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We show that a harmonic oscillator subject to a sudden change of mas s produces squeezed states. Our study is based on an approximate analytic solution to the time-dependent harmonic oscillator equation with a subperiod function parameter. This continuous treatment differs from former studies that involve the matching of two time-independent solutions at the discontinuity. This formalism requires an ad hoc transformation of the original differential equation and isalso applicable for rapid, although not necessarily instantaneous, mass variations.
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Introduction

ing another transforrnation that produces a monotonic timedependent parameter. The transformed equation can then be sol ved with the continuum approach, leading to squeezing of the momentum variables at certain times. An interesting advantage of this method is that the change of mass need not be a step function in the strict mathematical sense. The requirement, which is physically more plausible, is that the change in mass should take place in a time span much shorter than the characteristic period of the oscillator.

The plan of the manuscript is the following: in Seco 2, we write the quadratic and linear invariants for a time-dependent mass and exhibit their relation with the Hamiltonian. In Seco 3, we discuss two transforrnations that translate the classical time-dependent mass equation into the time dependent trequency problem. The analytic solution for a rapid variation of the time dependent mass using the appropriate transformation is then presented. In Seco 4, we exhibit how a sudden change of mas s in the quantum oscillator produces squeezing. Section 5 is left for conclusions.

Time dependent mass

The oscillator differential equation with a sudden change óf mass has been tackled by considering two time regions with constant parameters and matching the solutions at the time where the abrupt change takes place [START_REF] Kiss | [END_REF]. This procedure is analogous to the problem of an oscillator with constant mass but a sudden change in frequency due to an abrupt change in the potential. In quantum optics, the time dependent mass is particularly relevant because it describes an external influence on the quantized electromagnetic field, e.g., a decaying or driven Fabry-Pérot cavity [2].

The harmonic oscillator equation with time-dependent parameters [3][4][5][6][7] has been solved for a sudden frequency change using a continuous treatment based on an invariant formalism [8]. This analytic treatment requires that the timedependent parameter be a monotonic function whose variation is short compared with the typical period of the system. This procedure allowed us to obtain analytic solutions that mayor may not exhibit squeezing depending on time when departing from an initial coherent state.

In this communication, a continuous treatment of a harmonic oscillator whose mass suddenly changes is considered. This continuous approach is not as straightforward as in the case where two solutions are matched at the abrupt interface, the reason being that the transformation leading to a differential equation without involving first derivatives yields a time-dependent parameter that is no longer a monotonic finite function. This hurdle must be overcomed by invok-The hannonic Hamiltonian with time-dependent mass M(t) reads

';1P ~ 1 [ , H=- J 2-M(t) +M(t)02 (t) fj2] , (1) 
where 02 (t) is a time-dependent parameter. It is well-known that a quantum invariant for this type of interaction has the fonu [9] with an effective time-dependent parameter n~ givenby " + (pvp -M(t)Pvqf ] ,
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where the overdot represents derivative with respect to time.

The amplitude Pv obeys the Ermakov-type equation

d 2. .1'"' Pv ) , v ~+-~-" ~- (3) dt2 M dt A_l [( GA ) .l 1-- q 2 -:- 02 = n2 -1 M 1 1\12 x ~, --+ 2 M 4M2' (9) 
. The orthogonal function procedure leads to the classical invariant

{4) v+ G = M (V1V2 -V2Vl), ( 5 
)
where the functions Vl and V2 are linearly independent solutions to the time-dependent mass differential equation ( 4).

The quantum orthogonal functions' linear invariants may then be obtained using an analogous procedure to a previous derivation [15] with the identifications Vj -+ q, M Vj -+ p, for j = 1 or 2 yielding

Let the time-dependent parameter be written in terms of stiffness and time-dependent mass in the usual way

k (t) 02 (t) = M""(t)'
where stiffness k (t) may also be a time-dependent function. The above equation then reads 

Differential equation transformation

The transformation v = xexp{-1/2 f hdt) But this is the time-dependent mass equation ( 4) that needs to be sol ved, provided that stiffness is constant. Therefore the transformation v = d'I/J / dt and first integration of the resulting equation also eliminates the first arder derivative termo However, it maintains the same functional dependence on the parameter 02 rather than introducing an effective parameter O~. The inverse of a monotonic timedependent mass function is then aIso a monotonic function without infinite values, provided that the mass is not zero. A decreasing (increasing) mass as a function of time produces an increasing (decreasing) time-dependent parameter 02. If a step function 02 = k / M is considered, then it remains a step throughoutthe transformation without nasty divergences involved.

Therefore, the time-dependent mass problem that invol ves first-order derivatives may be translated into a timedependent frequency case that does n6t involve such terms. However, the above derivations shoJ that there are distinct transformations leading to the desired equation formo The latter is in fact a particular form of a Darboux transformation [START_REF] Matveev | Darboux transformations and solitons[END_REF]. These results have been abridged in the table below:

is commonly invoked in arder to eliminate terms of the form h (t) ti that involve a first derivative in second-:order differential equations [10]. Equation ( 4 For a step function time-dependent mass, this effective parameter O~ acquires divergent values, as may be seen from the mass derivatives involved in the above expression. This issue is not a problem if piecewise integration is used to obtain the solution. However, since the parameter O~ obtained under the transformation is no longer a monotonic function or a step function in the appropriate limit, this procedure is not suitable if the continuous analytical approach is to be invoked.

There is however an alternative approach that involves the derivative of the time-dependent harmonic oscillator equation From a physical point of view, it is interesting to consider the relationship between these results. Let a perturbation (i.e. displacement) '1/1 obey a WHO equation with a time-dependent parameter but constant mass. The equation goveming the time derivative of such a perturbation (i.e. velocity) is given by the time derivative of the perturbation equation. If the system has a time-dependent mass, the perturbation (i.e. displacement) now obeys an equation that is identical to that fulfilled by the velocity in the case of constant mass with time-dependent stiffness.

A. Analytic solution

An analytic approximate solution to the TDHO has been obtained for a time-dependent parameter n2 (t) that varies mono-tonicalIy in a time span much shorter than the characteristic period of the system [START_REF] Guasti | [END_REF]. The solution in amplitude and phase variables 1/J = p exp (itp) is given by (13) , al p(t) = 1 and nl are the initial amplitude and frequency at a time well before the transient behaviour takes place. ts is the time where the variation is maximum and to is an arbitrary initial time. The frequency, defined as the derivative of the phase is given by (15) The solution for the displacement v in the classical timedependent mass problem is then model a step function in the limit when the slope as -+ 00 as shown in Fig. 1. It is interesting to note that the approximate analytic solution that is being used is adequate even if the time-dependent parameter does not vary in a strictly abrupt fashion. The solution is appropriate in the so-called subpefiad regime that requires variations of the time-dependent parameters in an interval much shorter than the period of the system although not necessarily intinitesimal. The amplitude Pv for this function is plotted in Fig. 2 using Eqs. ( 16) together with ( 13) and (14). 
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A. Squeezed states

Consider that, at time t = O, the system is in the initial coherent state la). The initial state 1t/J(O))=Tt (O) la)=la)o=la) then evolves according to (21) as

'i'tla} t ' -ii J (¡)(t)dt o J 11/J(t)} = exp t. -iJ ",(t)dt (J , t -i J ..,(t')dt' () = 'i't ¡ae =Iae ( 22 
)
)t, Therefore, coherent states remain coherent throughout the time evolution. This statement has been made before regarding an oscillator with constant mass but timedependent frequency [8]. This result is now being extended to an oscillator with time dependent mass. From Fig. 2 we can see that 7'(0) = 1, since Pv = O and lnpv = O. It may thus be seen how ideal squeezed states may be generated: the maxima of the function tell us when squeezing occurs, since as for such times Pv(tmax) = O and lnpv(tmax) # O, so that we obtain with n fue so-called number operator with eigenstates In).

States of the form In)t = i't In) are eigenstates of the Ermakov Lewis invariant. This invariant plays in the timedependent case, the Tole that fue quantized Hamiltonian does in the time-independent case [13,14]. The Ermakov Lewis invariant can be written in terms of annihilation and creation operators as j = ata + G /2 with t'RU'" is fue well-known squeeze operator [16,[START_REF] Zaheer | Squeezed states of the radiationfield[END_REF]. The squeezed state ..ti (24) b.q i.e. the momentum uncertainty is squeezed (as Pv(tmax) > 1, see Fig. 2). This result should be compared with the squeezing found for the illHO when the frequency is suddenly doubled, thus yielding squeezing in the coordinate variable [8].

in the constant mass case. The transfonned time dependent parameter n2 (t) then remains monotonic and finite, provided that the time-dependent mass is monotonic and finite, even if it varies in an abrupt fashion.

The problem has been sol ved using an approximate analytical solution whose validity holds when the timedependent parameters vary monotonically in a time span that is much shorter than the period, although it need not be instantaneous. This feature, which describes a more realistic scenario of parameter variations with finite duration, is clearly unattainable when the problem is sol ved using the two steady-state solution approach.

A sudden change of mass beginning with a mass Mi produces squeezing in the momentum variable provided that there is a loss ofmass M2 < Mi. In contrast, a variation of the potential from ni to n2 with n2 > ni produces squeezing in the coordinate variable [8]. These results are consistent with the view described above that the coordinate transfonnation is fonnalIy equivalent to the role played by the velocity variable when the mass is constant. Coherent states have been shown to keep their fonn throughout the system's evolution, whether or not the mass and/or the potential are time depenrip.nt Conclusions 5.

The real linear quantum invariants or orthogonal function invariants have been generalized for the one dimensional harmonic oscillator with time-dependent mass [Eq. ( 6)].

The TDHO with time-dependent mass M (t) has been translated into a problem with constant mass but timedependent parameter n2 (t). The transformation has been shown not to be unique. A Darboux type transformation yields an equation for the perturbation with time-dependent mass that is formally identical to that fulfilled by fue velocity

  '1.1 dpv + Q;l Pv = M2pã nd G is a constant often set equal to one in the literature. This equation forms an Ermakov pair with the classic harmonic oscillator equation for fue coordinate variable v with time dependent mass Al .M Ü + .{};2V = O.

  v = . The quadratic Ennakov Lewis invariant is related to the these linear invariants by The constant mass results (1\1 = o) , albeit with a timedependent parameter, are then modified by the change ofvariables ~~L. M (7) G(M=O) -+ fi(M=O) -+ Mfi(M#O)'

  ) with the function h(t) = M / M then transforms to d2X dt2 + !1~x = O, (8) Rev. Mex. Fís. 53 (1) (2007) 42-46

  with constant mass ~ + 021/1 = O together with the substitution v = d1/ljdt:

  Therefore, in polar variables v = pvexp (i<pv), the amplitude and phase are given by 4. Quantum oscillator p Pv = V p2<¡?2 + />2, (16) CPv = cP + arctan Rey. Mex. Fís. 53 (1) (2007) 42-46 We can obtain coherent states of the TDHO with timedependent mass as M(t} la)t = Dt(a)IO)t, Dt(a) = exp(aii.t -a*ii.) ala)t = ala)toRecently we have shown that the Schrodinger equation for the one-dimensional time-dependent harmonic Hamiltonian has a solution ofthe form[15] 

  FIGURE l. The mass M(t) evolution as a function of time for MI = 1 and M2 = 0.5; Q. = 20 and t. = 2.

FIGURE 2 .

 2 FIGURE 2. The amplitude pu(t) as a function oftime for MI = 1, M2 = 0.5, as = 20 and ts = 2.

  In Pv (tmax) (qp + pq)]

  t = ~ [~ -i(pvp -M(t)pvf1)] 1t/J(tmax)) = laexp t""", ' -i J w(t)dt o ;lnpv(tmax)) (20) Rev. Mex. Fís. 53 (1) (2007) 42-46is then generated. Squeezed states, like as coherent states, are also minimum uncertainty states. However the uncertainties for q and p are not equal; in particular, we have 1 !:1Q!:1P=2 Pv(tmaz)