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SYSTEMS OF STRUCTURED MONOTONE INCLUSIONS:
DUALITY, ALGORITHMS, AND APPLICATIONS*

PATRICK L. COMBETTES

Abstract. A general primal-dual splitting algorithm for solving systems of structured coupled
monotone inclusions in Hilbert spaces is introduced and its asymptotic behavior is analyzed. Each
inclusion in the primal system features compositions with linear operators, parallel sums, and Lip-
schitzian operators. All the operators involved in this structured model are used separately in the
proposed algorithm, most steps of which can be executed in parallel. This provides a flexible solu-
tion method applicable to a variety of problems beyond the reach of the state-of-the-art. Several
applications are discussed to illustrate this point.

Key words. convex minimization, coupled system, infimal convolution, monotone inclusion,
monotone operator, operator splitting, parallel algorithm, structured minimization problem
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1. Introduction. Traditional monotone operator splitting techniques [8, 18, 24,
25, 29, 35, 37, 41, 43, 44] have their roots in matrix decomposition methods in numeri-
cal analysis [22, 45] and in nonlinear methods for solving optimization and variational
inequality problems [7, 12, 31, 34, 40]. These methods are designed to solve inclusions
of the type 0 € Bix + Bexz, where By and By are maximally monotone operators
acting on a Hilbert space H. Extensions to sums of the type 0 € Zszl Byx are
typically handled via reformulations in product spaces [8, 41]. In recent years, new
splitting algorithms have emerged for problems involving more complex models fea-
turing compositions with linear operators [14] and parallel sums [20, 46]; we recall
that the parallel sum of two set-valued operators B and D is

(1.1) BOD= (B '+D )"

These algorithms rely on reformulations of the inclusions as two-operator problems in
a primal-dual space, in which the splitting is performed via an existing method. This
construct makes it possible to activate separately each of the operators involved in
the model, and it leads to flexible algorithms implementable on parallel architectures.
In the present paper, we pursue this strategy towards more sophisticated models
featuring systems of structured coupled inclusions in duality. The primal-dual problem
under consideration is the following.

PrROBLEM 1.1. Let m and K be strictly positive integers, let (H;)i<i<m and
(Gr)1<k<k be real Hilbert spaces, let (ui)i<i<m € [0,+00[™, and let (vi)i<i<kx €
[0, +oo[K. Foreveryi € {1,...,m}and k € {1,..., K}, let C;: H; — H; be monotone
and p;-Lipschitzian, let A;: H; — 2% and By: G, — 29 be maximally monotone,
let Dy: G, — 29 be maximally monotone and such that D;l: G — Gi is -
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Lipschitzian, let z; € H;, let ri, € G, and let Ly; € B (H;, Gx). It is assumed that

(1.2) p= max{ max fi;, I<I?<XKV]€} +VA>0,

1<i<m 1<k
K m 2
where M\ € sup Z Lyix;|| ,+oo],
iy e llP<t 5 12

and that the system of coupled inclusions
(1.3) find =1 € Hi,...,Tm € Hm such that

K m

z € AT + Z L, <(Bk ODg) < Z Lii7; — Tk>) +C17T1
k=1 i=1

: K m
Zm EAWEE4E:Lﬁn<@%Eu%)<§:LmT{m))%chfﬁ
1=1

k=1

possesses at least one solution. Solve (1.3) together with the dual problem

(1.4) find 77 € Gy,...,Ux € Gk such that

s K
e L4+ 0 (Zi - LZ@) + By oy + Dy oy

i=1 P
: m .

—TK € — Z Li; (Ai + Ci)71 <zZ — Z LLW) + B}—(IW 4 D;_(lﬁ.
i=1 —

The primal system (1.3) captures a broad class of problems in nonlinear analysis
in which m variables 1, ..., z,, interact. The ith inclusion in (1.3) features two
operators A; and C; which model some abstract utility of the variable z;, while the

operator (Bk>1<k<K7 (Dk)lgkglﬁ and (Lki)lgigm model the interaction between x;
1<k<SK
and the remaining variables. One of the simplest realizations of (1.3) is the problem

considered in [10], namely

0€ AyT7 + 77— T2
(1.5) find 77 € H, Tz € H such that 1Lt I ]
0 € Ayzy — 1 + 72,
where (H, || -]|) is a real Hilbert space, and where A; and Ay are maximally monotone

operators acting on H. In particular, if A; = 0f; and Ay = Jf> are the subdifferentials
of proper lower semicontinuous convex functions f; and fo from H to |—oo, +0o0], (1.5)
becomes

1
1. inimi Sy — 2
(1.6) minimize fi(z1) + fa(z2) + G llor — 22|
This formulation arises in areas such as optimization [1], the cognitive sciences [5],
image recovery [21], signal synthesis [30], best approximation [9], and mechanics [38].
In [3], we considered the extension of (1.6) which amounts to setting in Problem 1.1,
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for every i € {1,...,m} and k € {1,...,K}, A; = 0f;, C; = 0, and By = Vg,
where f;: H — ]—o00,400] is a proper lower semicontinuous convex function and
gr: Gr — R is convex and differentiable with a Lipschitzian gradient. This leads to
the minimization problem

m K m
1.7 inimi (z; Liii
(1.7) ,, ninimize ;fz(wz)Jr;gk(; k$)

which has numerous applications in signal processing, machine learning, image re-
covery, partial differential equations, and game theory; see [2, 6, 13, 15, 26, 28, 42]
and the references therein. This minimization problem arose in [3] as an instance of
a multivariate inclusion problem which is a special case of (1.3) in which the opera-
tors (C;)1<igm and (D;l)lgkgK are zero, and the coupling operators (By)1<k<k are
restricted to be single-valued and to satisfy jointly a cocoercivity property.

The goals of the present paper is to develop a flexible algorithm to solve Prob-
lem 1.1 without the restrictions imposed by current methods, and to illustrate its
flexibility by applying it to a variety of problems for which no solution method ex-
ists currently. Our setting places no additional hypotheses on the coupling operators
(Br)1<k<k and (Dg)i<k<k, or on the number m of variables. In the proposed par-
allel splitting algorithm, the structure of the problem is fully exploited to the extent
that the operators are all used individually, either explicitly if they are single-valued,
or by means of their resolvent if they are set-valued. In the case when m = 1 in
Problem 1.1, we obtain the univariate primal-dual problem investigated in [20] (see
also [14, 46] for special cases), namely

K

(1.8) find T € M such that z € AT + Y _ L ((Bx OSk)(LiT — 11)) + CF
k=1

and

(1.9) find 77 € Gy, ..., Uk € Gk such that

K
(Vke{l,....,K}) —re€ Lk<(A+O)1<z ZL;‘%)) + BT + Sy 'k
=1

Conversely, formulating these inclusions in a suitable product space H formally leads
to (1.3)—(1.4). However, transcribing the algorithm of [20] and its convergence anal-
ysis in such a product setting would lead to much weaker results than those to be
presented in Section 2, which will employ a finer analysis and leverage the proper-
ties of each of the operators involved in the model. Our problem formulation and
its asymptotic analysis will enable us to extend existing results and solve much more
complex problems than those afforded by the state-of-the-art. These advances are
highlighted by the following applications of the results of Section 2.

e In Section 3, we revisit (1.8)—(1.9) and solve it without the restriction that the
operators (S, ')1<r<r be Lipschitzian, as is required in [20]. This is achieved
by showing that, through the introduction of auxiliary variables, the problem
is reducible to an instance of (1.3).

e In Section 4, we address the problem of approximating — by means of parallel
sums — inconsistent common zero problems. By reformulating this univariate
problem as an instance of Problem 1.1, we obtain a framework which allows
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for relaxations with operators possessing strictly monotone inverses, while
existing results [18] are limited to relaxations with multiples of identity.

e In Section 5, we apply the results of Section 2 to multivariate structured
convex minimization problems, thus obtaining notable improvements over
the results of [3, 13].

e In Section 6, we use the results of Section 3 to solve univariate minimization
problems featuring infimal convolutions with general lower semicontinuous
convex functions. In such models, the state-of-the-art is limited to strongly
convex functions [20].

e Another application of the results of Section 2 is that developed in [11] after
the submission of the present paper. In this work, inclusions of the form
(1.10)

find T € H such that z € AT+ Y _ ((Lj o Bio L) O(Mj 0 Dyo My))T+CT
k=1

together with their duals were considered for the first time. We reformulated

this problem as a special case of (1.3) and showed it captured variational

formulations in the area of signal recovery for which no solution method was

available until now.
Notation. We denote the scalar product of a Hilbert space by (- |-) and the as-
sociated norm by || - ||. The symbols — and — denote, respectively, weak and
strong convergence, and Id denotes the identity operator. Let H and G be real
Hilbert spaces and let 2 be the power set of H. The space of bounded linear
operators from H to G is denoted by B (H,G). Let A: H — 2%". We denote by
rand = {ueH ‘ (3z € H) u € Az} the range A, by domA = {z € H ’ Az + o}
the domain of A, by zer A = {:I: eEH ‘ 0e Am} the set of zeros of A, by grad =
{(m,u) EHXH | ue Am} the graph of A, and by A~! the inverse of A, i.e., the op-
erator with graph {(u,z) € H x H# | u € Az}. The resolvent of Ais J4 = (Id +A)~".
Moreover, A is declared monotone if

(1.11) (V(z,u) € grad)(V(y,v) € grad) (z—y|u—v) >0,

and maximally monotone if there exists no monotone operator B: H — 2" such
that graAd C graB # graA. In this case, J4 is a nonexpansive operator defined
everywhere on H. Furthermore, A is uniformly monotone at z € dom A if there exists
an increasing function ¢: [0, 400 — [0, +00] that vanishes only at 0 such that

(1.12) (Vu € Az)(Y(y,v) € grad) (z—y|u—0v)=o(lz—yl),

and A is couniformly monotone at u € ranA if A~! is uniformly monotone at u. The

parallel sum of A and B: H — 2" is ANB = (A~'+B~!)~!. The infimal convolution

of two functions g and ¢ from H to |—oo, +00] is

(1.13) gOl: H — [—00,+00] : x»—)ylgf{ (9(y) + t(z —y)).

We denote by T'o(H) the class of lower semicontinuous convex functions f: H —

]—00, +00] such that dom f = {z € H | f(z) < 400} # @. Let f € To(H). The

conjugate of f is T'o(H) 3 f*: uw sup,eqy ((x | w) — f(2)), and f is uniformly convex

at x € dom f if there exists an increasing function ¢: [0, 4o00[ — [0, +00] that vanishes

only at 0 such that

(1.14)

(Vy € dom f)(Var € ]0,1[)  f(ax+(1-a)y)+a(l-a)¢([z—yl)) < af (z)+(1—a)f(y)-
4



For every € H, f + ||x — +||?/2 possesses a unique minimizer, which is denoted by
proxgz. We have

(1.15) prox; = Joy, where
of i =2z {ueH | (VeH) (y—a|u)+ f(z) < fly)}

is the subdifferential of f. Let C' be a convex subset of 4. The indicator function
of C is denoted by ¢c and the distance function to C by dc. The relative interior
[respectively, the strong relative interior| of C, i.e., the set of points z € C such
that the cone generated by —z + C' is a vector subspace [respectively, closed vector
subspace] of H, by riC [respectively, sriC]. See [8, 47] for background on convex
analysis and monotone operators.

2. General algorithm. We start with three preliminary results. The first one is
an error-tolerant version of a forward-backward-forward splitting algorithm originally
proposed by Tseng [44, Theorem 3.4(b)].

LEMMA 2.1. [14, Theorem 2.5(i)—(ii)] Let IC be a real Hilbert space, let P: K —
2% be mazimally monotone, and let Q: IC — IC be monotone and x-Lipschitzian for
some x €10, 4o00[. Suppose that zer (P+Q) # . Let (ap)nen, (bn)nen, and (¢n)nen
be absolutely summable sequences in IC, let wo € KC, let € €10,1/(x + 1)[, let (vn)nen
be a sequence in [e, (1 —e)/x], and set

Forn=20,1,...
Sp = Wnp — 'Yn(an + an)
(2.1) Py = Jy. P Sn+ by

Wpt1 = Wy — Sp + 4,
Then Y, ey llwn — p,||> < +oc and there exists W € zer (P + Q) such that w, — W
and p, — w.
LEMMA 2.2. Let H be a real Hilbert space, let A: H — 2™ be a mazimally

monotone operator, let v € |0,4o00[, and let x and r be in H. Then Jyyia-1)r =

z—(r+ J-a(y e —1)).

Proof. Tt follows from [8, Proposition 23.15(ii)] that J, 1 4-1)7 = Jypyq 4170 =
Jya-1(x—~r). On the other hand, we derive from [8, Proposition 23.18] that (Vy € H)
Jya-1y =y—~J,-14(y"'y). Applying this identity to y = x —yr yields the result. O

LEMMA 2.3. [14, Proposition 2.8] Let H and G be two real Hilbert spaces, let
E:H — 2" and F: G — 29 be mazimally monotone, let L € B (H,G), let z € H,

andletr € G. Set K=H DG,

(22) M: K —2%: (z,v) — (—z + Ex) x (r + F~'v)
' S: K- K: (x,v) ~» (L"v,—Lx),
and
{‘B {zxeH|zcEx+L*(F(Lz — 7))}
(2.3) . . .
D={veG|-re-L(E '(z— L'v)+F 'v}.

Then zer (M +S) is a closed convex subset of BxD, and P # & < zer (M +S) # @
=D .



The following theorem contains our algorithm for solving Problem 1.1 and states
its main asymptotic properties. In this primal-dual splitting algorithm, each single-
valued operator is used explicitly, while each set-valued operator is activated via
its resolvent. Approximations in the evaluations of the operators are tolerated and
modeled by absolutely summable error sequences. The algorithm consists of three
main loops, each of which can be implemented on a parallel architecture.

THEOREM 2.4. Consider the setting of Problem 1.1. For everyi € {1,...,m}, let
(@1,in)nen, (b1,in)nen, and (¢1,in)nen be absolutely summable sequences in H; and,
for every k € {1,..., K}, let (a2,kn)neN, (b2,kn)nen, and (c2kn)nen be absolutely
summable sequences in Gy,. Let x10 € Hi, ..., Tm,0 € Hm, V10 €G1, ..., VK0 € Ok,
let € €]0,1/(B+1)], let (Yn)nen be a sequence in [, (1 —¢e)/p], and set

Forn=20,1,...
Fori=1,....m
S1im = Tin — Vn (Czl'zn + Zszl Ly vgmn + al,z‘,n)

L Piin = J’YnAi (Sl,i,n + 'Ynzi) + bl,i,n
Fork=1,....K

S2kn = Vk,n — In (Djzlvk,n - Z:il Lkizi,n + a2,k,n)

P2,kn = S2,k,;n — Tn (Tk + JV;IBk (77:152,]6,7’7, - Tk) + b2,k,n)

—1 m
42,k;n = P2,k — Vn (Dk P2.kn — D iy LkiP1im + Cz,k,n)

L Vk,n+1 = Vk,n — S2kn + q2,k,n
Fori=1,....m

K
q1,in = Plin — Tn (Cipl,i,n + Zk:l L}tiPQ,k,n + Cl,i,n)
| Tin+1 = Tin — St,in T q1in-

Then the following hold.

() (Vi € {1, m}) e i — primll? < +00.
(i) (Vke{l,...,K}) 3 en lVkn — P2kml* < +00.
(iii) There exist a solution (T1,...,Tm) to (1.3) and a solution (v1,...,Tx) to
(1.4) such that the following hold.
(a) (Vie{l,...,m}) z — S, Li.0r € AT + CiT.
) (Vk € {1 L KY) SN Lim — vy € By, U + Dy .
) (Vie{1,. m}) Tim — T; and Prin — T
) (Vk € {1 JKY) vgn — g and pagn — Tk.
) Suppose that, for some j € {1,...,m}, A; or C; is uniformly monotone
at T;. Then xj, — T; and p1jn — T;.
(f) Suppose that, for somel € {1,..., K}, By or Dy is couniformly monotone
at v;. Then vy, — 07 and pagn — ;.

(b
(c
(d
(e
Proof. Let us introduce the Hilbert direct sums

(2.5) H=H1®  DHp, G=G D DGk, and K=HOG,

and let us denote by = (z;)1<icm and v = (vg)1<k<i generic elements in H and
6



G, respectively. We also define

A H—2M 2 XAz,
i=1
C:H—>H: x— (Cil'i)lgigm

(2.6) E=A+C

L:H—>G: z— (ZLM%)
i=1 1<kESK
z = (zi)1<i<m
K
B: G —529: v— X Bpug
k=1
K
and D:G 29 v X Dy
k=1
F=BOD
= (Th)1<k<K-

It follows from [8, Propositions 20.22 and 20.23, Corollaries 20.25 and 24.4(i)] that
A, B,C, D, E, and F are maximally monotone. Moreover, L € B (H,G), L*: G —

H: v (ZkK:l Lvk)1<i<m, and

K
(2.7) (Ve eH) |Lax|® =
k=1

m 2

< Al

Lyix;
1

Next, we set
M: K —2%: (z,v) = (—2 + Ex) x (r + F~'v)
P:K =25 (x,v)— (-2 4 Az) x (r + B"'v)
(2.8) Q:K—K: (z,v)—~ (Cz+L*v,D 'v— Lz)
R: K - K: (z,v) = (Czx, D" 'v)
S: K- K: (x,v) — (L*'v,—Lx).

Note that

(2.9) zer(P+ Q)=
{(w,v)e’H@g’z—L*veAm—i—Cm and L:B—TEBilv—i—D*lv}.

Furthermore, in view of [8, Propositions 20.22 and 20.23], P is maximally monotone,
and Lemma 2.2 and [8, Proposition 23.16] yield

(2.10) (Vv €]0,+o0))(Ve € H)(Vv € G) Jyp(x,v) =
(JwAl(l'l +921), -y Iy an, (T +¥2m) v — Y (r1 + Jy—ip, (Y ror — 1),
ce UK — 'y(rK +Jy -1, (v tog — TK))).

On the other hand, since C and D~ are monotone and Lipschitzian with, respec-
tively, constants p = maxig,<m i and ¥ = maxigp<k Vi, R is monotone and
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Lipschitzian with constant max{y,v}. In addition, it follows from [14, Proposi-
tion 2.7(ii)] and (2.7) that S € B (K, K) is a skew (hence monotone) operator with
S|l = ||L|| < VA. Altogether, since @ = R+ S, we derive from (1.2) that

(2.11) P is maximally monotone and @ is monotone and [-Lipschitzian.
Let us call P and D the sets of solutions to (1.3) and (1.4), respectively. It follows
from (2.6) that

(2.12) {m = {-’17 eH ‘ z€ Ex+ L*(F(Lx — 7'))}

D={veg|-re ~L(E™'(z - L*v)) + F~'v}.
Hence, since P # @ by assumption, we deduce from Lemma 2.3 that
(2.13) & F#zer (M +8S)=zer(P+Q) CPBxD.

Thus, to solve Problem 1.1, it is enough to find a zero of P+ Q. For every n € N, let
us set

Wy = (:Cl,na s 7xm,navl,n) L ;UK,n)
(2 14) Sn = (8171’7“ sy Smuny $2,1,ms - - s SQ,K,n)
p, = (pl,l,m - s P1mny, P2,1,n;s - - - 7p2,K,n)
a4, = (@11, Qmn, 42,105 - - - > G2, K,n)
and
Ap = (al,l,na <o Almon, G210y - - - a2,K,n)

(215) bn = (bl,l,na RN bl,m,na _’anQ,l,n; LR _’anQ,K,n)
Cp = (Cl,l,na s Clmny C2,1ns - - - s CQ,K,n)'
Then, using (2.6), (2.8), and (2.10), we see that (2.4) reduces to (2.1). Moreover,
our assumptions and (2.5) imply that (an)nen, (bn)nen, and (¢,)nen are absolutely
summable sequences in /C. Hence, it follows from (2.11), (2.13), and Lemma 2.1 that
> nen lwn = p,||I> < +oo and that there exists W € zer (P + Q) such that w, — W
and p, — w. Upon setting w = (Z1,...,Tm, 1, .., 0k ) and appealing to (2.5) and
(2.9), we thus obtain assertions (i), (ii), and (iii)(a)—(iii) (d).

(iii)(e): Let us introduce the variables

K

(216) (Yie{l,...,m})(¥neN) {bin=Tn=7 < i, ; iUk, >
ﬁl,i,n = ‘]'YnAi (gl,i,n + ’Ynzi)

and
(2.17)

m

~ -1 Z

52 kn = Vkn — Tn (Dk Vkn — Lkzxz,n)
i=1

~ ~ 1~
P2,kn = S2,k;n — Tn (Tk + J%lek (’Yn S2.kn — Tk)) .

(Vk e {1,...,K})(Vn € N)

It follows from (2.4) that

(218)  (Vie{l,....m}(VneN) |s1in — Srinll = nllavinl < B atinl.-
8



Hence, by virtue of the nonexpansiveness of the resolvents [8, Proposition 23.7], we
have

Vie{l,...,m})(Vn eN) |p1in—D1inll
= [y 4, (81,50 + nzi) + 01,60 — T, 4, (81,0, + V2|
< s1,im = 51,0 + (101,00l
(2.19) < B Mavinl + 010l

In turn, since, for every i € {1,...,m}, (a1,in)nen and (b1 n)nen are absolutely
summable, we get

(220) (V’L S {1, ey m}) S1,in — ’Svl’iyn — 0 and Plin — ﬁl,i,n — 0.
Likewise, we derive from (2.4) and (2.17) that
(2.21) (Vk S {1, cee K}) 82 kn — gg,k,n —0 and pogn— ﬁg,k,n — 0.

On the other hand, we deduce from (iii)(a) that

K

(2.22) (Vie{l,....m})(EQu €M) wi€ AT and 2z =wu;+ » LTk + O,
k=1

and from (iii)(b) that

(2.23) (Vke{l,...,K}) WEBk(ZLki.T_i—Tk—D;IW).

i=1

In addition, (2.16) yields

Timn — Plyin

K
5 *Z Liivkn—Citin+2i € AiP1in,
n

k=1

(2.24) (Vi e {1,...,m})(¥n € N)

while (2.17) yields
(2.25) (Vke{l,...,K})(¥neN)

~ m
_ Vk,n — D2,k, _
D2.kn € B (% + Z Lyixin — 11 — Dy 1vk,n>-

n i=1

Now, for every n € N, let us set

K
1 - - _ .
(2.26) 5n22(g+%)|vk,n—m,k,n|| |Pon — 75| and (Vi€ {1,...,m})
k=1

K
_ L. _ _ —
i = W1 = i (20— + sl = 750+ 3 sl o~ 01 )
k=1
It follows from (i), (ii), (iii)(c), (iii)(d), (2.20), and (2.21) that
(2.27) op =0 and (MVie{l,...,m}) a;n— 0.
9



Using the Cauchy-Schwarz inequality, the Lipschitz-continuity and the monotonicity
of the operators (C;)i<i<m, (2.22), (2.24), and the monotonicity of the operators
(Ai>1<i<m; we obtain

Mie{l,....m})(YneN) -+ <:c1n - ZL,CZ vkn)>
> 1p1im — Tinll (€ IP16m — Tl + | Ciin — C'»Tz'H)
K
+ <ﬁ1,i,n — Tin ZLZi(U_k_’Uk,n)> <-Tln - ZLM Uk,n)>
k=1
= [1p1,i,n — Zinll (€ IP1im — Till + | Ciwi,n — Cimill)
+ <ﬁ1,i,n —T; (W - 'Uk,n)>
Tin — Pl K
2 <ﬁ1,i,n - -T_l —un L + Z LZZ(W - Uk,n)>
Tn k=1
+ Prin — Tin | CiT — Cizig)
- K K
= <ﬁ1,i,n — 3 | D e Z Livgn — Cizim + Z Lok + Ci-T_i>
Tn k=1 k=1
+ (zin — T | Ciwip — CiT5)
Tin — Pl K
= <171,i,n il R Z Livgn — Ciim + 2i — Uz>
Tn 1
~ _ X
(2.29) > <p1,i,n - ( in — P1im Z Livkm — Cixin + 21) - Uz>
(2.30) > 0.

On the other hand, since the operators (D;l)lgkg K are Lipschitzian and monotone,
and since the operators (Bj)1<r<kx are monotone, we deduce from (2.26), (2.23), and

10



(2.25) that

(2.31)

(2.32)

(2.33)

(2.34)

Vle{l....,K})(Vn €N) 5n+i<xi,n—x_l

K
Xpmmm—mw
k=1

>

]~

Vk,n — D2,k 1~ _
M+D 1p2kn*D 1'Ukn
v k sk, k 5

n
kan W>

+ Z Lkz Tin —
e — B
< (kn/yifbkn + Z Lyixin — 1K — Dk_lvk,n)

n i=1

m
- (Z Lyi@i — i, — Dk_lﬁ) ’ D2,ken — W>

i=1

el
Il

1

[
M=

el
Il

1

K
+Z i P2k — Dy UK | Pk — k)
1

k=
l —
<< p2 . + Zlezz n— Tl — Dl 1rUl,n>

=1

(Z lexz - T — l U_l) ‘ 5271,71 - U_l>

+(D; ' Payn — Dy vllpz,l,n—v_l>

<( — P Z Lyzin —11 — Dllvl,n>
i=1
— <Z Ly — 1 — Dl_lv_l) D2in — U_l>
i=1

= 0.

We consider two cases.

e If A; is uniformly monotone at T, then, in view of (2.29), (2.22), (2.24),

and (1.12), there exists an increasing function ¢4, : [0, +oo[ — [0, +o0] that
vanishes only at 0 such that
(2.35)

(VneN) ajn,+ <xj7n -7T;

m-ww>>mﬂﬁm@m

Combining (2.34), (2.30), and (2.35) yields

m m K
(2.36) (VTL S N) On + Z Qin + Z <-Ti,n —T; Z in(ﬁg,k,n — 'Uk,n)>
=1 i=1

k=1
Z ¢, ([P1jn —T5l0)-
It follows from (2.27), (ii), (iii)(c), (2.21), and [8, Lemma 2.41(iii)] that
¢4, (|P1,j;n — Zj]]) — 0 and, in turn, that p j, — T;. In view of (i) and
(2.20), we get p1 ;n — T; and x;,, — T;.
11




e If C; is uniformly monotone at Z;, then we derive from (2.34), (2.28), and
(2.30) that there exists an increasing function ¢c; : [0, +oo[ — [0, 4-0c] that
vanishes only at 0 such that

m m K
(2.37) (W €EN) bu+ Y cin+ Y, <:cn — % | Y Lii(Pokn — vk,n)>
1=1 =1 k=1

2> ¢c; (|zjn = T5l)-

This implies that ¢c, (||zj,» — T;]|) — 0 and hence that x;, — T;. Finally,
(1) yields p1,j,n — T
(iii) (f): We consider two cases.
e If B; is couniformly monotone at 77, then (2.33), (2.23), and (2.25) imply that
there exists an increasing function ¢B;1: [0, 400 — [0, +00] that vanishes

only at 0 such that

(VneN) o, + Z <$i,n -7
i=1

K
XFM@M—WO
k=1

~ m
Ui,n — D2,1, —
> <(u + ZLlixi,n_rl - D, 1vl,n)

Tn i=1
- (ZLliz_iTl - Dllv_l> ‘52,z,nv_l>
i—1
(2.38) > ¢p-1(Ip2.0.n = WIl))-

Combining this with (2.30) yields

(2.39) (W €EN) 6u+ Y in+ ), <:cn -7
1=1 =1

K
Z Ly (P2,kn — vk,n)>
k=1
=

¢ (IP2.1.n —il))-
Hence, using (2.27), (ii), (iii)(c), (2.21), and [8, Lemma 2.41(iii)], we get
‘bel(HﬁZlm —7|]) — 0 and, in turn, P2, — ;. Using to (2.21) and (ii), we
conclude that p2;, — 77 and v, — 7.
e If D; is couniformly monotone at 77, then it follows from (2.32) and (2.34) that
there exists an increasing function ¢Dl—1: [0, +00[ — [0,400] that vanishes

only at 0 such that

(neN) o+ <zn -7
i=1

K
Z Ly (P2,kn — W)>
k=1

<Dl_1ﬁ2,l,n - Dl_lv_l | 5271,71 - U_l>

=
> 61 ([ — 1),

(2.40)
Thus, (2.30) yields

K
> LisFann i)

=1
2 ¢p- (Ip2,1.n — @),

(241) (YneN) 6,4+ Z QG + Z <-T7,n —T;
i=1 i=1

12



and we conclude as above.

REMARK 2.5. When m = 1, (1.3)—(1.4) assume the form of (1.8)—(1.9), and
Theorem 2.4 specializes to [20, Theorem 3.1]. Our proof of Theorem 2.4(i)—(iii)(d)
hinges on a self-contained application of Lemmas 2.1 and 2.3 in the primal-dual prod-
uct space IC of (2.5). Alternatively, these results could be obtained as an application
of [20, Theorem 3.1] using the product space H of (2.5) as a primal space. This
strategy, however, would not enable us to recover the strong convergence results of
Theorem 2.4(iii)(e) since [20, Theorem 3.1] would impose uniform monotonicity prop-
erties on the product operators A or C of (2.6) which, in general, do not translate
easily into properties of the individual operators (4;)1<i<m and (C;)i1gigm- By con-
trast, our framework exploits properties of the each operator individually, without
imposing a global uniform monotonicity property on their product.

REMARK 2.6. It follows from the Cauchy-Schwarz inequality that, for every
(zi)1<i<m € Dty His

(2421)( m 2 K m 2 K m m
S5 tasw| <3 (S hmallent ) < 3 (Sl (X lsl?)
k=1 =1 k=1 =1 k=1 =1 =1

Hence, in general, one can use A = S, S || L[| in (1.2). However, as will be
seen in subsequent sections, this bound can be improved when the operator L of (2.6)
has a special structure.

In the remainder the paper, we highlight a few instantiations of Theorem 2.4
that illustrate the variety of problems to which it can be applied and which are not
explicitly solvable via existing techniques (see also [11] for additional applications).

3. Inclusions involving general parallel sums. The first special case of Prob-
lem 1.1 we feature is an extension of a univariate inclusion problem investigated in
[20], which involves parallel sums with monotone operators admitting Lipschitzian
inverses. In the following formulation, we lift this restriction.

PRrROBLEM 3.1. Let H be a real Hilbert space, let K7, K2, and K be integers such
that 0 < K1 < Ko < K > 1, let z € H, let A: H — 2" be maximally monotone,
and let C: H — H be monotone and p-Lipschitzian for some p € [0, +00[. For every
integer k € {1,..., K}, let Gi, be a real Hilbert space, let 7 € Gy, let By: G, — 29+
and Si: G, — 29% be maximally monotone, and let Ly € B (H,Gy); moreover, if
Ki+1< k< Ky, Sg: G — G is Bi-Lipschitzian for some 8y € [0, +o0o[, and, if
Ko+1<k <K, Sk_lz Gr — G is Bg-Lipschitzian for some g € [0,+oo[. It is
assumed that

(31) Bzma’X {/’[/)/BK1+1)"‘)/8K}+

K

1+ |k >0,
k=1

and that the inclusion

K
(3.2) find T € H such that z € AT + Y Lj((Bx OSk)(LiT — r1)) + CF
k=1
13



possesses at least one solution. Solve (3.2) together with the dual problem

(3.3) find 1 € Gy, ..., VK € Gk such that

K
(Vke{l,....K}) —mrp€ Lk<(A+C)1<zZLZ‘v_z>> + B, g + Sy '
=1

PROPOSITION 3.2.  Consider the setting of Problem 3.1. Let (a11.n)neN,
(b1,1,n)nen, and (c1,1,n)nen be absolutely summable sequences in H. For every integer
ke {l,...,K}, let (a2, n)neN, (b2,kn)nen, and (c2kn)nen be absolutely summable
sequences in Gy ; moreover, if 1 < k < K1, let (bl,k_l,_l,n)neN be an absolutely summable
sequence in Gy, and, if K1+1 <k < Ko, let (a1, k+1,n)neN and (€1 k+1,n)nen be abso-
lutely summable sequences in Gy. Let x0 € H, y10 € G1, ..., Yk,,0 € OK,, V1,0 € G1,

., and vigo € Gk, let € €]0,1/(8 4+ 1)[, let (yn)nen be a sequence in [, (1 —¢€)/p],
and set

Forn=20,1,...

$1,10 = Tn — Y (Cap + Zszl Livgn +a1,1,n)

Pran = Jy,a(S1,1,0 +n2) +b11n

Ile 7&0, fOTk: 1,...,K1

S1,k+1,n = Yk,n + YnVUk,n

D1 k+1,n = JvnSiS1,k+1,n + 01 k+1,n

S2kn = Vkn — In\Ykn — Lkl'n + a?,k,n)

P2,kn = S2,k,;n — Tn (Tk + JV;IBk (7;152,16,71 - Tk) + b2,k,n)
q2,k;n = DP2,k,n — Tn (p1,k+1,n — Lgprin + Cz,k,n)

| Vkntl = Vkn — S2.kn T 42,k,n

Ile #KQ, fOT’k:K1+1,...,K2

S1,k+1,m = Yk,n — Tn (Skyk,n — Vk,n + al,k+1,n)

Plk+1,n = S1,k+1,n

S2.kn = Vkn — In (yk,n - Lkl'n + a?,k,n)

(34) P2,kn = S2,k;n — Tn (Tk + J,y;lBk (’77:132,1@71 - Tk) + b2,k,n)
q2,k;n = DP2,k,n — Tn (p1,k+1,n — Lgprin + Cz,k,n)

L Vkntl = Vkn — S2.k,n T 42,k,n

IfKy 2K, fork=Ky+1,...,K

S2.k,n = Vkn — Tn (Sk_lvk,n - kan + a2,k,n)

P2,kn = S2,k;n — Tn (Tk + J’Y;IBIC (’77:132,1@71 - Tk) + b2,k,n)
q2,k,;n = P2.k;n — Tn (Slzlplk,n — Lgpripn + CQ,k,n)

L Vk,ntl = Vkn — S2,k,n T 42,k,n

q1,1,n = PlL,1,n — Tn (Cpl,l,n + Zszl Lipo ko + Cl,l,n)

Tntl = Tn —S1,1,n T 41,10

IfK1 #0, fork=1,..., K

{ Q1,k+1,n = P1,k+1,n T YnD2,k,n

Ykn+l = Ykn — S1,k+1,n T Q1 k+1,n

Ile #KQ, fOT’k:K1+1,...,K2
Q1 k+1,n = PLk+1,0 — Y (SkD1 k1.0 — P2,k + CLk+1,0)
Ykn+l = Yk,n — S1,k+1,n T Q1,k+1,n-

Then the following hold for some solution T to (3.2) and some solution (v1,...,UK)
to (3.3).
(i) zn = T and (Vked{l,...,K}) vgn — k.
14



(ii) Suppose that A or C is uniformly monotone at T. Then x, — T.
(i) Suppose that, for some l € {1,...,K}, By is couniformly monotone at vj.

Then vy, — ;.
(iv) Suppose that Ko # K and that, for some l € {Ky+1,..., K}, S| is couni-

formly monotone at v;. Then vy, — ;.
Proof. We assume that K5 # 0 and consider the auxiliary problem

(35) find TeH, g1 €0, ..., Uk, € Gk, such that
Ko K
2 €AT+ Y Li(BewZ—Tr— 1)) + > Li((BeOSk)(LiT — 1)) + CT
k=1 k=Ko+1

0 e Slm—Bl(Llf—E—Tl)

0 € SK2% - BK2(LK2f — UK, — TK2)

together with the dual problem (3.3) (if K2 = 0, (3.5) should be replaced by (3.2)
and the resulting simplifications in the proof are straightforward). Let us show that
solving the primal-dual problem (3.5)/(3.3) is a special case of Problem 1.1 with

(3.6)

Hit1 = Gk
Sy, if 1<k < Ky;

— Ky +1 Apiq =
=Rt ki {0, if K1 +1<k<Kos
Hy=H
C,=C (Vk € {1,...,Ks}) T Sk, i K+ 1<k < Ko
nr _fo 1<k <Ky
L fkt = Br, if Ki+1<k< K,
Z1 = Z, _

Te+1 = Yk

Zk+1 = 0,

and

0}, if 1<k < Ky
Dk{{} ;i >

Sk, if Ko+1<k<K

(3.7) (vkefl,....K}) Br, if Ko4+1<k<K

Ly =Ly

(Vie{2,...,Ks+1}) Lki{

{0, if 1<k < Ko
Vk+1 =

—Id, if i=k+1;
0, otherwise.

First, we note that, in this setting, (1.3) reduces to (3.5), and (1.4) to (3.3). Now

define H and G as in (2.5), let © € H, let (yi)i<k<i, € G}kKil Gk, set (zi)1<icm =

(xvylv" 'asz) € %5 set y = (yla' o aszaov" 50) € g7 and set A = 1+ZkK:21 HL]C”2
15



Then, using the Cauchy-Schwarz inequality in R2,

K
(38) >

k=1

m

g Liy;x;
i=1

2
2
= [(Lrz)i<cr<rks — Yl < (lyll + [[(Lrz)1<h<ks )

2

K> Ko m
< [l + [ DIl flell | < (1 +> |Lk||2) (lyll* + l®) = 2D >
k=1 k=1 =1

Thus, (3.1) is a special case of (1.2). On the other hand, by assumption, (3.2) has a

solution, say x. Therefore, there exist v; € G1, ..., vk, € Gk, such that
Ko K

3.9 zeAm—i—ZLka—l— Z Li((BeOSk)(Lyx — 1)) + Cx:

(3.9) k=1 k=Ky+1

(Vk’ S {1, R KQ}) Vi € (B]€ DSk)(Lk.T — Tk).

Therefore, in view of (1.1), there exist y1 € G1, ..., yk, € Gk, such that
Ko K

3.10 zeAm—i—ZL,’;vk—l— Z Li((BrOSk)(Lyx — ri)) + Cx

( ’ ) k=1 k=K>+1

(VEe{l,...,K2}) wyi € S,;lvk and Lpr —yr — T € B,;lvk,

which implies that

Ko K
1 ZEASC+ZLZU]€+ Z LZ((BkDSk)(Lkl'ka)) + Cx
(3' ) k=1 k=Ky+1

(Vk e {l,...,Ko}) wvx € Spyr and v € Brp(Lix —yr — k),

and therefore that

(3.12)
Ko K
2z € Ax + Z LZ (Bk(ka —Yg — Tk)) + Z L;;((Bk DSk)(ka — Tk)) +Cxz
k=1 k=Ko+1

(Vk’ S {1, . ,Kg}) 0 € Skyr — Bk(ka — Y —Tk)-
This shows that (3.5) possesses a solution. Next, upon defining

(3.13) (V\neN) =z, ==, and

Tk4+1,n = Yk,n;

a1 p+1,n =0, if 1<k <Ky
bik+1n =0, if Ki+1<k <Ky
Cle+1,n =0, if 1<k <Ky,

(Vk € {1,...,K>5))

we see that (2.4) specializes to (3.4). Hence, in view of (3.6)—(3.7) and Theo-
rem 2.4(iii)(a)—(iii)(d), there exist a solution (Z,71,...,¥K,) to (3.5) and a solution
(U1,...,0r) to (3.3) such that

(3.14) z, =T and (Vke{l,...,K}) vgn — Tg,
16



with

(3.15)
X LT — % — i, € By Ty
=Y Limn € AT+ 0%, (Vhe{l,... K} {_* 7 URTTREEDR W
P Uk € SkTk,

and (VkE {K2+1,,K}) ka*Tk EB;1W+S;1W

Since the strong convergence claims (ii)—(iv) are immediate consequences of Theo-
rem 2.4(iii)(e)—(iii)(f), it remains to show that T solves (3.2). We derive from (3.15)
that, for every k € {1,..., Ko}, LyT —Jp — 1 € B,;lﬁ and 7 € S,;lﬁ, and, for
every k € {Ko+1,...,K}, LT —ry € B,;lﬁ + S;lm. Altogether,

(3.16) (Vke{l,....K}) Lyz—ry€ (By'+5; ")

and, therefore,

3.17) S Limr e LB + S0 T Lk ) = > L ((Br O Sk) (LT —1).
k=1 k=1 k=1

Thus, since (3.15) also asserts that z — Zszl Liv, € Az + Cz, we conclude that T
solves (3.2). O

REMARK 3.3. Problem 3.1 encompasses more general scenarios than that of
[20], which corresponds to the case when K7 = Ko = 0, i.e., when all the operators
(D;l)lg k<K are restricted to be Lipschitzian. This extension has been made possible
by reformulating the original primal problem (3.2), which involves only one variable, as
the extended primal problem (3.5), in which we added K auxiliary variables. We also
note that Algorithm (3.4) uses all the single-valued operators present in Problem 3.1,
including (Sk)K1+1<k<K2 and (S]C_I)K2+1<k<1(, through explicit steps.

4. Relaxation of inconsistent common zero problems. A standard prob-
lem in nonlinear analysis is to find a common zero of maximally monotone operators
A and (By)1<k<k acting on a real Hilbert space H [17, 23, 33], i.e.,

K
(4.1) find T €  such that 0 € AT N (1] BiT.
k=1

In many situations, this problem may be inconsistent (see [19] and the references
therein) and it must be approximated. We study the following relaxation of (4.1),
together with its dual problem.

PROBLEM 4.1. Let H be a real Hilbert space, let K be a strictly positive integer,
and let A: H — 27 be maximally monotone. For every k € {1,..., K}, let By: H —
2" be maximally monotone and let Si: H — 2" be maximally monotone and such
that S, ' is at most single-valued and strictly monotone, with S;'0 = {0}. It is
assumed that the inclusion

K
(4.2) find 7 € H such that 0 € AT+ » (B,OS,)T
k=1

17



possesses at least one solution. Solve (4.2) together with the dual problem

(4.3) find 7 € H, ..., Uk € H such that

K
Wk e {1, K} OGA_l(ZU—l) 4 B 4 S
=1

First, we justify the fact that (4.2) is indeed a relaxation of (4.1).

PROPOSITION 4.2. In the setting of Problem 4.1, set Z = (zer A) N ﬂle zer By,
and suppose that Z # &. Then the set of solutions to the primal problem (4.2) is Z.

Proof. Tt is clear that every point in Z solves (4.2). Conversely, let  be a solution
to (4.2) and let z € Z. We first note that the operators (B O Sk)1<k<k are at most
single-valued. Indeed, let k € {1,..., K} and let (y,p) and (y, q) be in gra(Bx O Sk).
Then we must show that p = ¢. We have p = (B;0OSk)y < y € B,;lp + S,;lp
Sy — Sk_lp € Bk_lp. Likewise, y — Sk_lq € Bk_lq and, by monotonicity of By,
~(p—qlS;'p=5."a) = (p—al(y—5;'p)— (y—S;"q)) > 0. Consequently, by
strict monotonicity of Sk_l, <p —q] Sk_lp— Sk_lq> = 0 and p = ¢. Hence, since x
solves (4.2), there exists (px)o<k<r € HET! such that

K
(4.4) > pk=0, po€Ax, and (VEe{l,...,K}) pp=(BrOSk)z.

Therefore, we have
(4.5)
po € Az, 0€ Az, and (Vke{l,...,K}) pr€ Bk(:c— S,;lpk) and 0 € Byz,

and, by monotonicity of the operators A and (By)i<k<k,

(4.6) (x—2|po) >0 and (Vke{l,....,K}) {(z—S;'px—z]|pk)>0.

Hence, since Zf:o pr = 0, it follows from the monotonicity of the operators
(Sk_l)lgkgK that

K
= (e =018, p — S, 10)
k=1

K K

:Z<1'*Z|pk Z kpk|pk

k=0 k=1

K
= (x — 2 | po) +Z<$ kpk—Z|Pk>
k=1

(4.7) > 0.
Thus, Zszl <p;€ -0 Sk_lpg€ - Sk_10> = 0 and, therefore,
(4.8) (Vke{l,...,K}) {(pr—0]S;  'pr—S;'0)=0.

The strict monotonicity of the operators (S, Yi<k<x implies that for every k €
{1,...,K} p, = 0, ie., @ € B 'pr + S;.'pr = B, 0+ S,'0 = B, '0. In turn,
po = — Zszlpk =0, ie., z € A710. Altogether, x € Z. O

18



REMARK 4.3. Suppose that in Problem 4.1 we set, for every k € {1,...,K},
S = Vk_lld where 7y, € ]0, +o0], i.e., BrOS; = "By, is the Yosida approximation of
By, of index ~y;, [8, Proposition 23.6(ii)]. Then (4.2) reduces to the setting investigated
in [18, Section 6.3], namely

K
(4.9) find 7 € H such that 0 € AT+ Y "By,
k=1

which itself covers the frameworks of [10, 19, 36, 38] and the references therein. In
this case, Proposition 4.2 specializes to [18, Proposition 6.10]. Now let us further
specialize to the case when H = RN, A =0, and

(4.10)
=1 up € RN
(VE e {1,...,K}) B, span{u}, if (x| ug)=pr; where lugl] =1
ke X > .
o, if (z|uk) # pk, pr €R.

Then (4.1) amounts to solving the system of linear equalities
(4.11) find 7 € RY such that (Vk € {1,...,K}) (T|u) = p,

whereas (4.2) amounts to solving the least-squares problem
(4.12) minimize Z (x| ur) — prl*

The idea of relaxing (4.11) to (4.12) is due to Legendre [32] and Gauss [27].
To solve Problem 4.1, we use Proposition 3.2 to derive the following algorithm.
PROPOSITION 4.4. Consider the setting of Problem 4.1. Let (b11n)nen and, for
every k € {1,..., K}, (b1.k+1,n)nen and (b2 kn)nen be absolutely summable sequences
m H. Let xg € H, (yk,0)1gkg}( € HE, (Uk,o)lgkgK cHE, and e €10,1/(VK+1+
1)[, let (vn)nen be a sequence in [, (1 — )/ K + 1], and set

Forn=20,1,...
K

P1,in = J nA(:Cn — Tn Zk:l 'Uk,n) + bl,l,n
Fork=1,...,K

PlLk+1,n = J’ynSk (yk,n + 'ank,n) + bl,kJrl,n

S2. k.n = Vk,n _’Yn(ykn _:En)

4.13 ™ ’ ’ _
( ) P2,k,n = S2,kin — In (J7771Bk (’Yn 152,k,n> + b2,k,n)

Vk,n+1 = Vkn — S2k,n + P2.kn — Tn (pl,k-i—l,n - pl,l,n)

K

Tn4+1 = P1,1,n + Tn Zk:l ('Uk,n - pQ,k,n)
Fork=1,...,K
L L Yen+1 = Plk+1,n + 7n(p2,k,n - Uk,n)

Then the following hold for some solution T to (4.2) and some solution (v1,...,VK)
to (4.3).
(i) ©, = T and (Vke{l,...,K}) vgn — TUg.
(ii) Suppose that A is uniformly monotone at T. Then x, — T.
(iii) Suppose that, for some |l € {1,...,K}, B; is couniformly monotone at ;.
Then vy, — ;.
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Proof. Problem 4.1 is a special case of Problem 3.1 with K1 = Ko = K, z =0,
C=0,p=0,=+vK+1,and (Vk € {1,...,K}) Gy = H, L = 1d, and r;, = 0.
In this context, (3.4) can be reduced to (4.13), and the claims therefore follow from
Proposition 3.2. O

REMARK 4.5. For brevity, we have presented an algorithm for solving Problem 4.1
in its general form. However, if some of the operators (Sk)1<k<k or their inverses are
Lipschitzian, we can apply Proposition 3.2 with K7 # K and/or Ky # K to obtain
a more efficient algorithm in which each Lipschitzian operator is used through an
explicit step, rather than through its resolvent.

5. Multivariate structured convex minimization problems. We derive
from Theorem 2.4 a primal-dual minimization algorithm for multivariate convex min-
imization problems involving infimal convolutions and composite functions.

PROBLEM 5.1. Let m and K be strictly positive integers, let (H;)i1<i<m and
(Gr)1<k<k be real Hilbert spaces, let (1i)1<i<m € [0,+00[™, and let (vk)i<i<k €
10, +oo[. For every i € {1,...,m} and k € {1,...,K}, let h;: H; — R be con-
vex and differentiable and such that Vh; is p;-Lipschitzian, let f; € To(H;), let
gk € To(Gk), let U, € To(Gk) be 1/vi-strongly convex, let z; € H;, let ry € Gy,

and let Ly; € B (H;,Gr). Set 8 = max{ max fi;, max z/k} + v\ > 0, where

1<i<m’ T 1<k<K
Ae [Sung1 2 l2<1 SIS Ly ||, 400 [, and assume that
(5.1)

K m
(Vie{l,....,m}) =z € ran(@fi —I—ZLL— o (0grO04) 0 (ZLM . —rk) —I—Vhi).

k=1 j=1

Solve the primal problem
(5.2)

minimize Z filw) + D (on ka)(z Lz, — Tk) + > (hilws) = (@i | 2)),

T1EHL,. ., Tm EHm 1 | |

together with the dual problem

m K

(5.3)  minimize Z (fFOhny) <zzz invk) +> (i (vr)+05 (i) + (v | Tx))-
k=1

v1€G1,..., v €EG
1€01 K€GK — —

REMARK 5.2. Problem 5.1 extends significantly the multivariate minimization
framework of [3, 13]. The minimization problem under consideration there was the
following specialization of (5.2)

m K m

(54) mleﬁlg%%lfgﬂm ; fi (xz) + ; 9k ( ; Lkzzz) )

where, in addition, the functions (gx)1<k<x were required to be differentiable every-

where with a Lipschitzian gradient. Furthermore, no dual problem was considered.
PROPOSITION 5.3. Consider the setting of Problem 5.1. Suppose that (5.2) has

a solution, and set

(5.5)

= kiTi — Yk .
i=1 1<k<E (VE € {1,...,K}) yx € dom g, + dom ¢},
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(5.1) 14s satisfied in each of the following cases.

(1) (T )1<k§K csrikb.

(ii) F — (rk)1<k<i 1S a closed vector subspace.

(iii) For everyi € {1,...,m}, f; is real-valued and, for every k € {1,..., K}, the
operator @), 'H = Gk (Tj)1<i<m = 2 jey Lija; is surjective.

(iv) For every k € {1, .oy, K}, gioor € is real-valued.

(V) (Hi)igiscm and (Gr)1<k<i are finite-dimensional, and (Vi € {1,...,m})(3x; €
ridom f;)(Vk € {1,...,K}) >i" | Lysx; — rj, € ridom gy, + ridom¢,.

Proof. Define H and G as in (2.5), and L, z, and = as in (2.6). Set

and
9: G —]—o0,+00] : y = S, grlye)

h:H =Rz Y hi(x)
£:G — ]—00,+00] : Y Sy liyn)-

(5.6) {f: H —]—o0,+o0] t @ 301 fili)

Then (5.5) and [8, Proposition 12.6(ii)] yield

E= {La:fy ’ medomfandy€d0m9+dom£}
7) = L(dom f) — (domg + domﬁ)
.8) = L(dom (f +h — (-] 2))) — dom (gO%).

(1): Since the functions (¢x)1<r<k are strongly convex, so is £. Hence, dom£* = G
[8, Propositions 11.16 and 14.15] and therefore [8, Propositions 15.7(iv) and 24.27]
imply that 9g00€ = 9(gO¥€) and gO£ € Tx(G). On the other hand, (5.8) yields
0 € sri(L(dom (f +h — (- | 2))) — dom(gO£€)(- — r)). Thus, we derive from [8,
Theorem 16.37(i)] that

Of + L" o (0g0d8) o (L-—7r)+Vh—z
=9(f+h—{(|2)+L cd(g0L)o(L —r)
(5.9) =0(f+h—(]2)+(g0€)o(L-~r)).

Since (5.2) has a solution and is equivalent to minimizing f+h—(- | z)+(gO£)o(L-—r)
over ‘H, Fermat’s rule [8, Theorem 16.2] implies that 0 € ran d(f+h— (- | z)+(g0¥£)o
(L - —7)). Hence (5.9) yields z € ran(df + L* o (g0 d€y) o (L - —7) + Vh) and we
conclude that (5.1) is satisfied.

(ii)=(i): [8, Proposition 6.19(i)].

(iii)=-(i): We have L(dom f) = L(H) = G. Hence, (5.7) yields E = G.

(iv)=(i): We have dom g + dom £ = G. Hence, (5.7) yields F = G.

(v)=(i): Since dim G < +o0, sriF = ri E. On the other hand, by (5.7) and [8,
Corollary 6.15],

(5.10) riE =ri (L(dom f) —domg — domﬁ) = L(ridom f) —ridomg — ridom £.

Thus, r € stiE & (3z € ridom f = X ridom f;) Lz — r € ridomg + ridom £ =
Xszl(ri dom g, + ridom ¢;). O
PROPOSITION 5.4. Consider the setting of Problem 5.1. For everyi € {1,...,m},
let (a1,in)nen, (b1.in)nen, and (C1in)nen be absolutely summable sequences in H;
and, for every k € {1,...,K}, let (a2 kn)nen, (b2.kn)nen, and (c2kn)nen be ab-
solutely summable sequences in Gi. Furthermore, let x10 € Hi, ..., Tmo € Hm,
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viog € G, ..., Vko € Gk, let ¢ € 10,1/(8+4+1)[, let (yn)nen be a sequence in
[e,(1—¢)/B], and set

Forn=20,1,...

Fori=1,...,m

S1im = Tin — Vn (th(zzn) + Zszl L} g m + al,i,n)
Plin = PYOX%fi(SLi,n + Ynzi) +biin
Fork=1,....K

(5 11) S2,k;n = Vkin — Tn (VEZ(Uk,n) - Z:Zl Lkixi,n + a2,k,n)
- P2.k;n = S2,k;n — Tn (Tk + prox, -1, (7{152,k,n - Tk) + b2,k,n)

q2,k,n = P2,k,;n — Tn (VEZ(pQ,k,n) - Z;n;l Lkipl,i,n + CQ,k,n)

L Vkn+1 = Vkn — S2k,n + q2,k,n
Fori=1,...,m

K
Qi = Prim — Yo (Vhi(Prin) + Xy LiiD2.kn + Clin)
L Tin+tl = Tin — S1,im + q1,in-

Then the following hold.
(i) (Vi € {1,....m}) > enll@in — Prinl® < 400, and (Vk € {1,...,K})
ZnEN ”vkm — DP2,kn ||2 <+oo.
(ii) There exist a solution (T1,...,Tm) to (5.2) and a solution (v1,...,UK) to
(5.3) such that the following hold.
(a) (Vie{l,...,m}) zin — T and z —Y.ry Li0% € 0fi(T3) + Vhi(T7).
(b) (Vke{l,...,K})vkn — p and Y ;") LT — 1) € 0gj (V) + V5 (0r).
(c) Suppose that, for some j € {1,...,m}, f; or h; is uniformly convez at
z;. Then xj, — T;.
(d) Suppose that, for somel € {1,...,K}, g or £ is uniformly convezx at
v;. Then vy, — 7.
Proof. Set

(5.12)

(ViE{l,...,m}) Ai:afi and C; =Vh;
(Vke{l,,K}) Bk:agk and Dy = 0/4y.

It follows from [8, Proposition 17.10] that the operators (C;)1<i<m are monotone, and
from [8, Theorem 20.40] that the operators (A;)i<i<m, (Bk)i<k<m, and (Dk)1<k<k
are maximally monotone. Moreover, for every k € {1,..., K}, we derive from [8,
Corollary 13.33 and Theorem 18.15] that ¢} is Fréchet differentiable on Gy and V{5
is vg-Lipschitzian, and from [8, Corollary 16.24 and Proposition 17.26(i)] that Dk_1 =
(00,)~r = 0f; = {V{;}. On the other hand, (5.1) implies that (1.3) possesses a
solution, and (1.15) implies that (5.11) is a special case of (2.4). We also recall that
the uniform convexity of a function ¢ € T'o(H) at & € dom d¢ implies the uniform
monotonicity of Op at x [47, Section 3.4]. Altogether, the claims will follow at once
from Theorem 2.4 provided we show that, in the setting of (5.1) and (5.12), (1.3)
becomes (5.2) and (1.4) becomes (5.3). To this end, let us first observe that since, for
every k € {1,..., K}, dom £} = G, [8, Proposition 24.27] yields

(5.13) (Vk IS {1, RN K}) B ODy = 0g, 004, = 6(gk ka),
while [8, Corollaries 16.24 and 16.38(iii)] yield

(5.14) (Vk e {1,...,K}) By'+D;'=0g;+{Ve}=0(g;+ ;)
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Likewise, using [8, Theorem 15.3], we obtain

(5.15) (Vi€ {1,...,m}) (A;+C)~ ' =(0fi +Vh) ' =
(O(fi + hi)) ™ = (fi + hi)* = (fF OR).

Now let us define H and G as in (2.5), L, z, and r as in (2.6), and f, h, g, and £ as in
(5.6). We derive from (5.12), (5.13), [8, Corollary 16.38(iii), Propositions 16.5(ii), 16.8,
and 17.26(i)], and Fermat’s rule [8, Theorem 16.2] that, for every @ = (2;)1<i<m € H,

x solves (1.3) & (Vi€ {1,...,m}) 0¢€ dfi(x;)

+ ; Ly, (6(gk ka)(; Ly, rk)) + Vhi(z;) — 2
S 0e€df(x)+L*(0(g0)(Le — 1)) +V(h— (| 2))(x)
=0e0(f+(g00e (L —1) +h—(]|2)(@)
(5.16) < x solves (5.2).

Next, let v = (vk)1<kcx € G. Then we derive from (5.14), (5.15), and the same
subdifferential calculus rules as above that

m K
v solves (14) & (Vk e {1,...,K}) 0e€— ZLM (6(]“1* Dh;‘)(zi - ZLZUZ))
i=1 =1

+0(g5 + 05 4 (- | 1)) (i)
©0e—L(O(fOR)z—Lv)+3(g"+£€ +(|r)(v)

= 0€0((f DR o(z— L) +g" +£ + (| 7)) (@)
(5.17) < v solves (5.3),

which completes the proof. O

REMARK 5.5. Proposition 5.4 provides a framework that captures and suggests
extensions of multivariate and/or infimal convolution variational formulations found
in areas such as partial differential equations [4], machine learning [6], and image
recovery [15, 16, 39].

6. Univariate structured convex minimization problems. Minimization
problems involving a single primal variable can be obtained by setting m = 1 in
Problem 5.1. However, this approach imposes that infimal convolutions be performed
exclusively with strongly convex functions. We use a different strategy relying on
Proposition 3.2, which leads to a formulation allowing for infimal convolutions with
general lower semicontinuous convex functions.

PROBLEM 6.1. Let H be a real Hilbert space, let Ky, K2, and K be integers such
that 0 <K Ky < Ko < K > 1, let z € H, let f € T'o(H), and let h: H — R be convex
and differentiable and such that Vh is u-Lipschitzian for some p € [0, 400|. For every
integer k € {1,..., K}, let G; be a real Hilbert space, let ry € Gy, let gr € To(Gr),
let ¢ € To(Gr), and let Ly € B(H,Gi); moreover, if K1 +1 < k < Ka, @i is
differentiable on G and such that Ve is Sg-Lipschitzian for some 8 € [0, +00],
and, if Ko +1 < k < K, ¢k is 1/Bg-strongly convex for some S € ]0,+o00[. Set
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B =max {, Br,+1,-- - B} +1/1+ Zszl || Lk]|2, and assume that

(6.1) z € ran(@f + i Lj 0 (8gx00py) o (L - —ri) + Vh)
k=1
and
(6.2) (Vk € {1,...,K5}) 0 € sri(dom g} — dom }).
Solve the primal problem
K
(6:3) minimize f(r) + 3 (g Do) (L i) + h() — (& | 2,
k=1

together with the dual problem

K

(6.4) minimize (f* Dh*) (z — ZLZW) + Z g5 (vk) + of (vi) + (v | Tk>)
k=1

v1€01,..., VK €EGK —1

REMARK 6.2. It follows from (6.2) and [8, Propositions 11.16, 14.15, 15.7(i), and
24.27] that

(6.5) (Vk’ S {1, .. ,K}) g Ok € Fo(gk) and Jgr 00y = a(gk[l(pk).

Hence, using the same type of arguments as in the proof of Proposition 5.3, we can
deduce similar conditions for (6.1) to hold, e.g., that (6.3) have a solution and that
(ri)1<k<k lie in the strong relative interior of

(6.6) {(Lrx—yr)i1<k<k | © € dom fand (Vk € {1,...,K}) yx € dom gi + dom ¢y, }.

PROPOSITION 6.3.  Consider the setting of Problem 6.1. Let (a1,1.n)neN,
(b1,1,n)nen, and (c1,1,n)nen be absolutely summable sequences in H. For every integer
ke {l,...,K}, let (a2, n)neN, (b2,kn)nen, and (c2kn)nen be absolutely summable
sequences in Gy ; moreover, if 1 < k < K1, let (bl,k_l,_l,n)neN be an absolutely summable
sequence in Gy, and, if K1+1 <k < Ko, let (1 k+1,n)nen and (€1 k+1,n)nen be abso-
lutely summable sequences in Gy. Let xo € H, y10 € G1, ..., Yk,,0 € OK,, V10 € G1,

., and v € Gk, let € €]0,1/(8 4+ 1)[, let (yn)nen be a sequence in [, (1 —¢€)/p],
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and set

Forn=20,1,...
S1,1,n = Tn — Vn (Vh(xn) + Zszl L]tvk,n + al,l,n)
Piin = pYOX%f(SLLn +Yn2) + b11n
IfK1#0, fork=1,..., Ky
S1,k+1,n = Yk,n + YnVk,n
D1k+1,n = PrOX,, o, 81 k+1,n + b1 k+1,n
S2kn = Vkn — Tn \Ykn — kan + a2,k,n)
P2k = S2,km — Yo (Th +Drox -1 (Vi so k. — 75) + bon)
q2,k;n = D2,k,n — In (p1,k+1,n — Lgpraipn + CQ,k,n)
L Vk,ntl = Vkon — S2,k,n 1+ 42,k,n
Ile #KQ, fOTk:K1+1,...,K2
S1,k+1,n = Ykn — In (v@k (yk,n) — Vk,n + al,k+1,n)
P1,k+1,n = S1,k+1,n
52 kn = Vk,n — In (yk,n - kan + a2,k,n)
6.7) P2k = S2,km — Yo (Th +Drox 1 (Vi so k. — 7)) + bon)
q2,k,;n = D2,k,n — In (p1,k+1,n — Lgpran + CQ,k,n)
| Vk,ntl = Vkon — S2,k,n 1+ 42,k,n
IfKs 2K, fork=Ky+1,.... K
$2,k.m = Vkon — Yn (V) (Vkn) — Lk@n + a2,6n)
P2,kn = S2,kin — Tn (Tk + PYOXV;I% (77:152,16,71 - Tk) + b2,k,n)
@26 = P2k — Yo (Vi (P2,6m) — LkP1an + C2,6m)
| Vk,ntl = Vkon — S2,k,n + 42,k,n
qi,1,m = PL,1,n — Tn (Vh(pm,n) + Zszl Lipogn + 01,1,n)
T+l = Tn —S1,1,n T q1,1,n
IfK1#0, fork=1,..., Ky
q1,k+1,n = P1,k+1,n + VnD2,k,n
Yknt+1 = Ykon — S1,k+1,n T q1k+1,n
Ile #KQ, fOTk:K1+1,...,K2
{ q1k+1,n = PLi+1,n — Yo (Vor(D1kt1,0) — P2.kn + CLk41,n)
Yk,nt+1 = Ykyn — S1,k+1,n T 41, k+1,n-

Then the following hold for some solution T to (6.3) and some solution (v1,...,TK)
to (6.4).

(i) ©, = T and (Vke{l,...,K}) vgn — .

(ii) Suppose that f or h is uniformly convex at T. Then x,, — T.

(ili) Suppose that, for some l € {1,...,K}, g; is uniformly conver at ;. Then

Vin — V.

(iv) Suppose that Ko # K and that, for somel € {Ks+1,..., K}, ¢f is uniformly

convez at v;. Then vy, — ;.

Proof. Using (6.5) and the same arguments as in the proof of Proposition 5.4, we
first identify Problem 6.1 as a special case of Problem 3.1 with A = df, C = Vh, and
(VE € {1,...,K}) By = Jgi, and Sy, = Opy. Using (1.15), we then deduce the results
from Proposition 3.2. O

We conclude this section with an application to the approximation of inconsistent
convex feasibility problems where, for the sake of brevity, we discuss only the primal
problem.

EXAMPLE 6.4. In Problem 6.1, set K1 = Ko = K, 2=0, h =0, f =0, and,
for every k € {1,..., K} r, = 0 and g = (¢, , where Cj, is a nonempty closed convex
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subset of Gy with projection operator Pg. In addition, suppose that
(6.8)
(Vke{1,...,K}) Argminyy = {0}, ¢(0) =0, and 0 € sri(dom g, — dom ¢y).

It follows from [8, Proposition 15.7(i)] that the infimal convolutions (tc, O k) 1<k<k
are exact. Hence, (6.3) becomes

K

6.9 P . e . L - ,
(6.9) minimiz k,lyfé“clf’“( KT = Yk)

and it is assumed to have at least one solution. We can interpret (6.9) as a relaxation
of the (possibly inconsistent) convex feasibility problem

(6.10) find T € H such that (Vk € {1,...,K}) L;T € C.

Indeed, it follows from (6.8) that, if (6.10) is consistent, then its solutions coincide
with those of (6.9). Furthermore, in view of (1.15), Algorithm (6.7) can be written
as
Forn=0,1,...

P1in = Tn — 7”(22(:1 szk,n + al,l,n)
Fork=1,....K

S1,k+1,n = Yk,n + YnVk,n

P1k+1,n = ProX, . 81 k+1n + b1 k41,0

S2k,n = Vkn — Yn\Ykn — kan + a2,k,n)
(611) P2,kn = S2,kin — In (Pk(’%;lslk,n) + b2,k,n)

q2,k,;n = D2.k,n — Tn (p1,k+1,n — Lgp1in + Cz,k,n)

Vk,ntl = Vkon — S2,k,n T 42,k,n
qi,1,n = PL,1,n — Tn ( Zszl Lipogn + 01,1,n)
Tn+l = Tn —P11n T 41,10
Fork=1,... K

{ q1,k+1,n = P1,k+1,n + VnD2,k,n
L Yen+1 = Ykn — S1,k+1,n + q1,k+1,n-

By Proposition 6.3(i), (25 )nen converges weakly to a solution to (6.9) if inf,en v, > 0
and sup,,ey Yo < (1+ Zszl ||Lk|‘2)71/2. Now suppose that, for every k € {1,..., K},
G = H, L, = 1d, or = 1oy if k = 1, and ¢ = wy - ||>, where wy, € ]0,+00],
if K #£ 1. Then (6.10) reduces to the feasibility problem of finding T € ﬂle Ck
and (6.9) reduces to the constrained least-squares relaxation studied in [19], namely,

e K 2
minimize Y ko wWrdgy, (7).
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