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Improved estimation of the left ventricular ejection

fraction using a combination of independent

automated segmentation results in cardiovascular

magnetic resonance imaging.
Jessica Lebenberg∗, Alain Lalande, Patrick Clarysse, Member, IEEE, Irène Buvat, Member, IEEE,

Christopher Casta, Alexandre Cochet, Constantin Constantinidès, Jean Cousty, Alain de Cesare,

Stéphanie Jehan-Besson, Muriel Lefort, Laurent Najman, Elodie Roullot, Laurent Sarry, Christophe Tilmant,

Frédérique Frouin, Member, IEEE and Mireille Garreau

Abstract—This work aimed at combining different segmenta-
tion approaches to produce a robust and accurate segmentation
result. Three to five segmentation results of the left ventricle were
combined using the STAPLE algorithm and the reliability of the
resulting segmentation was evaluated in comparison with the
result of each individual segmentation method. This comparison
was performed using a supervised approach based on a reference
method. Then, we used an unsupervised statistical evaluation, the
extended Regression Without Truth (eRWT) that ranks different
methods according to their accuracy in estimating a specific
biomarker in a population. The segmentation accuracy was
evaluated by focusing on the left ventricular ejection fraction
(LVEF) estimate resulting from the LV contour delineation
using a public cardiac cine MRI database. Eight different
segmentation methods, including three expert delineations, were
studied, and sixteen combinations of the five automated methods
were investigated. The supervised and unsupervised evaluations
demonstrated that in most cases, STAPLE results provided better
estimates of the LVEF than individual automated segmentation
methods. In addition, LVEF obtained with STAPLE were within
inter-expert variability. Overall, combining different automated
segmentation methods improved the reliability of the segmenta-
tion result compared to that obtained using an individual method
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and could achieve the precision of an expert.
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I. INTRODUCTION

C
Ardiac Magnetic Resonance Imaging (cMRI) is used

more and more frequently in clinical routine to study

simultaneously the cardiac anatomy and function. A series

of clinical parameters can be deduced from the acquired

scans in cMRI. Among these parameters, the left ventricular

ejection fraction (LVEF) remains a major prognostic index for

coronary artery diseases assessment. The correct estimation of

this parameter requires the accurate measurement of both end-

diastolic and end-systolic volumes. Although MRI makes these

measurements possible with a high precision (generally from a

series of short-axis cine-MR images), the segmentation of the

left ventricle (LV) is still a contemporary issue [1] due to the

colossal amount of data that are acquired in a single exam-

ination. For clinical routine, semi-automated algorithms that

are proposed by commercial image post-processing software

are largely used. For retrospective studies, research studies,

or large database studies, automated segmentation algorithms

are preferentially used in order to avoid the labor intensive

and time consuming manual segmentation task and reduce

the intra- and inter-operator variabilities [2]. To assess the

performance of these automated segmentation algorithms, the

common approach consists in comparing the contours resulting

from the automated segmentation with the ones obtained by

one or several experts who are known to often outperform

automated methods [3].

When visually comparing segmentation results obtained

by different automated methods as in [3], the respective

performance of two methods depends on the data: when a

first segmentation method provides more accurate contours

than a second automated method on a specific database, the

second algorithm might actually be more relevant for a sub-

database or, at least, for some particular MR examinations.

Therefore, it is reasonable to hypothesize that there might be
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an advantage in combining several automated segmentation

methods to overcome the specific limitations of each one.

To combine segmentation approaches, different algorithms

have been proposed [4], [5], [6], [7], [8]. The Simultaneous

Truth and Performance Level Estimation (STAPLE) algorithm

[5] is very popular and highly cited. Furthermore, the as-

sociated software is freely available for academic purposes

upon written request. For these reasons, we evaluated the

performance of STAPLE. To objectively assess the segmen-

tation accuracy, criteria based on estimated contours and

associated image classification are often used. These include

various metrics allowing to compare boundaries at a local

level such as distances between contours, overlap criteria like

the Dice coefficient [9], or the sensitivity, the specificity, the

predictive negative value and the predictive positive value

criteria computed by the STAPLE algorithm. All these criteria

assume that there is a ”gold standard” segmentation, at least

implicitly. Furthermore, these criteria are partly correlated and

are also directly related to the optimization process involved

in STAPLE. To avoid these limitations, we rather focused our

evaluation on the clinical task and evaluated the accuracy of

the estimated LVEF parameter. Indeed, this parameter value is

the clinically relevant end result of the left cavity segmentation

process.

To evaluate the interest of the STAPLE algorithm for

combining segmentation results, we applied it to a cardiac cine

MRI database including LV segmentation obtained from eight

independent segmentation approaches: five resulted from five

different automated image processing approaches, and three

volume contours were drawn by three different experts. All

possible combinations of the five automated methods (all five

methods, four among the five methods, and three among the

five methods) were tested against results provided by the three

experts, using the LVEF values as the clinical parameter of

interest. The evaluation was first carried out using a supervised

approach, assuming a gold standard was available, and then

using an unsupervised approach, the extended Regression

Without Truth (eRWT) [3] to rank all segmentation methods

as a function of their performance..

Our study presents some similarities with [2]: both used

a public cardiac cMRI database (although not the same) for

which contours were delineated by experts and algorithms. In

our case, the selected database included controls and patients

with different cardiac pathologies. In [2], only cMRI acquired

on patients were included. Furthermore, both studies used

STAPLE to combine different contours, but they differ in their

approach. Indeed, [2] proposed to use STAPLE to define

a gold standard segmentation based on two fully-automated

algorithms and three semi-automated algorithms requiring

manual input, while the present study focuses on improving

the accuracy of segmentation algorithms by combining them

with STAPLE to get a precision similar to the one achieved

by experts i.e. make it acceptable for clinical routine. Since

this study is based on previous work that requested manual

delineations on a specific database, we run the tests on the

public database previously used in our studies.

This paper is organized as follows. Section II presents the

database that was used in our study, the segmentation methods

that were compared and combined, and the different combi-

nations that were tested. Section III describes the statistical

supervised evaluation and the unsupervised evaluation used

to characterize the performance of the different combinations

of segmentation methods. Section IV presents the results and

the ranking of each segmentation method. These results are

discussed in section V.

II. DATABASE AND SEGMENTATION METHODS

A. Database

This work uses the public database provided by Sunny-

brook Health Sciences Center [10]. This cardiac database was

first distributed to the participants in the Cardiac MR Left

Ventricular Segmentation Grand Challenge (MICCAI 2009).

It includes images from forty-five subjects who were divided

into four subgroups: healthy individuals (CTRL, n=9), patients

with hypertrophic cardiomyopathy (HYP, n=12), patients with

heart failure without ischemia (HF-NI, n=12) and patients

with heart failure due to ischemia (HF-I, n=12). For each

examination, about ten short axis slices covering the LV were

acquired using a breath-hold, retrospective ECG-gated cine-

MRI sequence (twenty cardiac phases per slice, thickness =

8 mm, FOV = 320 mm, acquisition matrix 256× 256 with a

1.5T MR scanner (GE Healthcare)).

We focused here on the left ventricular ejection fraction

(LVEF) estimate. LVEF was calculated conventionally as the

ratio between the stroke volume and the end-systolic volume.

The end-diastolic and end-systolic volumes were measured

from the endocardial border that was delineated on each

selected image. MR slices corresponding to the end-systolic

and end-diastolic phases were indicated to the participants in

the Challenge, so as to avoid any variability due to the choice

of these temporal phases.

B. Segmentation approaches

Eight independent estimates of the LVEF were obtained

from three manual contouring methods (M1-M3) provided

by three independent experts from two different laboratories

and from five algorithms (M4-M8). The five algorithms

described respectively in [11], [12], [13], [14], [15]1 use dif-

ferent segmentation strategies and various user’s interactions.

Endocardial borders were obtained on the end-diastolic and

end-systolic phases with all methods (methods M5 and M6
provided contours for all cardiac phases). All methods but M5
included the papillary muscles in the LV cavity. Method M4
was the least automated one; method M8 was fully automated.

Using each segmentation method, the mean LVEF value

and its associated standard deviation were calculated for each

of the four subgroups of subjects. More than 99% of these

values ranged from 0.05 to 0.85. The twenty-four patients of

the studied database with heart failure (HF-NI and HF-I) had

a reduced LVEF that was considered as pathological (≤0.45).

1Please note that the method M8 described in [15] is an update of the
method [16] evaluated in [3].
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C. Combination of the segmentation approaches

1) Method: Several segmentation results were combined

using the Simultaneous Truth and Performance Level Esti-

mation (STAPLE) algorithm developped by Warfield et al.

[5]. This method was implemented using the version 1.5.2

of CRKit, which is the software provided by Warfield’s team.

The STAPLE framework is based on an Expectation Max-

imization (EM) algorithm [17], [18]. It uses several segmen-

tation results and calculates simultaneously a probabilistic

estimate of a representative segmentation result and a perfor-

mance level of each delineation included in the calculation.

This performance level is provided by the computation of

the sensitivity and the specificity indexes between each input

segmentation and the segmentation result. The process is

iterated until a stable solution is reached. Here, the STAPLE

algorithm was run using the default parameters that were

proposed by its authors. The binary version was used since

only two classes were considered: the left ventricle and the

remaining structures outside the left ventricle. Provided results

did not depend on the size of the background (the region

of interest surrounding the left cavity in our application) as

mentioned in [2]. Furthermore, the STAPLE algorithm was

applied in 2D, for each slice separately. The resulting contours

were stacked to get a 3D segmentation result.

2) Application: The STAPLE algorithm was applied to

several combinations of segmentation results obtained from

the five automated methods previously described:

• a STAPLE segmentation MS45678 was created from the

five automated methods.

• STAPLE was used to combine all five combinations

of four automated methods. For instance, the result-

ing segmentation was denoted MS4567 when methods

M4,M5,M6 and M7 were involved in the algorithm.

• STAPLE was also applied to each combination of three

automated methods among the five available (10 combi-

nations). The result was denoted MS456 when methods

M4,M5 and M6 were involved in the algorithm.

Using each STAPLE segmentation result, the mean LVEF

value and associated standard deviation were calculated for

each of the four subgroups of subjects.

III. STATISTICAL EVALUATIONS

A. Supervised evaluation

There is no perfect reference when three experts have

delineated contours on real data for which the gold standard

segmentation is unknown [4]. We could have used STAPLE

to define a consensus as proposed for instance in [2]. In order

to be independent of STAPLE for the evaluation, we rather

used M2 as the reference method (Mref ) for the supervised

evaluation step. Indeed, it was shown in [3] that method M2
performed the best and that the LVEF obtained by the three

experts were more accurate than any of the five automated

methods that were tested. The supervised evaluation was based

on the LVEF estimation and on the computation of the bias β

and its associated standard deviation (s) of each segmentation

method Mk with respect to the reference M2, (k representing

either one of the original methods or one of the sixteen

STAPLE combinations described in II-C2).

B. Unsupervised evaluation using eRWT

1) Theory: The eRWT approach, an extension of the Re-

gression Without Truth [19], [20], [21], aims at comparing and

ranking different methods which estimate a specific biomarker

such as the LVEF, the true value Θp of the biomarker being

unknown. Considering P samples (denoted by p, ranging

from 1 to P ) and K segmentation methods (denoted by Mk,

ranging from 1 to K), each segmentation method Mk yields

an estimate θpk of the biomarker for sample p.

The eRWT approach assumes a parametric relationship

between the true value Θp and its estimate θpk based on three

hypotheses:

H1: The statistical distribution of the true value Θp on the

whole database has a finite support.

H2: The estimate θpk is linearly related to the true value

(equation (1)). The error term εpk is normally dis-

tributed with zero mean and standard deviation σk. The

ak and bk parameters are specific to each method Mk

and independent of sample p:

θpk = akΘp + bk + εpk. (1)

H3: The error terms εpk for each method Mk are statistically

independent.

Regards to H1, a Beta distribution Beta(µ, ν) was chosen

for LVEF [19]. Besides, given all these assumptions, the

probability of the estimated values θpk given the linear model

parameters and the true value Θp can be expressed and the

log-likelihood can be written as a function of ak, bk, σk and

the probability distribution of Θp.

The maximization of this log-likelihood does not require

the numerical values of the true LVEF, but only a model of

its statistical distribution (pr (Θp)); it leads to the estimates of

the linear model parameters for each method (ak, bk and σk).

The numerical implementation uses an optimization func-

tion implemented in MATLAB (R2012a, The Mathworks,

Inc.). The figure of merit FMk chosen to rank the methods Mk

is defined as the expected value of the square error between

the true value of the parameter Θp and its estimated value by

a given method (equation (2)) [22].

FMk = E

[

(Θ− akΘ− bk − εk)
2
]

. (2)

If the statistical distribution of Θp is a Beta distribution, it

can be expressed analytically by equation (3).

FMk = (ak − 1)
2 µ (µ+ 1)

(µ+ ν) (µ+ ν + 1)
+

2 (ak − 1) bk
µ

µ+ ν
+ b2k + σ2

k. (3)

To set the shape parameters of the Beta distribution (µ and

ν), we started from the values chosen in [3] (µ = 4 and ν = 5)

and refined these initial values so as to minimize the sum of the

K figures of merit. Final values of the µ and ν parameters were
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set to 2.85 and 3.40 respectively. These slight modifications

of the Beta distribution compared to that used in [3] did not

yield substantial changes in the ranking of the methods, as

already shown in [3].

The final ranking of methods was based on a bootstrap

process [23] running on the database of P values θpk
generating N (N = 1000) θpnk values. From each drawing

n, P values pn were drawn from the 45 samples. From these

θpnk values, the K figures of merit Fn
Mk were computed using

the previously described optimization. The non-parametric

Kruskal-Wallis test [24] was applied to the N ×K values of

Fn
Mk to test the equality of the median among the K methods.

When it was not equal, each pair of methods was tested, using

a Bonferroni correction with a Type I error equal to 5% [25]

to determine the significantly different pairs.

2) Experiments: The eRWT approach was first performed

to rank the eight segmentation methods (M1−M8 described

in II-B). This first ranking confirmed that the reference method

chosen for the supervised evaluation (i.e. M2) ranked first, as

previously established in [3], despite the update of method

M8 and the new values of the Beta distribution parameters.

The unsupervised eRWT approach was then systematically

applied to the eight methods M1 − M8 and to one of the

STAPLE results described in II-C2 to rank each segmenta-

tion combination, MSi, among the eight initial segmentation

methods.

IV. RESULTS

A. Combination of the segmentation approaches

1) Superimposition of contours resulting from different seg-

mentation methods on cMRI: Figures 1 and 2 show the

endocardial contours obtained using the eight segmentation

approaches M1 − M8 and using three different STAPLE

combinations, superimposed on an end-diastolic image. These

two figures correspond to two different cases: one patient (SC-

HF-01) and one control (SC-N-05). In these two examples, the

LV contour was correctly delineated by STAPLE whereas it

was over-delineated when using M6 and M8 (Figure 1) or

under-delineated by M5 and M7 (Figure 2).

2) Estimation of LVEF values for each method: The mean

LVEF values and their standard deviations estimated for each

subgroup of subjects are displayed in Table I for each initial

segmentation method (M1−M8) and each MSi method.

B. Supervised evaluation

1) Choice of the reference method: Table II presents the

figures of merit computed using the eRWT approach when the

eight initial segmentation methods (M1−M8) were compared.

These scores confirmed that M2 could be chosen as the

reference method for the supervised evaluation.

2) Bias in LVEF estimated values: Figure 3 shows the

results obtained for the supervised evaluation. Each bias β

with respect to the M2 result is represented with its associated

standard deviation (error bars corresponding to ±1.96s). This

figure shows that expert delineations M1 and M3 give the

closest results to M2, with M3 showing less variability than

M1. When comparing the five automated methods (M4−M8),

Methods HF-I HF-NI HYP CTRL
(n = 12) (n = 12) (n = 12) (n = 9)

M1 23.46±10.36 28.68±14.37 62.17±8.89 60.2±6.60
M2 25.12±10.55 31.93±14.20 65.39±6.35 66.18±4.98
M3 26.79±11.75 32.38±14.83 69.90±6.88 66.61±5.43
M4 24.15±11.75 33.30±16.94 64.95±12.02 66.51±6.07
M5 24.20±13.41 27.66±11.64 48.79±12.45 57.49±4.26
M6 25.81±13.19 35.04±17.71 73.94±10.62 74.30±6.73
M7 22.92±9.91 31.00±15.70 58.49±13.93 61.22±13.92
M8 31.47±13.13 35.95±15.19 69.50±10.19 68.22±10.86

MS45678 26.59±10.93 34.41±15.89 64.66±10.61 67.21±6.52
MS4567 24.23±10.44 33.42±14.84 61.75±11.37 65.36±5.86
MS4568 27.26±12.34 34.21±14.54 64.87±9.40 67.54±4.28
MS4578 27.01±12.23 32.97±14.71 59.15±11.79 64.20±5.18
MS4678 26.54±10.74 34.95±16.41 69.59±8.30 68.64±5.72
MS5678 26.26± 9.95 32.60±14.17 63.51±10.70 65.59±8.08
MS456 26.87±11.67 33.64±15.02 66.54±9.35 66.99±3.75
MS457 25.07±10.66 32.41±14.36 58.98±12.04 63.85±4.69
MS458 27.85±12.54 33.33±14.26 63.29±9.87 65.94±3.58
MS467 26.70±10.03 34.62±16.22 69.71±8.26 69.59±7.42
MS468 28.47±13.26 35.65±16.47 71.70±5.93 71.08±4.06
MS478 27.76±12.23 34.81±16.67 66.06±9.37 67.94±6.56
MS567 25.31±10.65 31.96±13.31 64.28±10.42 67.46±7.98
MS568 28.19±13.42 34.49±14.23 69.85±6.42 69.47±5.72
MS578 27.20±11.48 32.52±14.13 61.06±12.28 66.0±7.9
MS678 27.63±10.85 34.84±16.43 71.78±7.12 69.83±8.57

TABLE I
MEAN LVEF VALUES AND THEIR ASSOCIATED STANDARD DEVIATIONS

COMPUTED FOR EACH SEGMENTATION METHOD AND GIVEN FOR EACH

SUBGROUP OF SUBJECTS: HEART FAILURE WITH AND WITHOUT ISCHEMIA

PATIENTS (HF-I AND HF-NI RESPECTIVELY), HYPERTROPHIC

CARDIOMYOPATHY (HYP) PATIENTS AND HEALTHY INDIVIDUALS

(CTRL).

Method M1 M2 M3 M4 M5 M6 M7 M8

Fk 0.003 <0.001 0.001 0.004 0.015 0.008 0.010 0.008

TABLE II
FIGURES OF MERIT (FMk) OF THE EIGHT INITIAL METHODS ESTIMATED

BY THE ERWT APPROACH.

M4 yields the closest result to M2 with a bias near 0, and the

smallest s. Although all semi-automated methods have slightly

greater variability than the inter-expert variability, several

STAPLE combinations are within the inter-expert variability,

with six combinations presenting smaller variability than M1.

Method MS456 was the one presenting the smallest variability

[β ± 1.96s] among all MSi.

To easily compare results obtained for MSi with those

obtained with M4 (the best automated method according to

the supervised evaluation), the variability obtained with M4
is represented by a red colored box in Figure 3. Among

the sixteen tested MSi methods (using or not M4 to create

the STAPLE segmentation result), ten were within the range

[β± 1.96s] obtained with M4. The six remaining MSi had a

higher bias (in absolute value) than the one obtained with M4,

but three of them (MS4567, MS5678 and MS678) had a

lower s than M4. MS578 had a higher s than M4, but lower

than the s obtained by the four methods used to create the

STAPLE segmentation result. Finally, whereas MS4578 had

a s 10% higher than the one obtained with M4, MS457 had

a standard deviation s only 1% higher than the one obtained

with M4.
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(a) (b)

(f)(e)

(d)(c)

(g) (h)

(i) (j) (k)

Fig. 1. Basal cine MRI slice at end-diastole with superimposed contours of the LV (green line) as obtained using the eight segmentation methods included in
the study (M1 to M8 represented from (a) to (h) respectively) and using the three different combinations of the STAPLE algorithm (MS45678 (i), MS456
(j) and MS4578 (k)).

(a) (b)

(f)(e)

(d)(c)

(g) (h)

(i) (j) (k)

Fig. 2. Median cine MRI slice at end-diastole with superimposed contours of the LV (green line) as obtained using the eight segmentation methods included in
the study (M1 to M8 represented from (a) to (h) respectively) and using the three different combinations of the STAPLE algorithm (MS45678 (i), MS456
(j) and MS4578 (k)).
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Fig. 3. Supervised evaluation: Computation of the LVEF bias β of each method with respect to values obtained with M2 and its associated standard deviation
(error bars corresponding to ±1.96s). The red box represents results obtained for M4, the automated method whose results are closest to the M2 results for
this evaluation.

C. Unsupervised comparison of segmentation methods

Table III presents the ranking of the eight initial segmenta-

tion methods and of each STAPLE method MSi. Among the

sixteen comparisons, method MSi was at a ranking similar to

the experts in 14 cases (green MS in the table). The best rank

was reached by MS456 (rank equal to 2). Method MS578
was ranked like M4 (rank equal to 4, blue MS in the table),

this rank being worse than the experts ranks but better than

the individual methods used to create the combination. These

results demonstrate that the LVEF parameters were more

accurately estimated using this combination of segmentation

methods than with any of the segmentation methods used

in the combination. The worst rank observed for an MSi

approach was obtained for MS4578 with a rank equal to 5 (red

MS in the table), worse than M4 used to provide the STAPLE

segmentation result. For this test, FM1 and FM4 were equal

to 0.004, FMS4578 was equal to 0.005, and FM8 was equal to

0.007. So, even if MS4578 was at the fifth position, its figure

of merit was close to the scores obtained with methods M1
and M4. Thus in this case, LVEF parameters estimated using

MSi show a clear improvement compared to LVEF estimated

using M5, M7 and M8.

V. DISCUSSION

A. Use of STAPLE to combine LV segmentations

The aim of this work was to evaluate the efficiency of the

STAPLE algorithm [5] to estimate a clinical biomarker, the

LVEF, from a segmentation resulting from the combination

of different independent segmentation algorithms. To demon-

strate it, a collection of segmentation applied to the MICCAI

2009 cardiac MRI database was used. For the forty-five cases

of this database eight segmentation methods were available,

including delineations provided by three independent experts,

and five delineations obtained using five up-to-date automated

LV segmentation algorithms. As the LVEF is a primordial

biomarker used in clinical routine, all evaluation tests were

performed by focusing on this parameter. The database had

the advantage of including a large variety of cardiac diseases

(with normal or reduced LVEF) and control subjects. The

computation of the mean LVEF value and associated stan-

dard deviations for each subgroup showed that values were

homogeneous for each subgroup of subjects, whatever the

segmentation method used for the LVEF calculation. These

first results confirmed that all segmentation methods provided

coherent estimates for each subgroup of subjects.

The STAPLE algorithm has already been proposed to define

a reference method from different expert segmentations [5],

[2]. In the present study, our goal was not to define a consensus

between ”experts”, but rather to determine whether some

combinations of different independent automated segmentation

methods could yield a segmentation as reliable as that of an

expert, keeping in mind that each automated method is slightly

less powerful than expert delineation. In other words, could a

combination of different automated segmentation results yield

better results than the ones from each individual method? The

question was challenging since several evaluation studies [7],

[2] already showed that the STAPLE output strongly depends

on the number and on the quality of the inputs used to

create the combined segmentation. However, assuming that the

automated methods incorporate different strategies, we tested

whether their combined use could actually help in improving

segmentation results on a whole database. All possible combi-

nations of three, four and five automated segmentations were

systematically tested.

To assess the segmentation results, a visual inspection of

the contours of all STAPLE segmentation results superim-

posed onto the MR images was first performed. This visual

assessment showed that in most cases, the STAPLE algorithm

was able to correct, in every slice, too loose or too tight

delineations obtained from automated methods. Supervised
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Rank Methods entering the comparison with MS corresponding to:
number MS45678 MS4567 MS4568 MS4578 MS4678 MS5678

-
P

er
fo

rm
an

ce
+

1 M2 M2−M3 M2 M2−M3 M2 M2

2 M3 M3 M3 M3

3 MS MS MS M1−M4 MS MS-M1

4 M1 M1−M4 M1−M4 M1−M4

5 M4 MS M4

6 M8 M8−M6 M8−M6 M8 M8 M8

7 M6 M6 M6 M6

8 M7 M7 M7 M7 M7 M7

9 M5 M5 M5 M5 M5 M5

Rank Methods entering the comparison with MS corresponding to:
number MS456 MS457 MS458 MS467 MS468 MS478 MS567 MS568 MS578 MS678

-
P

er
fo

rm
an

ce
+

1 M2 M2 M2 M2 M2−M3 M2 M2 M2−M3 M2−M3 M2−M3

2 M3-MS M3 M3 M3 M3 M3

3 MS MS MS MS MS-M1 MS MS M1 MS
4 M1−M4 M1−M4 M1−M4 M1−M4 M1−M4 M1 M1 M4-MS M1

5 M4 M4 M4 M4

6 M8−M6 M8−M6 M8 M8−M6 M8 M8 M8−M6 M8 M8 M8

7 M6 M6 M6 M6 M6 M6

8 M7 M7 M7 M7 M7 M7 M7 M7 M7 M7

9 M5 M5 M5 M5 M5 M5 M5 M5 M5 M5

TABLE III
RANKING OF THE SEGMENTATION METHODS ACCORDING TO THE DIFFERENT COMBINATIONS OF METHODS. GREEN MS HIGHLIGHT METHODS MSi AT

AN EXPERT-LIKE RANKING. BLUE MS HIGHLIGHTS METHOD MSi RANKED BEHIND THE EXPERTS BUT IN FRONT OF THE INDIVIDUAL METHODS USED

TO CREATE THE COMBINATION. RED MS HIGHLIGHTS WORST RANK OCCUPIED BY A METHOD MSi.

and unsupervised statistical evaluations were then performed

to assess the results obtained using STAPLE combinations of

automated methods.

B. Supervised evaluation

The main idea of the supervised evaluation was to compare

the LVEF values estimated by all methods (including the MSi

methods) with the values computed by a ”reference” method.

This ”reference” method was the M2 method as it yields the

best figure of merit when using the eRWT approach on the

eight initial methods. The comparison of LVEF values was

based on the bias (β) and its associated standard deviation (s)

obtained when computing LVEF values using each individual

segmentation method compared to the M2 results.

Results showed that M4 was the closest automated method

to M2 with a low bias and the smallest standard deviation.

Ten among sixteen MSi were closer to the reference method

M2 than M4 and less variable than this latter method.

Furthermore, except for MS4578, all combinations resulting

from the STAPLE algorithm show more accurate or at least

equivalent results compared to the methods being involved

in the combination. It can be concluded that the STAPLE

algorithm provided segmentation results that yielded more ac-

curate or equivalent LVEF results compared to the automated

segmentation methods from which the STAPLE combination

was based.

The practical comparison of the different segmentation

combinations using STAPLE also shows interesting results.

For instance, the combination of only three automated segmen-

tation methods can provide a LVEF estimate as accurate as the

one provided by an expert. Furthermore the bias related to each

MSi method is correlated with the sum of the biases observed

in the initial methods used in the combination (r = 0.736).

We also observed a systematic reduction of the standard

deviation s when combining different methods using STAPLE,

compared to the standard deviation of each individual method

used in the STAPLE combination. This decrease in standard

deviation did not necessarily depend on the number of methods

used for the combination.

C. Ranking provided by the eRWT approach

The eRWT approach ranked the expert delineation M2 first,

and more generally, the three expert delineations in the top

three. The semi-automated method M4 was ranked as the best

automated method to estimate LVEF. To evaluate the STAPLE

segmentation results (MSi) without using strong a priori on

the truth, the eRWT approach was systematically applied to the

eight original methods and to an MSi method. In most cases,

MSi ranked similarly to the expert delineations (M3 and

M1). This means that the STAPLE algorithm based on several

automated methods provided similar results to those obtained

by experts. In one case (MS578), the rank of the STAPLE

method was less than those of experts but was still better

than those of the three methods STAPLE was based on. This

suggests that the LVEF parameters were once again better esti-

mated using the combination of segmentation methods than us-

ing any of each initial segmentation method used in STAPLE.

Finally, in only one instance (MS4578), MSi was ranked

after one of the four methods (M4) used in the combination.

However, the figures of merit showed that LVEF parameters

estimated using MSi were better than those estimated using

three of four methods involved in the combination (M5, M7
and M8). Furthermore, results obtained with (MS4578) were

very close to those obtained with M4. Overall, all experiments

showed that the clinical parameters calculated for a specific

database were better estimated when combining segmentation
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methods with STAPLE than when using one of the initial

methods entering the STAPLE combination.

Last, both supervised and unsupervised statistical ap-

proaches led to very similar conclusions. Indeed, both ap-

proaches showed that the most accurate LVEF was obtained

when combining M4, M5, and M6. Furthermore, both ap-

proaches showed that the poorest results were obtained when

combining M4, M5, M7 and M8. This a posteriori con-

sistency between conclusions suggests that the use of the

unsupervised eRWT approach was relevant in our context and

that the different hypotheses underlying the eRWT approach

proved to be realistic. The major interest of eRWT is to provide

a ranking of different estimation methods based on only few

a priori hypotheses.

D. Future directions

The statistical tools that were used for this study could

also be used to compare the STAPLE algorithm with other

algorithms that have been developed to define representative

contours (for instance, the ones described in [7], [8]). This

could help identify the most efficient algorithm to combine

contours. However, this would require testing the statistical

independency of σk in the eRWT model (equation (1)) when

comparing different methods of combination based on the

same initial methods.

Due to the difficulty in getting one or multiple expert

delineations for clinical segmentation problems, the combined

use of different independent algorithms could yield a valuable

alternative. Of course, the combination process requires some

computing resources, which depend on the segmentation meth-

ods involved in the combination and on the method used for

combining them (here STAPLE) but it guarantees reproducible

results and manual delineation is no longer needed. Due to

the quality of results demonstrated by this study, which shows

a clear improvement in LVEF estimates using the STAPLE

combinations compared to the initial automated segmentation

algorithms, it becomes feasible to use automated segmentation

algorithms and get stable and reliable results.

Finally our approach was applied to LV segmentation. To

extend to other organs, additional tests should be realized.

VI. CONCLUSION

This work aimed at determining whether combining differ-

ent segmentation results using the STAPLE algorithm could

yield a final segmentation as reliable as that of an expert.

This approach was tested in the framework of the estimation

of left ventricular ejection fraction on the MICCAI 2009

cardiac cine MRI database. Both supervised and unsupervised

evaluations showed that in most cases, the LVEF were better

estimated using the STAPLE approach than using individually

the segmentation methods used to create the STAPLE result.

Moreover, the STAPLE segmentation results provided, in

most cases, similar estimates to the ones obtained based on

manual delineations performed by an expert. The results show

that combining different independent automated segmentation

methods using the STAPLE approach yielded segmentations

that were as accurate as those provided by expert delineating

the left ventricular cavities.
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