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The method of periodic projections consists in iterating projections onto m closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of m ≥ 3 sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers of a certain functional. In this paper we answer this question in the negative. Projection algorithms that minimize smooth convex functions over a product of convex sets are also discussed.

Introduction

Throughout this paper (H, • ) is a real Hilbert space. Let C 1 and C 2 be closed vector subspaces of H, and let P 1 and P 2 be their respective projection operators. The method of alternating projections for finding the projection of a point x 0 ∈ H onto C 1 ∩C 2 is governed by the iterations (∀n ∈ N)

x 2n+1 = P 2 x 2n x 2n+2 = P 1 x 2n+1 .

(1.1)

This basic process, which can be traced back to Schwarz' alternating method in partial differential equations [START_REF] Schwarz | Ueber einen Grenzübergang durch alternirendes Verfahren[END_REF], has found many applications in mathematics and in the applied sciences; see [START_REF] Deutsch | The method of alternating orthogonal projections[END_REF][START_REF] Dye | Random products of nonexpansive mappings[END_REF] and the references therein. The strong convergence of the sequence (x n ) n∈N produced by (1.1) to the projection of x 0 onto C 1 ∩ C 2 was established by von Neumann in 1935 [24, Lemma 22] (see also [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Kopecká | A note on the von Neumann alternating projections algorithm[END_REF] for alternative proofs). The extension of (1.1) to the case when C 1 and C 2 are general nonempty closed convex sets was considered in [START_REF] Cheney | Proximity maps for convex sets[END_REF][START_REF] Levitin | Constrained minimization methods[END_REF]. Thus, it was shown in [START_REF] Cheney | Proximity maps for convex sets[END_REF] that, if C 1 is compact, the sequences (x 2n ) n∈N and (x 2n+1 ) n∈N produced by (1.1) converge strongly to points y 1 and y 2 , respectively, that constitute a cycle, i.e., y 1 = P 1 y 2 and y 2 = P 2 y 1 ,

or, equivalently, that solve the variational problem (see Figure 1) minimize

y 1 ∈C 1 , y 2 ∈C 2 y 1 -y 2 . (1.3) 
Furthermore, it was shown in [START_REF] Levitin | Constrained minimization methods[END_REF] that, if C 1 is merely bounded, the same conclusion holds provided strong convergence is replaced by weak convergence. As was proved only recently [START_REF] Hundal | An alternating projection that does not converge in norm[END_REF], strong convergence can fail (see also [START_REF] Matoušková | The Hundal example revisited[END_REF]).

Extending the above results to m ≥ 3 nonempty closed convex subsets (C i ) 1≤i≤m of H poses interesting challenges. For instance, there are many strategies for scheduling the order in which the sets are projected onto. The simplest one corresponds to a periodic activation of the sets, say

(∀n ∈ N)        x mn+1 = P m x mn x mn+2 = P m-1 x mn+1
. . .

x mn+m = P 1 x mn+m-1 , (1.4) 
where (P i ) 1≤i≤m denote the respective projection operators onto the sets (C i ) 1≤i≤m . In the case of closed vector subspaces, it was shown in 1962 that the sequence (x n ) n∈N thus generated converges strongly to the projection of x 0 onto m i=1 C i [START_REF] Halperin | The product of projection operators[END_REF]. This provides a precise extension of the von Neumann result, which corresponds to m = 2. Interestingly, however, for nonperiodic sweeping strategies with closed vector subspaces, only weak convergence has been established in general [START_REF] Amemiya | Convergence of random products of contractions in Hilbert space[END_REF] and, since 1965, it has remained an open problem whether strong convergence holds (see [START_REF] Baillon | On the random product of orthogonal projections in Hilbert space[END_REF][START_REF] Bruck | On the random product of orthogonal projections in Hilbert space II[END_REF][START_REF] Bauschke | A norm convergence result on random products of relaxed projections in Hilbert space[END_REF] for special cases). Another long-standing open problem is the one that we address in this paper and which concerns the asymptotic behavior of the periodic projection algorithm (1.4) for general closed convex sets. It was shown in 1967 [START_REF] Gubin | The method of projections for finding the common point of convex sets[END_REF] (see also [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]Section 7] and [START_REF] Eremin | Closed Fejer cycles for inconsistent systems of convex inequalities[END_REF])

C 1 C 2 x 0 x 2 x 1 x 3 x 5 x 4 x 6 y 1 y 2 Figure 1:
In the case of m = 2 sets, the method of alternating projections produces a cycle (y 1 , y 2 ) that achieves the minimal distance between the two sets.

that, if one of the sets is bounded, the sequences (x mn ) n∈N , (x mn+1 ) n∈N , . . . , (x mn+m-1 ) n∈N converge weakly to points y 1 , y m , . . . , y 2 , respectively, that constitute a cycle, i.e. (see Figure 2), y 1 = P 1 y 2 , . . . , y m-1 = P m-1 y m , y m = P m y 1 .

(1.5)

However, it remains an open question whether, as in the case of m = 2 sets, the cycles can be characterized as the solutions to a variational problem. We formally formulate this problem as follows.

Definition 1.1 Let m be an integer at least equal to 2 and let (C 1 , . . . , C m ) be an ordered family of nonempty closed convex subsets of H with associated projection operators (P 1 , . . . , P m ). The set of cycles associated with (C 1 , . . . , C m ) is Let us note that the motivations behind Question 1.2 are not purely theoretical but also quite practical. Indeed, the variational properties of the cycles when m = 2 have led to fruitful applications in applied physics and signal processing; see [START_REF] Bauschke | Finding best approximation pairs relative to two closed convex sets in Hilbert spaces[END_REF] and the references therein. Since the method of periodic projections (1.4) is used in scenarios involving m ≥ 3 possibly nonintersecting

cyc(C 1 , . . . , C m ) = (y 1 , . . . , y m ) ∈ H m y 1 = P 1 y 2 , . . . , y m-1 = P m-1 y m , y m = P m y 1 . (1.6) Question 
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Example with m = 3 sets: the method of periodic projections initialized at x 0 produces the cycle (y 1 , y 2 , y 3 ). sets [START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF], it is therefore important to understand the properties of its limit cycles and, in particular, whether they are optimal in some sense. Since the seminal work [START_REF] Gubin | The method of projections for finding the common point of convex sets[END_REF] in 1967 that first established the existence of cycles, little progress has been made towards this goal beyond the observation that simple candidates such as Φ : (y 1 , . . . , y m ) → y 1 -y 2 +• • •+ y m-1 -y m + y m -y 1 fail [START_REF] Bauschke | Dykstra's alternating projection algorithm for two sets[END_REF][START_REF] Bauschke | The method of cyclic projections for closed convex sets in Hilbert space[END_REF][START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF][START_REF] Kosmol | Über die sukzessive Wahl des kürzesten Weges[END_REF]. The main result of this paper is that the answer to Question 1.2 is actually negative. This result will be established in Section 2. Finally, in Section 3, projection algorithms that are pertinent to extensions of (1.3) to m ≥ 3 sets will be discussed.

2 A negative answer to Question 1.2

We denote by S(x; ρ) the sphere of center x ∈ H and radius ρ ∈ [0, +∞[, and by P C the projection operator onto a nonempty closed convex set C ⊂ H; in particular, P C 0 is the element of minimal norm in C.

Our main result hinges on the following variational property, which is of interest in its own right.

Theorem 2.1 Suppose that dim H ≥ 2 and let ϕ : H → R be such that its infimum on every nonempty closed convex set C ⊂ H is attained at P C 0. Then the following assertions hold.

(i) ϕ is radially increasing, i.e.,

(∀x ∈ H)(∀y ∈ H)

x < y ⇒ ϕ(x) ≤ ϕ(y).

(2.1)

y = x n,0 x x n,n x n,k x n,k-1 α/n V Figure 3: A polygonal spiral from y = x n,0 to x n,n in V .
(ii) Suppose that, for every nonempty closed convex set C ⊂ H, P C 0 is the unique minimizer of ϕ on C. Then ϕ is strictly radially increasing, i.e.,

(∀x ∈ H)(∀y ∈ H) x < y ⇒ ϕ(x) < ϕ(y). (2.2) 
(iii) Except for at most countably many values of ρ ∈ [0, +∞[, ϕ is constant on S(0; ρ).

Proof. (i): Let us fix x and y in H such that x < y . If x = 0, property (2.1) amounts to the fact that 0 is a global minimizer of ϕ, which follows from the assumption with C = H. We now suppose that x = 0. Let V be a 2-dimensional vector subspace of H containing x and y, and let α ∈ [0, π] be the angle between x and y. For every integer n ≥ 3, consider a polygonal spiral built as follows: set x n,0 = y and for k = 1, . . . , n define x n,k = P R n,k x n,k-1 , where (R n,k ) 1≤k≤n are n angularly equispaced rays in V between the rays [0, +∞[ y and [0, +∞[ x = R n,n (see Figure 3). Clearly, for the segment C = [x n,k-1 , x n,k ], we have P C 0 = x n,k , so that the assumption on ϕ gives ϕ(x n,k ) ≤ ϕ(x n,k-1 ), and therefore ϕ(x n,n ) ≤ ϕ(x n,0 ) = ϕ(y). On the other hand, x n,n and x are collinear with x n,n = y (cos(α/n)) n so that for n large enough we have x n,n > x and, therefore, the segment C = [x, x n,n ] satisfies P C 0 = x, from which we get ϕ(x) ≤ ϕ(x n,n ) ≤ ϕ(y).

(ii): If the minimizer of ϕ on every nonempty closed convex set C ⊂ H is unique, then all the inequalities above are strict. 

(∀ρ ∈ [0, +∞[)(∀ρ ′ ∈ [0, +∞[) ρ < ρ ′ ⇒ g(ρ) ≤ h(ρ) ≤ g(ρ ′ ) ≤ h(ρ ′ ).
(2.3) Hence, g and h are increasing and therefore, by Froda's theorem [START_REF] Froda | Sur la Distribution des Propriétés de Voisinage des Fonctions de Variables Réelles[END_REF], [START_REF] Rudin | Principles of Mathematical Analysis[END_REF]Theorem 4.30], the set of points at which they are discontinuous is at most countable. Furthermore, it follows from (2.3) that g and h have the same right and left limits at every point. Therefore, they have the same points of continuity and their values coincide at these points. We conclude that, except for at most countably many ρ ∈ [0, +∞[, we have g(ρ) = h(ρ) so that ϕ is constant on S(0; ρ).

As a consequence, we get the following result.

Corollary = inf ϕ(S(0; ρ)) and h(ρ) = sup ϕ(S(0; ρ)). To establish that ϕ is radial we must show that g(ρ) = h(ρ) for every ρ ∈ [0, +∞[. This is obvious for ρ = 0 since g(0) = h(0) = ϕ(0). Suppose now that ρ > 0. If ϕ is lower semicontinuous, we derive from Theorem 2.1(i) that

(∀x ∈ S(0; ρ)) ϕ(x) ≤ lim n→+∞ ϕ((1 -1/n)x) ≤ lim n→+∞ h((1 -1/n)ρ) ≤ g(ρ). (2.4) 
Therefore, taking the supremum for x ∈ S(0; ρ) we get h(ρ) ≤ g(ρ), hence h(ρ) = g(ρ). Similarly, if ϕ is upper semicontinuous, we have

(∀x ∈ S(0; ρ)) ϕ(x) ≥ lim n→+∞ ϕ((1 + 1/n)x) ≥ lim n→+∞ g((1 + 1/n)ρ) ≥ h(ρ), (2.5) 
and taking the infimum for x ∈ S(0; ρ) gives g(ρ) ≥ h(ρ), hence h(ρ) = g(ρ). Altogether, using Theorem 2.1(i), we conclude that ϕ = θ • • for some increasing function θ : [0, +∞[ → R.

The case of strict monotonicity of θ follows from Theorem 2.1(ii).

Using Theorem 2.1 we can provide the following answer to Question 1.2. 

Hence, Theorem 2.1 implies that, except for at most countably many values of ρ ∈ [0, +∞[, the function Φ(0, . . . , 0, z, •) is constant on S(0; ρ). Now suppose that z ∈ S(0; 1) and take ρ ∈ ]1, +∞[ so that Φ(0, . . . , 0, z, •) and Φ(0, . . . , 0, -z, •) are constant on S(0; ρ). Clearly, cyc {0}, . . . , {0}, [-z, z], {ρz} = {(0, . . . , 0, z, ρz)}

(2.8) and cyc {0}, . . . , {0}, [-z, z], {-ρz} = {(0, . . . , 0, -z, -ρz)}, (2.9) so that Φ(0, . . . , 0, z, ρz) < Φ(0, . . . , 0, -z, ρz)

= Φ(0, . . . , 0, -z, -ρz)

< Φ(0, . . . , 0, z, -ρz) = Φ(0, . . . , 0, z, ρz), (2.10) 
where the inequalities come from the fact that the minima of Φ characterize the cycles, while the equalities follow from the constancy of the functions on S(0; ρ). Since these strict inequalities are impossible it follows that Φ cannot exist.

Related projection algorithms

We have shown that the cycles produced by the method of cyclic projections (1.4) are not characterized as the solutions to a problem of the type (1.7), irrespective of the choice of the function Φ : H m → R. Nonetheless, alternative projection methods can be devised to solve variational problems over a product of closed convex sets. Here is an example. 

= (x i,0 ) i∈I ∈ H. Set (∀n ∈ N)(∀i ∈ I) x i,n+1 = x i,n + λ n P i x i,n -γG i x n -x i,n . (3.2) 
Then, for every i ∈ I, (x i,n ) n∈N converges weakly to a point y i ∈ C i , and (y i ) i∈I is a solution to (3.1).

Proof. Set C = × i∈I C i . Then C is a nonempty closed convex subset of H with projection operator P C : x → (P i x i ) i∈I [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Proposition 28.3]. Accordingly, we can rewrite (3.2) as

(∀n ∈ N) x n+1 = x n + λ n P C x n -γ∇Φ(x n ) -x n . (3.3) 
It follows from [7, Corollary 27.10] that (x n ) n∈N converges weakly to a minimizer y of Φ over C, which concludes the proof.

The projection algorithm described in the next result solves an extension of (1.3) to m ≥ 3 sets.

Corollary 3.2 Let m be an integer at least equal to 3. For every i ∈ I = {1, . . . , m}, let C i be a nonempty closed convex subset of H with projection operator P i , and let x i,0 ∈ H. Suppose that one of the sets in (C i ) i∈I is bounded and set

(∀n ∈ N)(∀i ∈ I) x i,n+1 = P i   1 m -1 j∈I {i} x j,n   . (3.4) 
Then for every i ∈ I, (x i,n ) n∈N converges weakly to a point y i ∈ C i , and (y i ) i∈I is a solution to the variational problem minimize

y 1 ∈C 1 ,..., ym∈Cm (i,j)∈I 2 i<j y i -y j 2 . (3.5) Moreover, y = (1/m) i∈I y i is a minimizer of the function ϕ : H → R : y → i∈I y -P i y 2 .
Proof. We use the notation of Theorem 3.1, with (∀i ∈ I)

H i = H. Set β = 1 -1/m, γ = 1, Φ : H → R : (y i ) i∈I → 1 2(m -1) (i,j)∈I 2 i<j y i -y j 2 , (3.6) 
C = × i∈I C i , and D = (y, . . . , y) ∈ H y ∈ H . Then [4, 11] Fix P C P D = Argmin Φ and Fix P D P C = (y, . . . , y) y ∈ Argmin ϕ . which amounts to taking γ = β instead of γ = 1 in the above proof. We then recover a process investigated in [START_REF] Bauschke | Dykstra's alternating projection algorithm for two sets[END_REF][START_REF] Combettes | Inconsistent signal feasibility problems: Least-squares solutions in a product space[END_REF].
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 12 Let m be an integer at least equal to 3. Does there exist a function Φ : H m → R such that, for every ordered family of nonempty closed convex subsets (C 1 , . . . , C m ) of H, cyc(C 1 , . . . , C m ) is the set of solutions to the variational problem minimize y 1 ∈C 1 ,..., ym∈Cm Φ(y 1 , . . . , y m ) ?(1.7)

(

  iii): Define g : [0, +∞[ → R and h : [0, +∞[ → R by (∀ρ ∈ [0, +∞[) g(ρ) = inf ϕ(S(0; ρ)) and h(ρ) = sup ϕ(S(0; ρ)). It follows from (2.1) that

Theorem 2 . 3

 23 Suppose that dim H ≥ 2 and let m be an integer at least equal to 3. There exists no function Φ : H m → R such that, for every ordered family of nonempty closed convex subsets(C 1 , . . . , C m ) of H, cyc(C 1 , . . . , C m )is the set of solutions to the variational problem minimize y 1 ∈C 1 ,..., ym∈Cm Φ(y 1 , . . . , y m ). (2.6) Proof. Suppose that Φ exists and set (∀i ∈ {1, . . . , m -2}) C i = {0}. Moreover, take z ∈ H and set C m-1 = {z}. Then, for every nonempty closed convex set C m ⊂ H we have Argmin y 1 ∈C 1 ,...,ym∈Cm Φ(y 1 , . . . , y m ) = cyc(C 1 , . . . , C m ) = {(0, . . . , 0, z, P Cm 0)}.

(3. 7 )Remark 3 . 3

 733 Since one of the sets in (C i ) i∈I is bounded, Argmin ϕ = ∅ [11,Proposition 7]. Now let y ∈ Argmin ϕ, and set y = (y, . . . , y) and x = P C y. Then (3.7) yields y = P D P C y and therefore x = P C (P D P C y) = P C P D x. Hence x ∈ Argmin Φ and thus Argmin Φ = ∅. On the other hand, (3.5) is a special case of (3.1) and the gradient of Φ is the continuous linear operator∇Φ : norm m/(m -1) = 1/β. Note that, since m > 2, 2β > 1 = γ. Moreover, δ = min{1, β/γ} + 1/2 > 1. Thus, upon setting, for every n ∈ N, λ n = 1 ∈ ]0, δ[ in (3.2), we obtain (3.4) and observe that n∈N λ n (δ -λ n ) = +∞. Altogether, the convergence result follows from Theorem 3.1. Finally, set y = (y 1 , . . . , y m ) and z = P D y. Then (3.7) yields (y, . . . , y) = z = P D y = P D (P C P D y) = P D P C z (3.9) and hence y ∈ Argmin ϕ. Alternative projection schemes can be derived from Theorem 3.1. For instance, Corollary 3.2 remains valid if (3.4) is replaced by (∀n ∈ N)(∀i ∈ I) x i,n+1 = P i

  2.2 Suppose that dim H ≥ 2 and let ϕ : H → R be such that its infimum on every nonempty closed convex set C ⊂ H is attained at P C 0. If ϕ is lower or upper semicontinuous, then it is a radial function, namely ϕ = θ• • , where θ : [0, +∞[ → R is increasing. Furthermore, if P C 0 is the unique minimizer of ϕ on every nonempty closed convex set C ⊂ H, then θ is strictly increasing.

Proof. Define g : [0, +∞[ → R and h : [0, +∞[ → R by (∀ρ ∈ [0, +∞[) g(ρ)

  Theorem 3.1 For every i ∈ I = {1, . . . , m}, let H i be a real Hilbert space and let C i be a nonempty closed convex subset of H i with projection operator P i . Let H be the Hilbert direct sum of the spaces (H i ) 1≤i≤m , and let Φ : H → R be a differentiable convex function such that ∇Φ : H → H : y → (G i y) i∈I is 1/β-lipschitzian for some β ∈ ]0, +∞[ and such that the problem admits at least one solution. Let γ ∈ ]0, 2β[, set δ = min{1, β/γ}+1/2, let (λ n ) n∈N be a sequence in [0, δ] such that n∈N λ n (δ -λ n ) = +∞, and let x 0

	minimize y 1 ∈C 1 ,..., ym∈Cm	Φ(y 1 , . . . , y m )	(3.1)
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