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Kamal Boudjelaba

Introduction

In recent years, with the rapid improvement in computer technology, two dimensional (2-D) digital signal processing has become more important. Therefore, the design problem of 2-D digital filters has been receiving a great deal of attention. Digital filters can be classified into two groups, i.e. finite impulse response (FIR) filters and infinite impulse response (IIR) filters. Since FIR digital filters are inherently stable and can have a linear phase, they are often preferred over IIR filters. These 2-D FIR filters have many important applications, e.g. in radar and sonar signal processing and in image processing. In this area, they can be used to remove the effects of certain degradation mechanisms or to enhance the image in order to facilitate identification. The linear-phase filter is important in Digital Signal Processing (DSP) applications such as image processing, where phase information must not be altered. The problem of filter design is to find a realization of the filter which meets each of the requirements to a sufficient degree to make it useful. The techniques for designing 2-D FIR digital filters have been developed extensively for several years [1]. The results of most of these techniques are given in the form of the impulse response of a 2-D filter, so the designed filter is suitable for a direct convolution realization. The classic methods are based on approximating some specified frequency response, the least-square (LS) or the minimax error criteria are usually used. By using the LS error criterion, one gets an overshoot of the frequency response at the pass band and the stop band edges caused by the Gibbs phenomenon [START_REF] Bhattacharya | Design of 2-D FIR filters by a feedback neural network[END_REF].

There are different methods [1,[START_REF] Oppenheim | Discrete-time Signal Processing[END_REF] to find the coefficients from frequency specifications: Window design method, frequency transformation method, frequency sampling method, weighting least squares design, equiripple design, etc. Filters generated using these approaches often contain many small ripples in the pass band, since such a filter minimizes the peak error. In the window and frequency sampling methods, it remains difficult to control cutoff frequencies of the pass band and stop with accuracy. With the windowing method, truncating the Fourier series causes a phenomenon called the "Gibbs effect": a spike occurs wherever there is a discontinuity in the desired magnitude of the filter. The frequency transformation method preserves most of the characteristics of the one-dimensional filter, particularly the transition bandwidth and ripple characteristics [START_REF] Lim | Two-Dimensional Signal and Image Processing[END_REF]. These approaches are considered as not efficient enough for practical implementations. Several design approaches [START_REF] Bhattacharya | Design of 2-D FIR filters by a feedback neural network[END_REF]5] have been investigated, and more interesting results have been obtained without being completely satisfactory ; the authors deal only with very specific cases and do not claim that these methods give good results for all cases.

Recently, algorithms that use artificial intelligence techniques, i.e. evolutionary algorithm (EA), genetic algorithm (GA) [START_REF] Holland | Genetic algorithms and the optimal allocation of trials[END_REF], simulated annealing (SA), Hill Climbing (HC) [START_REF] Akramifar | Fast forward planning by guided enforced hill climbing[END_REF] and tabu search (TS), have received increasing attention in the field of global numerical optimization. In recent decades, these algorithms have been successfully applied in a wide variety of areas. However, they cannot be effective for all types of optimization problems. To solve a complex optimization problem, the most effective way is to design a tailor-made algorithm that suits its needs. Alternative approaches, such as neural networks, genetic algorithms, and other tools related to computational intelligence [START_REF] Bhattacharya | Design of 2-D FIR filters by a feedback neural network[END_REF][START_REF] Tzeng | Design of 2-D FIR digital filters with specified magnitude and group delay responses by GA approach[END_REF], have been devoted to the synthesis of design methods capable of satisfying constraints which would be unattainable, if treated with the aforementioned conventional techniques. In some cases, such initiatives were successful and showed better performance indices than the conventional approaches. However, there are a few weak points associated to these new methods, such as increased computational cost and the nonexistence of theoretical proof of convergence to a global optimum in sufficiently general conditions. Consequently, there is a need to search for more pervasive methods, capable of overcoming such weaknesses.

The paper is divided into five sections. In section 1, 2-D FIR filters design procedure is presented. Section 2 is devoted to the presentation of a dedicated GA for the design of 2-D FIR filters. Design examples are included in Section 3. Lastly, conclusions are given in Section 4.

Design procedure of 2-D FIR filters

The frequency response of a 2-D FIR digital filter with its impulse response is given by: ∑ ∑ the magnitude response of , is real-valued function. For a symmetrical impulse response, the frequency response is given by:

[ ] ∑ ∑
and The objective is then the minimization of the sum-squared error over frequency points (m 1 xm 2 ):

∑ ∑[ ( ) ]
Where is the desired magnitude response and the actual magnitude response.

Our proposed GA approach for filter design

The main features of a standard GA have been modified and integrated to yield an efficient scheme (Fig. 1). The use of non-uniform mutation and an adaptive mutation rate is to help GA escape from local optima and prevent premature convergence. A dynamic mutation rate is used to provide diversity to the population. The generation of the initial population in a pseudo-random concept is introduced to increase convergence speed by reducing search space according to the properties of filter coefficients. This algorithm performs the direction-based crossover operator; in this case problem-specific knowledge is introduced into genetic operation in order to produce improved offspring. Another important factor in our GA is the selection on an enlarged sampling space. 

Breaking processes to prevent premature convergence

There exists no manageable model for controllable selection pressure. Premature convergence is then naturally possible. It has to be detected and corrected. The correction is done via a breaking mechanism capable of refreshing the active population without losing its current advance. The detection consists in identifying an evolution process that has stalled materialized by the presence of a lot of similar chromosomes within the population.

According to a given metric, one way aims at calculating or estimating the percentage of similar chromosomes within the population and reseeding the population accordingly. There is the possibility to work directly on the fitness space by comparing the best chromosome and the average fitness function. In both cases, the reseeding is submitted to the level of the genetic advance.

{

Where and are the different thresholds and the fitness of chromosome .

Results

A chromosome solution is then directly represented by a matrix of coefficients representing the filter itself. The GAs have been applied to various classical filters including high-pass, low-pass, band-pass and band-cut filters of different orders with the same parameter set. The number of frequency points (m 1 xm 2 ) was set at 20x20. Numerical results (See Table 1) are detailed only for the 7x7 low-pass filter and Fig. 2 illustrates the results of other filters. The population size was fixed at 100, a maximum number of genetic generations at 1500 and an implicit probability of crossover at 100%. The initial chromosomes were generated by considering solutions obtained by more conventional approaches mutated via elementary statistics. The parameters and were respectively fixed at 0.008 and , being the fitness average of the whole population.

The following examples show the results of the application of classical and evolutionary approaches for the design of a 2-D Filter. The results of the proposed design, in terms of CPU design time, width of transition band, average deviation and maximum deviation in frequency response from the desired response, are depicted in the Table 1. Fig. 2 shows the frequency response obtained for a low-pass filter of 7*7 dimensions. Concerning the error attribute, the proposed GA 1 is significantly lower than that obtained when other techniques are used. We can even note an improvement by a factor of 10 compared to the standard approaches. The peak errors of our GA 1 approach and standard GA 2 and SA are respectively 0.0803 and 0.1086 and 0.1320. They can be considered similar to each other for this attribute and significantly better than that of the HC method, TS, frequency sampling and windowing. The filters constructed using our GA 1 and the HC and frequency sampling method have sharper transition band responses than those produced by the GA 2 and TS and windowing method. For the stop band region, our GA 1 produces a better response. Our GA 1 and standard GA 2 have similar magnitude responses (fig. 2.1 and 2.2) for the pass band and stop band regions. They have however sharper transition band responses as compared to the filter designed by the SA and windowing methods. For the stop band region, the HC algorithm and frequency sampling method produce a filter whose response is a little worse than the others. The evolutionary approaches, except for SA, are more time consuming than the classical ones. We clearly see that GA 1 produces better results than the classic methods and the other versions for almost all attributes. We should point out the particular role of the couple "Adaptive mutation rate" and "Breaking process". For GA 1 , we can observe that both the performance and CPU time are improved. Only a small number of genetic iterations (298) is needed to reach the smallest errors (0.0092 for the average error and 0.0803 for the peak error). We can observe a "sort of landing process". Each time a sign of premature convergence is detected, the population is reseeded which affects the fitness average without losing the best chromosome. This speeds up the genetic advances and improves the final convergence. The contribution of the adaptive selection can be evaluated via the comparison between GA 1 and GA 2 . GA 1 is better in most of the attributes, highlighting its interesting role.

Conclusion

This paper has presented the optimal design methods for a 2-D FIR digital filter based on evolutionary approaches. By minimizing a quadratic measure of the error in the frequency band, real-valued solutions are evolved to obtain the filter coefficients with the evolutionary algorithm. Several examples have been satisfactorily designed to demonstrate the efficiency of the different approaches. Our GA can produce filters with good response characteristics while greatly reducing the error criteria. Future work will focus on the possibility of hybridizing the GA with other classic mathematical and genuinely heuristic techniques.
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 1 Results obtained for a low-pass filter

		Average Error	Peak Error	width of transition band	CPU time
	GA 1 (Adaptive GA)	0.0092	0.0803	0.113	49.74s
	GA 2 (Standard GA)	0.0212	0.1086	0.170	205.42s
	Simulated Annealing [9,10]	0.0255	0.1320	0.174	108s
	Tabu Search [9,10]	0.0570	0.2190	0.139	660s
	Hill Climbing [9,10]	0.0810	0.3850	0.121	Random
	Frequency Transformation	0.0566	0.1668	0.163	< 2s
	Frequency Sampling	0.0551	0.2203	0.115	< 2s
	Windowing method	0.0400	0.4920	0.322	< 2s