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SAMM – EA 4543

75013 Paris, France (Jean-Bernard.Baillon@univ-paris1.fr)

2UPMC Université Paris 06
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Santiago, Chile (rccc@dii.uchile.cl)

August 31, 2011 -- version 1.09

Abstract

The method of periodic projections consists in iterating projections onto m closed convex
subsets of a Hilbert space according to a periodic sweeping strategy. In the presence ofm ≥ 3
sets, a long-standing question going back to the 1960s is whether the limit cycles obtained
by such a process can be characterized as the minimizers of a certain functional. In this
paper we answer this question in the negative. Projection algorithms that minimize smooth
convex functions over a product of convex sets are also discussed.
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1 Introduction

Throughout this paper (H, ‖·‖) is a real Hilbert space. Let C1 and C2 be closed vector subspaces
of H, and let P1 and P2 be their respective projection operators. The method of alternating
projections for finding the projection of a point x0 ∈ H onto C1∩C2 is governed by the iterations

(∀n ∈ N)

⌊

x2n+1 = P2x2n
x2n+2 = P1x2n+1.

(1.1)

This basic process, which can be traced back to Schwarz’ alternating method in partial differen-
tial equations [26], has found many applications in mathematics and in the applied sciences; see
[13, 14] and the references therein. The strong convergence of the sequence (xn)n∈N produced
by (1.1) to the projection of x0 onto C1 ∩ C2 was established by von Neumann in 1935 [24,
Lemma 22] (see also [7, 20] for alternative proofs). The extension of (1.1) to the case when
C1 and C2 are general nonempty closed convex sets was considered in [10, 22]. Thus, it was
shown in [10] that, if C1 is compact, the sequences (x2n)n∈N and (x2n+1)n∈N produced by (1.1)
converge strongly to points y1 and y2, respectively, that constitute a cycle, i.e.,

y1 = P1y2 and y2 = P2y1, (1.2)

or, equivalently, that solve the variational problem (see Figure 1)

minimize
y1∈C1, y2∈C2

‖y1 − y2‖. (1.3)

Furthermore, it was shown in [22] that, if C1 is merely bounded, the same conclusion holds
provided strong convergence is replaced by weak convergence. As was proved only recently [19],
strong convergence can fail (see also [23]).

Extending the above results to m ≥ 3 nonempty closed convex subsets (Ci)1≤i≤m of H poses
interesting challenges. For instance, there are many strategies for scheduling the order in which
the sets are projected onto. The simplest one corresponds to a periodic activation of the sets,
say

(∀n ∈ N)















xmn+1 = Pmxmn

xmn+2 = Pm−1xmn+1
...

xmn+m = P1xmn+m−1,

(1.4)

where (Pi)1≤i≤m denote the respective projection operators onto the sets (Ci)1≤i≤m. In the
case of closed vector subspaces, it was shown in 1962 that the sequence (xn)n∈N thus generated
converges strongly to the projection of x0 onto

⋂m
i=1Ci [18]. This provides a precise extension

of the von Neumann result, which corresponds to m = 2. Interestingly, however, for nonperiodic
sweeping strategies with closed vector subspaces, only weak convergence has been established in
general [1] and, since 1965, it has remained an open problem whether strong convergence holds
(see [2, 9, 3] for special cases). Another long-standing open problem is the one that we address
in this paper and which concerns the asymptotic behavior of the periodic projection algorithm
(1.4) for general closed convex sets. It was shown in 1967 [17] (see also [12, Section 7] and [15])
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Figure 1: In the case of m = 2 sets, the method of alternating projections produces a cycle
(y1, y2) that achieves the minimal distance between the two sets.

that, if one of the sets is bounded, the sequences (xmn)n∈N, (xmn+1)n∈N, . . . , (xmn+m−1)n∈N
converge weakly to points y1, ym, . . . , y2, respectively, that constitute a cycle, i.e. (see Figure 2),

y1 = P1y2, . . . , ym−1 = Pm−1ym, ym = Pmy1. (1.5)

However, it remains an open question whether, as in the case of m = 2 sets, the cycles can be
characterized as the solutions to a variational problem. We formally formulate this problem as
follows.

Definition 1.1 Letm be an integer at least equal to 2 and let (C1, . . . , Cm) be an ordered family
of nonempty closed convex subsets of H with associated projection operators (P1, . . . , Pm). The
set of cycles associated with (C1, . . . , Cm) is

cyc(C1, . . . , Cm) =
{

(y1, . . . , ym) ∈ Hm
∣

∣ y1 = P1y2, . . . , ym−1 = Pm−1ym, ym = Pmy1
}

. (1.6)

Question 1.2 Let m be an integer at least equal to 3. Does there exist a function Φ: Hm →
R such that, for every ordered family of nonempty closed convex subsets (C1, . . . , Cm) of H,
cyc(C1, . . . , Cm) is the set of solutions to the variational problem

minimize
y1∈C1,..., ym∈Cm

Φ(y1, . . . , ym) ? (1.7)

Let us note that the motivations behind Question 1.2 are not purely theoretical but also quite
practical. Indeed, the variational properties of the cycles when m = 2 have led to fruitful ap-
plications in applied physics and signal processing; see [8] and the references therein. Since the
method of periodic projections (1.4) is used in scenarios involving m ≥ 3 possibly nonintersecting
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Figure 2: Example withm = 3 sets: the method of periodic projections initialized at x0 produces
the cycle (y1, y2, y3).

sets [11], it is therefore important to understand the properties of its limit cycles and, in particu-
lar, whether they are optimal in some sense. Since the seminal work [17] in 1967 that first estab-
lished the existence of cycles, little progress has been made towards this goal beyond the obser-
vation that simple candidates such as Φ: (y1, . . . , ym) 7→ ‖y1−y2‖+· · ·+‖ym−1−ym‖+‖ym−y1‖
fail [5, 6, 11, 21]. The main result of this paper is that the answer to Question 1.2 is actually
negative. This result will be established in Section 2. Finally, in Section 3, projection algorithms
that are pertinent to extensions of (1.3) to m ≥ 3 sets will be discussed.

2 A negative answer to Question 1.2

We denote by S(x; ρ) the sphere of center x ∈ H and radius ρ ∈ [0,+∞[, and by PC the
projection operator onto a nonempty closed convex set C ⊂ H; in particular, PC0 is the element
of minimal norm in C.

Our main result hinges on the following variational property, which is of interest in its own
right.

Theorem 2.1 Suppose that dimH ≥ 2 and let ϕ : H → R be such that its infimum on every
nonempty closed convex set C ⊂ H is attained at PC0. Then the following assertions hold.

(i) ϕ is radially increasing, i.e.,

(∀x ∈ H)(∀y ∈ H) ‖x‖ < ‖y‖ ⇒ ϕ(x) ≤ ϕ(y). (2.1)
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Figure 3: A polygonal spiral from y = xn,0 to xn,n in V .

(ii) Suppose that, for every nonempty closed convex set C ⊂ H, PC0 is the unique minimizer
of ϕ on C. Then ϕ is strictly radially increasing, i.e.,

(∀x ∈ H)(∀y ∈ H) ‖x‖ < ‖y‖ ⇒ ϕ(x) < ϕ(y). (2.2)

(iii) Except for at most countably many values of ρ ∈ [0,+∞[, ϕ is constant on S(0; ρ).

Proof. (i): Let us fix x and y in H such that ‖x‖ < ‖y‖. If x = 0, property (2.1) amounts to the
fact that 0 is a global minimizer of ϕ, which follows from the assumption with C = H. We now
suppose that x 6= 0. Let V be a 2-dimensional vector subspace of H containing x and y, and let
α ∈ [0, π] be the angle between x and y. For every integer n ≥ 3, consider a polygonal spiral built
as follows: set xn,0 = y and for k = 1, . . . , n define xn,k = PRn,k

xn,k−1, where (Rn,k)1≤k≤n are n
angularly equispaced rays in V between the rays [0,+∞[ y and [0,+∞[x = Rn,n (see Figure 3).
Clearly, for the segment C = [xn,k−1, xn,k], we have PC0 = xn,k, so that the assumption on
ϕ gives ϕ(xn,k) ≤ ϕ(xn,k−1), and therefore ϕ(xn,n) ≤ ϕ(xn,0) = ϕ(y). On the other hand,
xn,n and x are collinear with ‖xn,n‖ = ‖y‖(cos(α/n))n so that for n large enough we have
‖xn,n‖ > ‖x‖ and, therefore, the segment C = [x, xn,n] satisfies PC0 = x, from which we get
ϕ(x) ≤ ϕ(xn,n) ≤ ϕ(y).

(ii): If the minimizer of ϕ on every nonempty closed convex set C ⊂ H is unique, then all
the inequalities above are strict.

(iii): Define g : [0,+∞[ → R and h : [0,+∞[ → R by (∀ρ ∈ [0,+∞[) g(ρ) = inf ϕ(S(0; ρ))
and h(ρ) = supϕ(S(0; ρ)). It follows from (2.1) that

(∀ρ ∈ [0,+∞[)(∀ρ′ ∈ [0,+∞[) ρ < ρ′ ⇒ g(ρ) ≤ h(ρ) ≤ g(ρ′) ≤ h(ρ′). (2.3)
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Hence, g and h are increasing and therefore, by Froda’s theorem [16], [25, Theorem 4.30], the
set of points at which they are discontinuous is at most countable. Furthermore, it follows from
(2.3) that g and h have the same right and left limits at every point. Therefore, they have the
same points of continuity and their values coincide at these points. We conclude that, except
for at most countably many ρ ∈ [0,+∞[, we have g(ρ) = h(ρ) so that ϕ is constant on S(0; ρ).

As a consequence, we get the following result.

Corollary 2.2 Suppose that dimH ≥ 2 and let ϕ : H → R be such that its infimum on every
nonempty closed convex set C ⊂ H is attained at PC0. If ϕ is lower or upper semicontinuous,
then it is a radial function, namely ϕ = θ◦‖·‖, where θ : [0,+∞[ → R is increasing. Furthermore,
if PC0 is the unique minimizer of ϕ on every nonempty closed convex set C ⊂ H, then θ is strictly
increasing.

Proof. Define g : [0,+∞[ → R and h : [0,+∞[ → R by (∀ρ ∈ [0,+∞[) g(ρ) = inf ϕ(S(0; ρ)) and
h(ρ) = supϕ(S(0; ρ)). To establish that ϕ is radial we must show that g(ρ) = h(ρ) for every
ρ ∈ [0,+∞[. This is obvious for ρ = 0 since g(0) = h(0) = ϕ(0). Suppose now that ρ > 0. If ϕ
is lower semicontinuous, we derive from Theorem 2.1(i) that

(∀x ∈ S(0; ρ)) ϕ(x) ≤ lim
n→+∞

ϕ((1 − 1/n)x) ≤ lim
n→+∞

h((1 − 1/n)ρ) ≤ g(ρ). (2.4)

Therefore, taking the supremum for x ∈ S(0; ρ) we get h(ρ) ≤ g(ρ), hence h(ρ) = g(ρ). Similarly,
if ϕ is upper semicontinuous, we have

(∀x ∈ S(0; ρ)) ϕ(x) ≥ lim
n→+∞

ϕ((1 + 1/n)x) ≥ lim
n→+∞

g((1 + 1/n)ρ) ≥ h(ρ), (2.5)

and taking the infimum for x ∈ S(0; ρ) gives g(ρ) ≥ h(ρ), hence h(ρ) = g(ρ). Altogether, using
Theorem 2.1(i), we conclude that ϕ = θ ◦ ‖ · ‖ for some increasing function θ : [0,+∞[ → R.
The case of strict monotonicity of θ follows from Theorem 2.1(ii).

Using Theorem 2.1 we can provide the following answer to Question 1.2.

Theorem 2.3 Suppose that dimH ≥ 2 and let m be an integer at least equal to 3. There exists
no function Φ: Hm → R such that, for every ordered family of nonempty closed convex subsets
(C1, . . . , Cm) of H, cyc(C1, . . . , Cm) is the set of solutions to the variational problem

minimize
y1∈C1,..., ym∈Cm

Φ(y1, . . . , ym). (2.6)

Proof. Suppose that Φ exists and set (∀i ∈ {1, . . . ,m− 2}) Ci = {0}. Moreover, take z ∈ H and
set Cm−1 = {z}. Then, for every nonempty closed convex set Cm ⊂ H we have

Argmin
y1∈C1,...,ym∈Cm

Φ(y1, . . . , ym) = cyc(C1, . . . , Cm) = {(0, . . . , 0, z, PCm0)}. (2.7)

Hence, Theorem 2.1 implies that, except for at most countably many values of ρ ∈ [0,+∞[, the
function Φ(0, . . . , 0, z, ·) is constant on S(0; ρ).
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Now suppose that z ∈ S(0; 1) and take ρ ∈ ]1,+∞[ so that Φ(0, . . . , 0, z, ·) and
Φ(0, . . . , 0,−z, ·) are constant on S(0; ρ). Clearly,

cyc
(

{0}, . . . , {0}, [−z, z], {ρz}
)

= {(0, . . . , 0, z, ρz)} (2.8)

and
cyc

(

{0}, . . . , {0}, [−z, z], {−ρz}
)

= {(0, . . . , 0,−z,−ρz)}, (2.9)

so that

Φ(0, . . . , 0, z, ρz) < Φ(0, . . . , 0,−z, ρz)

= Φ(0, . . . , 0,−z,−ρz)

< Φ(0, . . . , 0, z,−ρz)

= Φ(0, . . . , 0, z, ρz), (2.10)

where the inequalities come from the fact that the minima of Φ characterize the cycles, while the
equalities follow from the constancy of the functions on S(0; ρ). Since these strict inequalities
are impossible it follows that Φ cannot exist.

3 Related projection algorithms

We have shown that the cycles produced by the method of cyclic projections (1.4) are not
characterized as the solutions to a problem of the type (1.7), irrespective of the choice of the
function Φ: Hm → R. Nonetheless, alternative projection methods can be devised to solve
variational problems over a product of closed convex sets. Here is an example.

Theorem 3.1 For every i ∈ I = {1, . . . ,m}, let Hi be a real Hilbert space and let Ci be a
nonempty closed convex subset of Hi with projection operator Pi. Let H be the Hilbert direct
sum of the spaces (Hi)1≤i≤m, and let Φ: H → R be a differentiable convex function such that
∇Φ: H → H : y 7→ (Giy)i∈I is 1/β-lipschitzian for some β ∈ ]0,+∞[ and such that the problem

minimize
y1∈C1,..., ym∈Cm

Φ(y1, . . . , ym) (3.1)

admits at least one solution. Let γ ∈ ]0, 2β[, set δ = min{1, β/γ}+1/2, let (λn)n∈N be a sequence
in [0, δ] such that

∑

n∈N λn(δ − λn) = +∞, and let x0 = (xi,0)i∈I ∈ H. Set

(∀n ∈ N)(∀i ∈ I) xi,n+1 = xi,n + λn

(

Pi

(

xi,n − γGixn

)

− xi,n
)

. (3.2)

Then, for every i ∈ I, (xi,n)n∈N converges weakly to a point yi ∈ Ci, and (yi)i∈I is a solution to
(3.1).

Proof. Set C = ×i∈ICi. Then C is a nonempty closed convex subset of H with projection
operator PC : x 7→ (Pixi)i∈I [7, Proposition 28.3]. Accordingly, we can rewrite (3.2) as

(∀n ∈ N) xn+1 = xn + λn

(

PC

(

xn − γ∇Φ(xn)
)

− xn

)

. (3.3)
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It follows from [7, Corollary 27.10] that (xn)n∈N converges weakly to a minimizer y of Φ over
C, which concludes the proof.

The projection algorithm described in the next result solves an extension of (1.3) to m ≥ 3
sets.

Corollary 3.2 Let m be an integer at least equal to 3. For every i ∈ I = {1, . . . ,m}, let Ci be
a nonempty closed convex subset of H with projection operator Pi, and let xi,0 ∈ H. Suppose
that one of the sets in (Ci)i∈I is bounded and set

(∀n ∈ N)(∀i ∈ I) xi,n+1 = Pi





1

m− 1

∑

j∈Ir{i}

xj,n



 . (3.4)

Then for every i ∈ I, (xi,n)n∈N converges weakly to a point yi ∈ Ci, and (yi)i∈I is a solution to
the variational problem

minimize
y1∈C1,..., ym∈Cm

∑

(i,j)∈I2

i<j

‖yi − yj‖
2. (3.5)

Moreover, y = (1/m)
∑

i∈I yi is a minimizer of the function ϕ : H → R : y 7→
∑

i∈I ‖y − Piy‖
2.

Proof. We use the notation of Theorem 3.1, with (∀i ∈ I) Hi = H. Set β = 1− 1/m, γ = 1,

Φ: H → R : (yi)i∈I 7→
1

2(m− 1)

∑

(i,j)∈I2

i<j

‖yi − yj‖
2, (3.6)

C =×i∈ICi, and D =
{

(y, . . . , y) ∈ H
∣

∣ y ∈ H
}

. Then [4, 11]

FixPCPD = ArgminΦ and FixPDPC =
{

(y, . . . , y)
∣

∣ y ∈ Argminϕ
}

. (3.7)

Since one of the sets in (Ci)i∈I is bounded, Argminϕ 6= ∅ [11, Proposition 7]. Now let y ∈
Argminϕ, and set y = (y, . . . , y) and x = PCy. Then (3.7) yields y = PDPCy and therefore
x = PC(PDPCy) = PCPDx. Hence x ∈ ArgminΦ and thus ArgminΦ 6= ∅. On the other
hand, (3.5) is a special case of (3.1) and the gradient of Φ is the continuous linear operator

∇Φ: y 7→



yi −
1

m− 1

∑

j∈Ir{i}

yj





i∈I

(3.8)

with norm m/(m−1) = 1/β. Note that, since m > 2, 2β > 1 = γ. Moreover, δ = min{1, β/γ}+
1/2 > 1. Thus, upon setting, for every n ∈ N, λn = 1 ∈ ]0, δ[ in (3.2), we obtain (3.4) and observe
that

∑

n∈N λn(δ − λn) = +∞. Altogether, the convergence result follows from Theorem 3.1.
Finally, set y = (y1, . . . , ym) and z = PDy. Then (3.7) yields

(y, . . . , y) = z = PDy = PD(PCPDy) = PDPCz (3.9)

and hence y ∈ Argminϕ.
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Remark 3.3 Alternative projection schemes can be derived from Theorem 3.1. For instance,
Corollary 3.2 remains valid if (3.4) is replaced by

(∀n ∈ N)(∀i ∈ I) xi,n+1 = Pi





1

m

∑

j∈I

xj,n



 , (3.10)

which amounts to taking γ = β instead of γ = 1 in the above proof. We then recover a process
investigated in [5, 11].
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