to get a more precise result, several starting values are used, retaining the estimation returned by the algorithm with the highest likelihood. Several ways are possible to define these different starting values. We have considered hierarchical clustering with different agglomeration methods and projection of the x i 's on the DR subspace provided by the SIR or SAVE methods.

We list below the simulation designs that are used along this simulation study. Notice that they are classical for the study of a dimension reduction method, the datasets are not designed to fit the proposed model.

• Univariate case (q = 1): let X be a standard Gaussian random vector of dimension p and let ε be a random value independent of X and following a normal distribution with mean 0 and standard deviation 0.2. For a given full rank matrix Γ ∈ R p×d and for a function G : R d+1 → R, the response variable Y is given by the model Y = G(Γ t X, ε). In the following designs, the matrix Γ and the functions G are taken as in Li and Wang [START_REF] Li | On directional regression for dimension reduction[END_REF]. More precisely, we take p = 6, d = 2,

Γ t =     1 1 1 0 0 0 1 0 0 0 1 3     , with G(Γ t x, ε) given by, if (γ 1 , γ 2 ) = Γ t x, Design 1: 0.4γ 2 1 + 3 sin(γ 2 /4) + ε Design 2: 3[sin(γ 1 /4) + sin(γ 2 /4)] + ε Design 3: 0.4γ 2 1 + |γ 2 | 1/2 + ε Design 4: 3 sin(γ 2 /4) + (1 + γ 1 ) 2 ε.
The next design is considered for instance in Li [START_REF] Li | Sliced inverse regression for dimension reduction[END_REF]. We take p = 10, d = 2,

Γ t =     1 0 0 . . . 0 0 1 0 . . . 0     , (8) 
with G(Γ t x, ε) given by, if (γ 1 , γ 2 ) = Γ t x, Design 5: 3γ 1 0.5 + (γ 2 + 1.5) 2 -1 + ε.

• Multivariate case (q > 1): To study the performance of the proposed method when the response Y is multivariate we consider four simulation designs used in Setodji and Cook [START_REF] Setodji | K-means inverse regression[END_REF]. Here again, X is a standard Gaussian random vector of dimension p and ε is a standard Gaussian vector of dimension q independent of X. The response variable Y is given by G(Γ t X, ) where G : R d+q → R q . In the two following designs, we take p = 4, q = 4, d = 1, Γ t = (1, 1, 1, 1) with G(Γ t x, ε) given by, if γ = Γ t x and ε = (ε 1 , ε 2 , ε 3 , ε 4 ), Design 6:

γ 10 + ε 1 exp γ 10 , ε 2 exp 2 -3γ 10 , ε 3 exp γ 5 , ε 4 exp 1 -γ 10 . Design 7: ε 1 exp γ 10 , ε 2 exp 2 -3γ 10 , ε 3 exp γ 5 , ε 4 exp 1 -γ 10 .
For the last simulation designs, we take p = 10, q = 2, d = 2, the matrix Γ as in [START_REF] Cook | Fisher lecture: Dimension reduction in regression[END_REF] and with G(Γ t x, ε) given by, if (γ 1 , γ 2 ) = Γ t x and ε = (ε 1 , ε 2 ), Designs 8 and 9:

γ 1 (γ 1 + γ 2 + 1) + σε 1 , γ 1 [0.5 + (γ 2 + 1.5) 2 ] -1 + σε 2 ,
with σ = 1/2 for Design 8 and σ = 1 for Design 9.

Let P be the matrix of projection on the true DR subspace and P the matrix of projection on the estimated DR subspace. Following Li et al. [START_REF] Li | Contour regression: A general approach to dimension reduction[END_REF] and Scrucca [START_REF] Scrucca | Model-based SIR for dimension reduction[END_REF], to measure the accuracy of the proposed method, we calculate the Euclidean norm of P -P which is defined as the maximum singular value of (P -P )(P -P ). This norm have values in the interval (0, 1) and can be interpreted as a sine of the maximal angle between the true and the estimated DR subspaces. The results presented hereafter are calculated over 100 data replications.

Choice of M

We first examine how the proposed method performs depending on the choice for the number M of components in the mixture. For this, we run the algorithm for different data size values and for values of M going from 3 to 40 components. In Figure 2 we report for the design 1 the quartiles and the means of the matrix distances for three data sizes n = 70, 100 and 300. The errors decrease with M until they reach a plateau. Then, as seen in the case n = 70 and n = 100, the results deteriorate when the number of components is too large for the data size. The results look insensitive to the choice of a "reasonable" value for M , reasonable value that is sufficiently large to apprehend the link function and not too big with respect to n and the values for p, q and d.

In practice, since the true DR subspace is not known, one can look for a reasonable M by checking the stability of the estimates. Another possibility is to do a cross-validation to verify if the model recovers well the link function. Nevertheless such practices are computationally expensive. Hereafter we will use in this section the choice by default M = 2n 0.5 that appears to work well for the simulations.

Comparison with other methods

Next we compare the performance of the proposed method with other methods for dimension reduction on the different simulation designs. For the case of a univariate response variable we consider the classical methods SIR and SAVE that are implemented in the R package dr (see Weisberg [START_REF] Weisberg | Dimension reduction regression in R[END_REF]), the method LAD of Cook and Forzani [START_REF] Cook | Likelihood-based sufficient dimension reduction[END_REF] that is implemented in the R package ldr (see Adragni and Raim [START_REF] Adragni | ldr: An R Software Package for Likelihood-Based Sufficient Dimension Reduction[END_REF]) and the method MSIR implemented in the R package msir (see Scrucca [START_REF] Scrucca | Model-based SIR for dimension reduction[END_REF]).

Our In Table 1 we report the means and standard errors of the matrix distances calculated over 100 data replications. The values of M for the proposed method are fixed by default (M = 20 for the data size n = 100 and M = 34 for the data size n = 300). We run the SIR and SAVE methods, for each data replication, for a number of slices H between 3 and 40. For each of these methods we report the results corresponding to the number H that gives the smaller mean of the data distances. We proceed similarly for LAD, for a number of slices H between 3 and 12 when n = 100 and between 3 and 25 for n = 300 (fixing d to its true value). Finally the reported results for the MSIR method are the one obtained by the default value for H in the R function. Clearly, the proposed method performs very well compared to the other methods since it gives generally the best results, or a result close the the best one, except for design 3 when n = 100 and design 5 when For the case q > 1 we compare the proposed method only with SIR and SAVE as LAD and MSIR consider only univariate response variables. The results are given in Table 2. The values of M are fixed by default (M = 28 for the data size n = 200 and M = 40 for the data size n = 400).

n =
Again, the reported values for SIR and SAVE correspond to the best among the results of these methods for a number of slices H between 3 and 15. Here again the proposed method compares very favorably to the others. This is particularly true for design 6 and design 7 where the high dimension of Y , q = 4, makes difficult the construction of slices.

Choice of the dimension of the DR subspace

The estimation of the dimension d of a DR subspace is an important issue for a dimension-reduction method. To answer this question, many methods related to SIR use the sequential chi-squared test procedure introduced by Li [START_REF] Li | Sliced inverse regression for dimension reduction[END_REF] based on the test statistic

Λ d = n p j=d+1 λj
where the values λj , j = 1, ..., p, denote the observed eigenvalues of the eigen decomposition of the estimator of Σ -1 C (SIR) . Under some conditions on the distribution of X (see Bura and Cook [START_REF] Bura | Estimating the structural dimension of regressions via parametric inverse regression[END_REF]), concerning the SIR method, this statistic is known to have an asymptotic chi-squared distribution if d is the true dimension. For other methods than SIR, or when the conditions are not satisfied, the null distribution of this statistics can be explored via a Monte-Carlo-type procedure as in the general permutation test of Cook and Weisberg [START_REF] Cook | Discussion of "Sliced Inverse Regression for dimension reduction[END_REF].

Such a method could be adapted to our case, but the Monte-Carlo study that needs many starts of the EM algorithm is computationally expensive in practice. We consider here the use of a simple sequential procedure based on the study of the decay of the eigen values. Let λd0 j , j = 1, ..., p, denote the observed eigen values of Σ-1 n Ĉn when d is fixed to d 0 . As described in the proof of Proposition 1 in the Appendix section, these eigen values are such that 1 ≥ λd0 1 ≥ λd0 2 ≥ ... ≥ λd0 p ≥ 0. If the dimension d of the true DR subspace is greater than d 0 then λd0 d0 is expected to be significantly much larger than λd0 d0+1 , ..., λd0 p . Comparing the observed eigen values with values equally spaced between 1 and 0, we can estimate the dimension of the DR subspace as

d = max d : λd d ≥ 1 - d p + 1 . ( 9 
)
This procedure is called EIV in the rest of the paper.

Another approach for dimension selection is to use an information criterion such as BIC or AIC.

This has been considered in various works dedicated to dimension reduction that use a likelihood, see e.g. Cook and Forzani [START_REF] Cook | Likelihood-based sufficient dimension reduction[END_REF]. For each d we calculate a penalized likelihood

BIC(d) = L -0.5k(d) log(n) AIC(d) = L -k(d)
where L denotes the maximum value of the likelihood and where k(d) denotes the number of free parameters changing with d. Since in our model the parameters concerned by d are the matrix Γ ∈ R p×d , identifiable only up to a right product by any regular matrix D ∈ R d×d , and the M -1

vectors β m in R d , we set k(d) = d(p -d + M -1).
For each criterion, the dimension selected is the d that returns the maximum value.

We evaluate the performances of these procedures on some simulations. We consider the designs 1, 3, 6 and 8 that give, according to Tables 1 and2, a relatively good estimation of the DR subspace when d is known and that cover different situations. For each of these designs and for 5 data sizes, n = 100, 200, 300, 400 and n = 500, we calculate the number of times that each procedure estimates the correct dimension d over 100 data replications. We report the ratios of good answers in Figure 3. Shortly, the results are globally satisfactory since these ratios tend to grow with n.

From these simulations there is not a clear ranking of these procedures of the estimation of d. The results of AIC and EIV look overall similar. If the procedure based on BIC can work very well in some situations, as for the design 6, it can be outclassed by the procedure based on AIC for relatively small data sizes, as seen with designs 3 and 8.

Real data

To illustrate the use of the proposed method in a multivariate context we consider the Minneapolis schools dataset. This dataset is described in Cook [START_REF] Cook | Regression graphics. Ideas for studying regressions through graphics[END_REF] and concerns the performance of students in n = 63 Minneapolis schools along with some various social and economic variables. It is studied, among others, in Yin and Bura [START_REF] Yin | Moment-based dimension reduction for multivariate response regression[END_REF] or more recently in Coudret et al. [START_REF] Coudret | A new sliced inverse regression method for multivariate response[END_REF]. We follow these authors and consider a q = 4 dimensional response variable Y that consists of the percentages of students in a school scoring above and below average on standardized fourth and sixth grade reading com- q q q q q q q q 0.0 q q q q q q q q The choice by default M = 2n 0.5 used in the simulations of the previous section gives here M = 15. This number being maybe too large for a so small data size, n = 63, we report hereafter the results obtained for the choice M = 10 (the results obtained for values of M around 10 are very similar).

We first look at the dimension of the DR subspace. We report in Figure 4 maybe here negligible relatively to the other variables. A simple way to judge the validity of the estimated DR subspace is to verify visually if there exists an underlying function linking the single linear combination X 0 = Γ t X and Y . The scatterplot of the four responses and the estimated X 0 of the predictors is given in Figure 5. It suggests that, similarly to the results described in Yin and Bura [START_REF] Yin | Moment-based dimension reduction for multivariate response regression[END_REF], the responses variables could be described by monotonous quadratic or linear functions of X 0 . On this scatterplot notice that the link between the response variables corresponding to the sixth grade reading comprehension tests and X 0 is more evident than the links between the variables corresponding to the fourth grade reading comprehension tests and X 0 .

We report in

Conclusion

We have presented in this paper a model-based dimension reduction method. The model assumes that the whole joint distribution of (X, Y ) is a finite mixture of distributions parametrized such that the matrix Γ is estimable. The model can handle multivariate response variables and is able to recover the DR subspace in the case of a regression symmetric relationship. A canonical choice is to use Gaussian distributions for the components of the mixture. We have presented for this case a procedure to estimate the parameters of the model, that involves an EM algorithm. In a simulation study the proposed method appeared to outperform existing ones for some designs and, globally, to performs at least equally to them.
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Lemma 1. Let A and B be p × p symmetric matrices and assume that A is regular.

i) The matrix AB is diagonalizable with non-negative real eigenvalues λ 1 , . . . , λ p .

ii) Let P be the orthonormal matrix whose columns are the eigenvectors of the symmetric matrix A 1/2 BA 1/2 . One has Q -1 ABQ = L where Q = A 1/2 P and L = diag(λ 1 , . . . , λ p ).

iii) For each d ≤ p, denote by U a p × d matrix whose columns are d different columns of Q. If max{λ 1 , . . . , λ p } < 1 the matrix V = A -1 -A -1 U LU t A -1 is a definite positive matrix.

Proof -The proof is based on the fact that AB is similar to the symmetric matrix A 1/2 BA 1/2 since A 1/2 A 1/2 BA 1/2 A -1/2 = AB.

i) The proof is straightforward.

ii) Since A 1/2 BA 1/2 is a symmetric matrix, there exist an orthonormal matrix P such that P LP t = A 1/2 BA 1/2 . It is then straightforward to check that Q -1 ABQ = L where Q -1 = P t A -1/2 .

iii) Without loss of generality, assume that the columns of D are the eigenvectors associated to the d first eigenvalues of AB. Since Q t A -1 Q = I p , it is easy to check that

U t A -1 Q = [I d , 0 d×(p-d) ]
where 0 p×q is the zero p × q matrix. Using the fact that Q t A -1 Q = I p , the matrix Q t V Q is then a diagonal matrix with diagonal given by (1 -λ 1 , . . . , 1 -λ d , 1, . . . , 1). Since Q is regular and max{λ 1 , . . . , λ p } < 1 the conclusion is straightforward.

Before proving Theorem 1, let us recall the iterative procedure of the EM algorithm. Let Θ (s) , Γ (s) and {(π 

.

In what follows we assume that, at each iteration of the algorithm, there is no empty component. At iteration s + 1, the new estimated parameters Θ (s+1) , Γ (s+1) and {(π 

This procedure is iterated until convergence of the algorithm. This convergence is assessed by looking at the difference of contiguous estimates of the maximized log-likelihood.

The next result provides the expressions of the maximum likelihood estimators of the parameters of model [START_REF] Bernard-Michel | Gaussian regularized sliced inverse regression[END_REF]. The following notations are required: for all i = 1, . . . , n and m = 1, . . . , M , let z i = (z i,1 , . . . , z i,M -1 ) t ∈ R M -1 and let D be the p × (M -1) matrix defined by:

D = 1 n n i=1 (x i -x)(z i -z) t with z = 1 n n i=1 z i .
We introduce the (M -1) × (M -1) matrix F = diag(z) -z zt . Note that F is regular with

F -1 = diag(1/z) + 1 n n i=1 z i,M -1 Ω, ( 11 
)
where Ω is the (M -1) × (M -1) matrix whose entries are all equal to one. Denote L the d × d diagonal matrix of the d largest eigenvalues of the matrix Σ-1 n DF -1 D t . According to Lemma 1, these eigenvalues are non-negative real values. Let also U , a p × d matrix corresponding to the first d columns of the matrix Σ -1/2 A where A is the orthonormal matrix whose columns are the eigenvectors of the matrix Σ -1/2 DF -1 D t Σ -1/2 . The columns of this matrix U are eigenvectors of the matrix Σ-1 n DF -1 D t .

Proposition 1. Under model (3), the maximum likelihood estimators are given by: i) V = Σn -Σn U LU t Σn ,

ii) Γ = U (U t V U ) -1/2 , iii) the vectors β1 , . . . , βM-1 that are the columns of the matrix Γt DF -1 ,

Theorem 1 .

 1 Assume that model (3) holds. The maximum likelihood estimator of the DR subspace S Γ is the space spanned by the d eigenvectors corresponding to the d largest eigenvalues of the matrix Σ-1 n Ĉn .

Figure 2 :

 2 Figure 2: Choice of M . Design 1: Quantiles of order 0.25, 0.5 and 0.75 (solid lines) and means (diamonds) of the matrix distances as a function of M for data sizes n = 70, 100 and 300.

Figure 3 :

 3 Figure 3: Choice of d. Ratio of good answers for different values of n for the procedure EIV, and the procedures based on AIC and BIC.

Figure 4 :

 4 Figure 4: Minneapolis schools dataset. Eigen values obtained for d = 1 and d = 2.

the eigen values of Σ- 1 n

 1 Ĉn for d = 1 and d = 2. Clearly, going from d = 1 to d = 2, the addition in the model of a new dimension for the DR subspace does not increase significantly the second largest eigen value. The observed value for λ 2 2 is close to λ 1 2 and is smaller than 1 -2/(p + 1). Thus the procedure EIV based on (9) estimates here d = 1. The procedure based on AIC gives also d = 1 while the procedure based on BIC is not helpful here since it returns d = 7, thus does not indicates the existence of a DR subspace of small dimension. The fact that a single linear combination of the predictors carries all the information that X has about Y is a common conclusion in many works studying this dataset. Next we consider the DR subspace for d = 1.

Figure 5 :

 5 Figure 5: Minneapolis schools dataset. Scatterplot matrix of the four responses and the estimated single linear combination X0 of the predictors.

  m = 1, . . . , M } be the estimated parameters of the model obtained at iteration s of the algorithm and let, for all m = 1, . . . , M and i = 1, . . . , n, z(s) i,m = π (s) m g m ((Γ (s) ) t x i |Γ (s) , Θ (s) m )h m (y i |Γ (s) , Θ j g j ((Γ (s) ) t x i |Γ (s) , Θ (s) j )h j (y i |Γ (s) , Θ

), m = 1 ,

 1 . . . , M } are the values maximizing with respect to Θ, Γ and {(π m , Θ m ), m = 1, . . . , M } the expectation of the completed log-likelihood function log π m g(x i |Θ)g m (Γ t x i |Γ, Θ m )h m (y i |Γ, Θ m ) .

Table 1 :

 1 Mean and standard error (in parenthesis) of the matrix distances.

	method	SIR	SAVE	LAD	MSIR
	Design 1 n = 100 0.203 (0.070) 0.765 (0.212) 0.425 (0.164) 0.340 (0.169) 0.533 (0.300)
	n = 300 0.085 (0.027) 0.675 (0.267) 0.181 (0.064) 0.149 (0.049) 0.171 (0.081)
	Design 2 n = 100 0.745 (0.230) 0.814 (0.196) 0.819 (0.173) 0.727 (0.227) 0.853 (0.153)
	n = 300 0.364 (0.194) 0.663 (0.213) 0.710 (0.220) 0.335 (0.173) 0.721 (0.210)
	Design 3 n = 100 0.440 (0.257) 0.926 (0.101) 0.382 (0.173) 0.272 (0.155) 0.844 (0.206)
	n = 300 0.108 (0.045) 0.915 (0.106) 0.158 (0.049) 0.107 (0.032) 0.783 (0.252)
	Design 4 n = 100 0.743 (0.205) 0.839 (0.202) 0.787 (0.197) 0.755 (0.221) 0.902 (0.128)
	n = 300 0.300 (0.176) 0.795 (0.195) 0.526 (0.238) 0.420 (0.224) 0.900 (0.139)
	Design 5 n = 100 0.779 (0.189) 0.686 (0.165) 0.952 (0.064) 0.828 (0.143) 0.782 (0.140)
	n = 300 0.376 (0.117) 0.391 (0.107) 0.874 (0.127) 0.459 (0.158) 0.454 (0.117)

Table 2 :

 2 100 (even if the best result for SIR, SAVE and LAD over several number of slices are reported). Mean and standard error (in parenthesis) of the matrix distances.

	Our method	SIR	SAVE
	Design 6 n = 100 0.366 (0.176) 0.667 (0.242) 0.863 (0.171)
	n = 300 0.139 (0.067) 0.362 (0.205) 0.803 (0.199)
	Design 7 n = 100 0.369 (0.139) 0.841 (0.176) 0.861 (0.165)
	n = 300 0.185 (0.082) 0.822 (0.186) 0.821 (0.191)
	Design 8 n = 200 0.342 (0.112) 0.509 (0.142) 0.770 (0.188)
	n = 400 0.194 (0.056) 0.339 (0.087) 0.562 (0.189)
	Design 9 n = 200 0.661 (0.197) 0.783 (0.174) 0.867(0.141)
	n = 400 0.401 (0.158) 0.596 (0.179) 0.697 (0.183)

Table 3 :

 3 Table the estimated coefficients of Γ. These results suggest that the 6th and the 8th variables, namely the square root of the percent of mobility and the pupil-teacher ratio, are Estimated coefficients of Γ. The first line gives the estimated coefficients returned by the method, the second line gives these coefficients standardized by the standard deviations of the original predictors.

	Non Stand.	-0.50	-1.60	1.72	3.39	-0.74	-0.22	-12.96	-0.04
	Stand	-0.92	-1.15	1.62	1.90	-1.55	-0.18	1.03	-0.06

v) (π 1 , . . . , πM-1 ) t = z, vi) αm and Ŵm that are the weighted maximum likelihood estimators maximizing:

Proof -Hereafter B denotes the d × (M -1) matrix with columns β 1 ,...,β (M -1) . We also use the notations D = D + xz t and F = F + z zt .

The values ξ, V , B and Γ maximizing the completed log-likelihood function [START_REF] Cook | Discussion of "Sliced Inverse Regression for dimension reduction[END_REF] are the values minimizing the function

Annulling the gradients of G leads to the equations

From [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF] we get ξ = x -V Γ B z and replacing in [START_REF] Gannoun | An Asymptotic Theory for SIR α Method[END_REF] and ( 14) leads to:

Furthermore, from [START_REF] Hsing | Nearest neighbor inverse regression[END_REF], one has B = ( Γt V Γ) -1 Γt DF -1 . Note that the function G(•) and the equations [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm (with discussion)[END_REF] to [START_REF] Hsing | Nearest neighbor inverse regression[END_REF] are unchanged multiplying Γ by any d × d regular matrix. In what follows, we thus take Γ such that Γt V Γ = I d proving iii). Replacing B in the expression of ξ leads to iv).

If we multiply on the right (17) by Γ, using the equality ( 16) and the constraint Γt V Γ = I d , we get

Combining these equalities and replacing B by its expression entails that

where we have introduced the d × d matrix T given by

Notice that, multiplying [START_REF] Li | On directional regression for dimension reduction[END_REF] on the left by Γt and on the right by Γ, we have BF Bt + I d = Γt Σn Γ and thus

Since T is a symmetric matrix, there exists an orthonormal matrix 

Note that, from [START_REF] Li | Sliced inverse regression for dimension reduction[END_REF],

and thus, since Σn is definite positive, λ 1 , . . . , λ d are smaller than 1. A consequence of equality [START_REF] Li | On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma[END_REF] is that Γ span the eigen subspace associated to the d largest eigenvalues of the matrix Σ-

First, from [START_REF] Li | On directional regression for dimension reduction[END_REF],

Using Sylvester's identity we get

Thus, using [START_REF] Li | Dimension reduction for multivariate response data[END_REF], entails

Furthermore, using ( 17)

and, using iv) and the constraint on Γ,

Using iii),

Finally, using iii), iv) and the constraint on Γ leads to

and

Collecting ( 22) to ( 27) yield to equation [START_REF] Li | On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma[END_REF]. We are now interested in the proof of i) and ii). Let

Σn and take Γ = U (U t V 0 U ) -1/2 . First, from Lemma 1, since all the eigenvalues of Σ -1 DF -1 D t are smaller than 1, the matrix V 0 is symmetric and definite positive. Next, using again Lemma 1 and equation ( 19), the matrix T is diagonal and thus Γ satisfies ( 18) with T = L proving ii). Finally, it is easy to see that V 0 can be expressed as V 0 = Σn -Σn ΓL Γt Σn and simple calculations give that

Hence, V 0 verifies (17) and i) is proved. The end of the proof is straightforward.

Remarks -

1) The maximum likelihood estimator of Γ is normalized in order to have Γt V Γ = I d .

2) If we consider the parcimonious model obtain by taking V = σ 2 I p with σ 2 > 0 an unknown parameter, the previous lemma remains true (with a very similar proof) by replacing V by σ2 I p where

3) If we take for h(•) the q-dimensional pdf of a standard Gaussian distribution, the maximum likelihood estimators in vi) are given for m = 1, . . . , M by:

Assuming that W m = v 2 I q , the maximum likelihood estimator of W m is v2

Proof of Theorem 1 -It suffices to show that

First, using the point v) of Lemma 1, the j-th column of D is given by

(x i -x)(z i,j -πj ) = πj (x j -x).

Hence, from [START_REF] Coudret | A new sliced inverse regression method for multivariate response[END_REF],

Remark that all the columns of DΩ are given by