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SYSTEMS OF STRUCTURED MONOTONE INCLUSIONS:

DUALITY, ALGORITHMS, AND APPLICATIONS∗

PATRICK L. COMBETTES†

Abstract. A general primal-dual splitting algorithm for solving systems of structured coupled
monotone inclusions in Hilbert spaces is introduced and its asymptotic behavior is analyzed. Each
inclusion in the primal system features compositions with linear operators, parallel sums, and Lip-
schitzian operators. All the operators involved in this structured model are used separately in the
proposed algorithm, most steps of which can be executed in parallel. This provides a flexible solu-
tion method applicable to a variety of problems beyond the reach of the state-of-the-art. Several
applications are discussed to illustrate this point.

Key words. convex minimization, coupled system, infimal convolution, monotone inclusion,
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1. Introduction. Traditional monotone operator splitting techniques [8, 18, 24,
25, 29, 35, 37, 41, 43, 44] have their roots in matrix decomposition methods in numeri-
cal analysis [22, 45] and in nonlinear methods for solving optimization and variational
inequality problems [7, 12, 31, 34, 40]. These methods are designed to solve inclusions
of the type 0 ∈ B1x + B2x, where B1 and B2 are maximally monotone operators
acting on a Hilbert space H. Extensions to sums of the type 0 ∈ ∑K

k=1 Bkx are
typically handled via reformulations in product spaces [8, 41]. In recent years, new
splitting algorithms have emerged for problems involving more complex models fea-
turing compositions with linear operators [14] and parallel sums [20, 46]; we recall
that the parallel sum of two set-valued operators B and D is

(1.1) B�D =
(
B−1 +D−1

)−1
.

These algorithms rely on reformulations of the inclusions as two-operator problems in
a primal-dual space, in which the splitting is performed via an existing method. This
construct makes it possible to activate separately each of the operators involved in
the model, and it leads to flexible algorithms implementable on parallel architectures.
In the present paper, we pursue this strategy towards more sophisticated models
featuring systems of structured coupled inclusions in duality. The primal-dual problem
under consideration is the following.

Problem 1.1. Let m and K be strictly positive integers, let (Hi)16i6m and
(Gk)16k6K be real Hilbert spaces, let (µi)16i6m ∈ [0,+∞[m, and let (νk)16i6K ∈
[0,+∞[

K
. For every i ∈ {1, . . . ,m} and k ∈ {1, . . . ,K}, let Ci : Hi → Hi be monotone

and µi-Lipschitzian, let Ai : Hi → 2Hi and Bk : Gk → 2Gk be maximally monotone,
let Dk : Gk → 2Gk be maximally monotone and such that D−1

k : Gk → Gk is νk-
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Lipschitzian, let zi ∈ Hi, let rk ∈ Gk, and let Lki ∈ B (Hi,Gk). It is assumed that

(1.2) β = max
{

max
16i6m

µi, max
16k6K

νk

}
+

√
λ > 0,

where λ ∈
[

sup
∑

m
i=1

‖xi‖261

K∑

k=1

∥∥∥∥
m∑

i=1

Lkixi

∥∥∥∥
2

,+∞
[
,

and that the system of coupled inclusions

(1.3) find x1 ∈ H1, . . . , xm ∈ Hm such that





z1 ∈ A1x1 +

K∑

k=1

L∗
k1

(
(Bk �Dk)

( m∑

i=1

Lkixi − rk

))
+ C1x1

...

zm ∈ Amxm +

K∑

k=1

L∗
km

(
(Bk �Dk)

( m∑

i=1

Lkixi − rk

))
+ Cmxm

possesses at least one solution. Solve (1.3) together with the dual problem

(1.4) find v1 ∈ G1, . . . , vK ∈ GK such that




−r1 ∈ −
m∑

i=1

L1i

(
Ai + Ci

)−1
(
zi −

K∑

k=1

L∗
kivk

)
+B−1

1 v1 +D−1
1 v1

...

−rK ∈ −
m∑

i=1

LKi

(
Ai + Ci

)−1
(
zi −

K∑

k=1

L∗
kivk

)
+B−1

K vK +D−1
K vK .

The primal system (1.3) captures a broad class of problems in nonlinear analysis
in which m variables x1, . . . , xm interact. The ith inclusion in (1.3) features two
operators Ai and Ci which model some abstract utility of the variable xi, while the
operator (Bk)16k6K , (Dk)16k6K , and (Lki)16i6m

16k6K
model the interaction between xi

and the remaining variables. One of the simplest realizations of (1.3) is the problem
considered in [10], namely

(1.5) find x1 ∈ H, x2 ∈ H such that

{
0 ∈ A1x1 + x1 − x2

0 ∈ A2x2 − x1 + x2,

where (H, ‖ ·‖) is a real Hilbert space, and where A1 and A2 are maximally monotone
operators acting onH. In particular, if A1 = ∂f1 and A2 = ∂f2 are the subdifferentials
of proper lower semicontinuous convex functions f1 and f2 from H to ]−∞,+∞], (1.5)
becomes

(1.6) minimize
x1∈H, x2∈H

f1(x1) + f2(x2) +
1

2
‖x1 − x2‖2.

This formulation arises in areas such as optimization [1], the cognitive sciences [5],
image recovery [21], signal synthesis [30], best approximation [9], and mechanics [38].
In [3], we considered the extension of (1.6) which amounts to setting in Problem 1.1,
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for every i ∈ {1, . . . ,m} and k ∈ {1, . . . ,K}, Ai = ∂fi, Ci = 0, and Bk = ∇gk,
where fi : H → ]−∞,+∞] is a proper lower semicontinuous convex function and
gk : Gk → R is convex and differentiable with a Lipschitzian gradient. This leads to
the minimization problem

(1.7) minimize
x1∈H1,..., xm∈Hm

m∑

i=1

fi(xi) +

K∑

k=1

gk

( m∑

i=1

Lkixi

)
,

which has numerous applications in signal processing, machine learning, image re-
covery, partial differential equations, and game theory; see [2, 6, 13, 15, 26, 28, 42]
and the references therein. This minimization problem arose in [3] as an instance of
a multivariate inclusion problem which is a special case of (1.3) in which the opera-
tors (Ci)16i6m and (D−1

k )16k6K are zero, and the coupling operators (Bk)16k6K are
restricted to be single-valued and to satisfy jointly a cocoercivity property.

The goals of the present paper is to develop a flexible algorithm to solve Prob-
lem 1.1 without the restrictions imposed by current methods, and to illustrate its
flexibility by applying it to a variety of problems for which no solution method ex-
ists currently. Our setting places no additional hypotheses on the coupling operators
(Bk)16k6K and (Dk)16k6K , or on the number m of variables. In the proposed par-
allel splitting algorithm, the structure of the problem is fully exploited to the extent
that the operators are all used individually, either explicitly if they are single-valued,
or by means of their resolvent if they are set-valued. In the case when m = 1 in
Problem 1.1, we obtain the univariate primal-dual problem investigated in [20] (see
also [14, 46] for special cases), namely

(1.8) find x ∈ H such that z ∈ Ax +

K∑

k=1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

and

(1.9) find v1 ∈ G1, . . . , vK ∈ GK such that

(∀k ∈ {1, . . . ,K}) − rk ∈ −Lk

(
(A+ C)−1

(
z −

K∑

l=1

L∗
l vl

))
+B−1

k vk + S−1
k vk.

Conversely, formulating these inclusions in a suitable product space H formally leads
to (1.3)–(1.4). However, transcribing the algorithm of [20] and its convergence anal-
ysis in such a product setting would lead to much weaker results than those to be
presented in Section 2, which will employ a finer analysis and leverage the proper-
ties of each of the operators involved in the model. Our problem formulation and
its asymptotic analysis will enable us to extend existing results and solve much more
complex problems than those afforded by the state-of-the-art. These advances are
highlighted by the following applications of the results of Section 2.

• In Section 3, we revisit (1.8)–(1.9) and solve it without the restriction that the
operators (S−1

k )16k6K be Lipschitzian, as is required in [20]. This is achieved
by showing that, through the introduction of auxiliary variables, the problem
is reducible to an instance of (1.3).

• In Section 4, we address the problem of approximating – by means of parallel
sums – inconsistent common zero problems. By reformulating this univariate
problem as an instance of Problem 1.1, we obtain a framework which allows
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for relaxations with operators possessing strictly monotone inverses, while
existing results [18] are limited to relaxations with multiples of identity.

• In Section 5, we apply the results of Section 2 to multivariate structured
convex minimization problems, thus obtaining notable improvements over
the results of [3, 13].

• In Section 6, we use the results of Section 3 to solve univariate minimization
problems featuring infimal convolutions with general lower semicontinuous
convex functions. In such models, the state-of-the-art is limited to strongly
convex functions [20].

• Another application of the results of Section 2 is that developed in [11] after
the submission of the present paper. In this work, inclusions of the form
(1.10)

find x ∈ H such that z ∈ Ax+

r∑

k=1

(
(L∗

k ◦Bk ◦Lk)� (M∗
k ◦Dk ◦Mk)

)
x+Cx

together with their duals were considered for the first time. We reformulated
this problem as a special case of (1.3) and showed it captured variational
formulations in the area of signal recovery for which no solution method was
available until now.

Notation. We denote the scalar product of a Hilbert space by 〈· | ·〉 and the as-
sociated norm by ‖ · ‖. The symbols ⇀ and → denote, respectively, weak and
strong convergence, and Id denotes the identity operator. Let H and G be real
Hilbert spaces and let 2H be the power set of H. The space of bounded linear
operators from H to G is denoted by B (H,G). Let A : H → 2H. We denote by
ranA =

{
u ∈ H

∣∣ (∃x ∈ H) u ∈ Ax
}
the range A, by domA =

{
x ∈ H

∣∣ Ax 6= ∅
}

the domain of A, by zerA =
{
x ∈ H

∣∣ 0 ∈ Ax
}

the set of zeros of A, by graA ={
(x, u) ∈ H ×H

∣∣ u ∈ Ax
}
the graph of A, and by A−1 the inverse of A, i.e., the op-

erator with graph
{
(u, x) ∈ H×H

∣∣ u ∈ Ax
}
. The resolvent of A is JA = (Id +A)−1.

Moreover, A is declared monotone if

(1.11) (∀(x, u) ∈ graA)(∀(y, v) ∈ graA) 〈x− y | u− v〉 > 0,

and maximally monotone if there exists no monotone operator B : H → 2H such
that graA ⊂ graB 6= graA. In this case, JA is a nonexpansive operator defined
everywhere on H. Furthermore, A is uniformly monotone at x ∈ domA if there exists
an increasing function φ : [0,+∞[ → [0,+∞] that vanishes only at 0 such that

(1.12) (∀u ∈ Ax)(∀(y, v) ∈ graA) 〈x− y | u− v〉 > φ(‖x− y‖),
and A is couniformly monotone at u ∈ ranA if A−1 is uniformly monotone at u. The
parallel sum of A and B : H → 2H is A�B = (A−1+B−1)−1. The infimal convolution
of two functions g and ℓ from H to ]−∞,+∞] is

(1.13) g� ℓ : H → [−∞,+∞] : x 7→ inf
y∈H

(
g(y) + ℓ(x− y)

)
.

We denote by Γ0(H) the class of lower semicontinuous convex functions f : H →
]−∞,+∞] such that dom f =

{
x ∈ H

∣∣ f(x) < +∞
}

6= ∅. Let f ∈ Γ0(H). The
conjugate of f is Γ0(H) ∋ f∗ : u 7→ supx∈H(〈x | u〉 − f(x)), and f is uniformly convex
at x ∈ dom f if there exists an increasing function φ : [0,+∞[ → [0,+∞] that vanishes
only at 0 such that
(1.14)
(∀y ∈ dom f)(∀α ∈ ]0, 1[) f(αx+(1−α)y)+α(1−α)φ(‖x−y‖) 6 αf(x)+(1−α)f(y).
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For every x ∈ H, f + ‖x − ·‖2/2 possesses a unique minimizer, which is denoted by
proxfx. We have

(1.15) proxf = J∂f , where

∂f : H → 2H : x 7→
{
u ∈ H

∣∣ (∀y ∈ H) 〈y − x | u〉+ f(x) 6 f(y)
}

is the subdifferential of f . Let C be a convex subset of H. The indicator function
of C is denoted by ιC and the distance function to C by dC . The relative interior
[respectively, the strong relative interior] of C, i.e., the set of points x ∈ C such
that the cone generated by −x + C is a vector subspace [respectively, closed vector
subspace] of H, by riC [respectively, sriC]. See [8, 47] for background on convex
analysis and monotone operators.

2. General algorithm. We start with three preliminary results. The first one is
an error-tolerant version of a forward-backward-forward splitting algorithm originally
proposed by Tseng [44, Theorem 3.4(b)].

Lemma 2.1. [14, Theorem 2.5(i)–(ii)] Let K be a real Hilbert space, let P : K →
2K be maximally monotone, and let Q : K → K be monotone and χ-Lipschitzian for

some χ ∈ ]0,+∞[. Suppose that zer (P +Q) 6= ∅. Let (an)n∈N, (bn)n∈N, and (cn)n∈N

be absolutely summable sequences in K, let w0 ∈ K, let ε ∈ ]0, 1/(χ+ 1)[, let (γn)n∈N

be a sequence in [ε, (1− ε)/χ], and set

(2.1)

For n = 0, 1, . . .

sn = wn − γn(Qwn + an)
pn = JγnP

sn + bn
qn = pn − γn(Qpn + cn)
wn+1 = wn − sn + qn.

Then
∑

n∈N
‖wn −pn‖2 < +∞ and there exists w ∈ zer (P +Q) such that wn ⇀ w

and pn ⇀ w.

Lemma 2.2. Let H be a real Hilbert space, let A : H → 2H be a maximally

monotone operator, let γ ∈ ]0,+∞[, and let x and r be in H. Then Jγ(r+A−1)x =
x− γ(r + Jγ−1A(γ

−1x− r)).
Proof. It follows from [8, Proposition 23.15(ii)] that Jγ(r+A−1)x = Jγr+γA−1x =

JγA−1(x−γr). On the other hand, we derive from [8, Proposition 23.18] that (∀y ∈ H)
JγA−1y = y− γJγ−1A(γ

−1y). Applying this identity to y = x− γr yields the result.
Lemma 2.3. [14, Proposition 2.8] Let H and G be two real Hilbert spaces, let

E : H → 2H and F : G → 2G be maximally monotone, let L ∈ B (H,G), let z ∈ H,

and let r ∈ G. Set K = H⊕ G,

(2.2)

{
M : K → 2K : (x,v) 7→ (−z +Ex)× (r + F−1v)

S : K → K : (x,v) 7→ (L∗v,−Lx),

and

(2.3)

{
P =

{
x ∈ H

∣∣ z ∈ Ex+L∗(F (Lx− r))
}

D =
{
v ∈ G

∣∣ −r ∈ −L(E−1(z −L∗v)) + F−1v
}
.

Then zer (M+S) is a closed convex subset of P×D, and P 6= ∅ ⇔ zer (M+S) 6= ∅

⇔ D 6= ∅.
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The following theorem contains our algorithm for solving Problem 1.1 and states
its main asymptotic properties. In this primal-dual splitting algorithm, each single-
valued operator is used explicitly, while each set-valued operator is activated via
its resolvent. Approximations in the evaluations of the operators are tolerated and
modeled by absolutely summable error sequences. The algorithm consists of three
main loops, each of which can be implemented on a parallel architecture.

Theorem 2.4. Consider the setting of Problem 1.1. For every i ∈ {1, . . . ,m}, let
(a1,i,n)n∈N, (b1,i,n)n∈N, and (c1,i,n)n∈N be absolutely summable sequences in Hi and,

for every k ∈ {1, . . . ,K}, let (a2,k,n)n∈N, (b2,k,n)n∈N, and (c2,k,n)n∈N be absolutely

summable sequences in Gk. Let x1,0 ∈ H1, . . . , xm,0 ∈ Hm, v1,0 ∈ G1, . . . , vK,0 ∈ GK ,

let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence in [ε, (1− ε)/β], and set

(2.4)

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
s1,i,n = xi,n − γn

(
Cixi,n +

∑K
k=1 L

∗
kivk,n + a1,i,n

)

p1,i,n = JγnAi
(s1,i,n + γnzi) + b1,i,n

For k = 1, . . . ,K

s2,k,n = vk,n − γn

(
D−1

k vk,n −∑m
i=1 Lkixi,n + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + Jγ−1

n Bk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn

(
D−1

k p2,k,n −∑m
i=1 Lkip1,i,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
For i = 1, . . . ,m⌊

q1,i,n = p1,i,n − γn

(
Cip1,i,n +

∑K
k=1 L

∗
kip2,k,n + c1,i,n

)

xi,n+1 = xi,n − s1,i,n + q1,i,n.

Then the following hold.

(i) (∀i ∈ {1, . . . ,m})
∑

n∈N
‖xi,n − p1,i,n‖2 < +∞.

(ii) (∀k ∈ {1, . . . ,K}) ∑n∈N
‖vk,n − p2,k,n‖2 < +∞.

(iii) There exist a solution (x1, . . . , xm) to (1.3) and a solution (v1, . . . , vK) to

(1.4) such that the following hold.

(a) (∀i ∈ {1, . . . ,m}) zi −
∑K

k=1 L
∗
kivk ∈ Aixi + Cixi.

(b) (∀k ∈ {1, . . . ,K})
∑m

i=1 Lkixi − rk ∈ B−1
k vk +D−1

k vk.
(c) (∀i ∈ {1, . . . ,m}) xi,n ⇀ xi and p1,i,n ⇀ xi.

(d) (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk and p2,k,n ⇀ vk.
(e) Suppose that, for some j ∈ {1, . . . ,m}, Aj or Cj is uniformly monotone

at xj . Then xj,n → xj and p1,j,n → xj.

(f) Suppose that, for some l ∈ {1, . . . ,K}, Bl or Dl is couniformly monotone

at vl. Then vl,n → vl and p2,l,n → vl.

Proof. Let us introduce the Hilbert direct sums

(2.5) H = H1 ⊕ · · · ⊕ Hm, G = G1 ⊕ · · · ⊕ GK , and K = H⊕ G,

and let us denote by x = (xi)16i6m and v = (vk)16k6K generic elements in H and
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G, respectively. We also define

(2.6)





A : H → 2H : x 7→
m×
i=1

Aixi

C : H → H : x 7→ (Cixi)16i6m

E = A+C

L : H → G : x 7→
( m∑

i=1

Lkixi

)

16k6K

z = (zi)16i6m

and





B : G → 2G : v 7→
K×

k=1

Bkvk

D : G → 2G : v 7→
K×

k=1

Dkvk

F = B�D

r = (rk)16k6K .

It follows from [8, Propositions 20.22 and 20.23, Corollaries 20.25 and 24.4(i)] that
A, B, C, D, E, and F are maximally monotone. Moreover, L ∈ B (H,G), L∗ : G →
H : v 7→ (

∑K
k=1 L

∗
kivk)16i6m, and

(2.7) (∀x ∈ H) ‖Lx‖2 =
K∑

k=1

∥∥∥∥
m∑

i=1

Lkixi

∥∥∥∥
2

6 λ‖x‖2.

Next, we set

(2.8)






M : K → 2K : (x,v) 7→ (−z +Ex)× (r + F−1v)

P : K → 2K : (x,v) 7→ (−z +Ax)× (r +B−1v)

Q : K → K : (x,v) 7→
(
Cx+L∗v,D−1v −Lx

)

R : K → K : (x,v) 7→ (Cx,D−1v)

S : K → K : (x,v) 7→ (L∗v,−Lx).

Note that

(2.9) zer (P +Q) =
{
(x,v) ∈ H⊕ G

∣∣ z −L∗v ∈ Ax+Cx and Lx− r ∈ B−1v +D−1v
}
.

Furthermore, in view of [8, Propositions 20.22 and 20.23], P is maximally monotone,
and Lemma 2.2 and [8, Proposition 23.16] yield

(2.10) (∀γ ∈ ]0,+∞[)(∀x ∈ H)(∀v ∈ G) JγP (x,v) =
(
JγA1

(x1 + γz1), . . . , JγAm
(xm + γzm), v1 − γ

(
r1 + Jγ−1B1

(γ−1v1 − r1)
)
,

. . . , vK − γ
(
rK + Jγ−1BK

(γ−1vK − rK)
))

.

On the other hand, since C and D−1 are monotone and Lipschitzian with, respec-
tively, constants µ = max16i6m µi and ν = max16k6K νk, R is monotone and
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Lipschitzian with constant max{µ, ν}. In addition, it follows from [14, Proposi-
tion 2.7(ii)] and (2.7) that S ∈ B (K,K) is a skew (hence monotone) operator with
‖S‖ = ‖L‖ 6

√
λ. Altogether, since Q = R+ S, we derive from (1.2) that

(2.11) P is maximally monotone and Q is monotone and β-Lipschitzian.

Let us call P and D the sets of solutions to (1.3) and (1.4), respectively. It follows
from (2.6) that

(2.12)

{
P =

{
x ∈ H

∣∣ z ∈ Ex+L∗(F (Lx− r))
}

D =
{
v ∈ G

∣∣ −r ∈ −L(E−1(z −L∗v)) + F−1v
}
.

Hence, since P 6= ∅ by assumption, we deduce from Lemma 2.3 that

(2.13) ∅ 6= zer (M + S) = zer (P +Q) ⊂ P×D.

Thus, to solve Problem 1.1, it is enough to find a zero of P +Q. For every n ∈ N, let
us set

(2.14)





wn = (x1,n, . . . , xm,n, v1,n, . . . , vK,n)

sn = (s1,1,n, . . . , s1,m,n, s2,1,n, . . . , s2,K,n)

pn = (p1,1,n, . . . , p1,m,n, p2,1,n, . . . , p2,K,n)

qn = (q1,1,n, . . . , q1,m,n, q2,1,n, . . . , q2,K,n)

and

(2.15)





an = (a1,1,n, . . . , a1,m,n, a2,1,n, . . . , a2,K,n)

bn = (b1,1,n, . . . , b1,m,n,−γnb2,1,n, . . . ,−γnb2,K,n)

cn = (c1,1,n, . . . , c1,m,n, c2,1,n, . . . , c2,K,n).

Then, using (2.6), (2.8), and (2.10), we see that (2.4) reduces to (2.1). Moreover,
our assumptions and (2.5) imply that (an)n∈N, (bn)n∈N, and (cn)n∈N are absolutely
summable sequences in K. Hence, it follows from (2.11), (2.13), and Lemma 2.1 that∑

n∈N
‖wn − pn‖2 < +∞ and that there exists w ∈ zer (P +Q) such that wn ⇀ w

and pn ⇀ w. Upon setting w = (x1, . . . , xm, v1, . . . , vK) and appealing to (2.5) and
(2.9), we thus obtain assertions (i), (ii), and (iii)(a)–(iii)(d).

(iii)(e): Let us introduce the variables

(2.16) (∀i ∈ {1, . . . ,m})(∀n ∈ N)





s̃1,i,n = xi,n − γn

(
Cixi,n +

K∑

k=1

L∗
kivk,n

)

p̃1,i,n = JγnAi
(s̃1,i,n + γnzi)

and
(2.17)

(∀k ∈ {1, . . . ,K})(∀n ∈ N)





s̃2,k,n = vk,n − γn

(
D−1

k vk,n −
m∑

i=1

Lkixi,n

)

p̃2,k,n = s̃2,k,n − γn

(
rk + Jγ−1

n Bk
(γ−1

n s̃2,k,n − rk)
)
.

It follows from (2.4) that

(2.18) (∀i ∈ {1, . . . ,m})(∀n ∈ N) ‖s1,i,n − s̃1,i,n‖ = γn‖a1,i,n‖ 6 β−1‖a1,i,n‖.
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Hence, by virtue of the nonexpansiveness of the resolvents [8, Proposition 23.7], we
have

(∀i ∈ {1, . . . ,m})(∀n ∈ N) ‖p1,i,n − p̃1,i,n‖
= ‖JγnAi

(s1,i,n + γnzi) + b1,i,n−JγnAi
(s̃1,i,n + γnzi)‖

6 ‖s1,i,n − s̃1,i,n‖+ ‖b1,i,n‖
6 β−1‖a1,i,n‖+ ‖b1,i,n‖.(2.19)

In turn, since, for every i ∈ {1, . . . ,m}, (a1,i,n)n∈N and (b1,i,n)n∈N are absolutely
summable, we get

(2.20) (∀i ∈ {1, . . . ,m}) s1,i,n − s̃1,i,n → 0 and p1,i,n − p̃1,i,n → 0.

Likewise, we derive from (2.4) and (2.17) that

(2.21) (∀k ∈ {1, . . . ,K}) s2,k,n − s̃2,k,n → 0 and p2,k,n − p̃2,k,n → 0.

On the other hand, we deduce from (iii)(a) that

(2.22) (∀i ∈ {1, . . . ,m})(∃ui ∈ Hi) ui ∈ Aixi and zi = ui +
K∑

k=1

L∗
kivk + Cixi,

and from (iii)(b) that

(2.23) (∀k ∈ {1, . . . ,K}) vk ∈ Bk

( m∑

i=1

Lkixi − rk −D−1
k vk

)
.

In addition, (2.16) yields

(2.24) (∀i ∈ {1, . . . ,m})(∀n ∈ N)
xi,n − p̃1,i,n

γn
−

K∑

k=1

L∗
kivk,n−Cixi,n+zi ∈ Aip̃1,i,n,

while (2.17) yields

(2.25) (∀k ∈ {1, . . . ,K})(∀n ∈ N)

p̃2,k,n ∈ Bk

(
vk,n − p̃2,k,n

γn
+

m∑

i=1

Lkixi,n − rk −D−1
k vk,n

)
.

Now, for every n ∈ N, let us set

(2.26) δn =

K∑

k=1

(
1

ε
+ νk

)
‖vk,n − p̃2,k,n‖ ‖p̃2,k,n − vk‖ and (∀i ∈ {1, . . . ,m})

αi,n = ‖p̃1,i,n − xi,n‖
(
1

ε
‖p̃1,i,n − xi‖+ µi‖xi,n − xi‖+

K∑

k=1

‖Lki‖ ‖vk,n − vk‖
)
.

It follows from (i), (ii), (iii)(c), (iii)(d), (2.20), and (2.21) that

(2.27) δn → 0 and (∀i ∈ {1, . . . ,m}) αi,n → 0.
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Using the Cauchy-Schwarz inequality, the Lipschitz-continuity and the monotonicity
of the operators (Ci)16i6m, (2.22), (2.24), and the monotonicity of the operators
(Ai)16i6m, we obtain

(∀i ∈ {1, . . . ,m})(∀n ∈ N) αi,n +

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(vk − vk,n)

〉

> ‖p̃1,i,n − xi,n‖
(
ε−1‖p̃1,i,n − xi‖+ ‖Cixi,n − Cixi‖

)

+

〈
p̃1,i,n − xi,n

∣∣∣∣
K∑

k=1

L∗
ki(vk − vk,n)

〉
+

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(vk − vk,n)

〉

= ‖p̃1,i,n − xi,n‖
(
ε−1‖p̃1,i,n − xi‖+ ‖Cixi,n − Cixi‖

)

+

〈
p̃1,i,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(vk − vk,n)

〉

>

〈
p̃1,i,n − xi

∣∣∣∣
xi,n − p̃1,i,n

γn
+

K∑

k=1

L∗
ki(vk − vk,n)

〉

+ 〈p̃1,i,n − xi,n | Cixi − Cixi,n〉

=

〈
p̃1,i,n − xi

∣∣∣∣
xi,n − p̃1,i,n

γn
−

K∑

k=1

L∗
kivk,n − Cixi,n +

K∑

k=1

L∗
kivk + Cixi

〉

+ 〈xi,n − xi | Cixi,n − Cixi〉

=

〈
p̃1,i,n − xi

∣∣∣∣
xi,n − p̃1,i,n

γn
−

K∑

k=1

L∗
kivk,n − Cixi,n + zi − ui

〉

+ 〈xi,n − xi | Cixi,n − Cixi〉(2.28)

>

〈
p̃1,i,n − xi

∣∣∣∣
(
xi,n − p̃1,i,n

γn
−

K∑

k=1

L∗
kivk,n − Cixi,n + zi

)
− ui

〉
(2.29)

> 0.(2.30)

On the other hand, since the operators (D−1
k )16k6K are Lipschitzian and monotone,

and since the operators (Bk)16k6K are monotone, we deduce from (2.26), (2.23), and
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(2.25) that

(∀l ∈ {1. . . . ,K})(∀n ∈ N) δn +

m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk)

〉

>

K∑

k=1

〈
vk,n − p̃2,k,n

γn
+D−1

k p̃2,k,n −D−1
k vk,n

+

m∑

i=1

Lki(xi,n − xi)

∣∣∣∣ p̃2,k,n − vk

〉

=

K∑

k=1

〈(
vk,n − p̃2,k,n

γn
+

m∑

i=1

Lkixi,n − rk −D−1
k vk,n

)

−
( m∑

i=1

Lkixi − rk −D−1
k vk

) ∣∣∣∣ p̃2,k,n − vk

〉

+

K∑

k=1

〈
D−1

k p̃2,k,n −D−1
k vk | p̃2,k,n − vk

〉
(2.31)

>

〈(
vl,n − p̃2,l,n

γn
+

m∑

i=1

Llixi,n − rl −D−1
l vl,n

)

−
( m∑

i=1

Llixi − rl −D−1
l vl

)∣∣∣∣ p̃2,l,n − vl

〉

+
〈
D−1

l p̃2,l,n −D−1
l vl | p̃2,l,n − vl

〉
(2.32)

>

〈(
vl,n − p̃2,l,n

γn
+

m∑

i=1

Llixi,n − rl −D−1
l vl,n

)

−
( m∑

i=1

Llixi − rl −D−1
l vl

)∣∣∣∣ p̃2,l,n − vl

〉
(2.33)

> 0.(2.34)

We consider two cases.
• If Aj is uniformly monotone at xj , then, in view of (2.29), (2.22), (2.24),
and (1.12), there exists an increasing function φAj

: [0,+∞[ → [0,+∞] that
vanishes only at 0 such that
(2.35)

(∀n ∈ N) αj,n +

〈
xj,n − xj

∣∣∣∣
K∑

k=1

L∗
kj(vk − vk,n)

〉
> φAj

(‖p̃1,j,n − xj‖).

Combining (2.34), (2.30), and (2.35) yields

(2.36) (∀n ∈ N) δn +

m∑

i=1

αi,n +

m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk,n)

〉

> φAj
(‖p̃1,j,n − xj‖).

It follows from (2.27), (ii), (iii)(c), (2.21), and [8, Lemma 2.41(iii)] that
φAj

(‖p̃1,j,n − xj‖) → 0 and, in turn, that p̃1,j,n → xj . In view of (i) and
(2.20), we get p1,j,n → xj and xj,n → xj .
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• If Cj is uniformly monotone at xj , then we derive from (2.34), (2.28), and
(2.30) that there exists an increasing function φCj

: [0,+∞[ → [0,+∞] that
vanishes only at 0 such that

(2.37) (∀n ∈ N) δn +

m∑

i=1

αi,n +

m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk,n)

〉

> φCj
(‖xj,n − xj‖).

This implies that φCj
(‖xj,n − xj‖) → 0 and hence that xj,n → xj . Finally,

(i) yields p1,j,n → xj .
(iii)(f): We consider two cases.
• If Bl is couniformly monotone at vl, then (2.33), (2.23), and (2.25) imply that
there exists an increasing function φB−1

l
: [0,+∞[ → [0,+∞] that vanishes

only at 0 such that

(∀n ∈ N) δn +

m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk)

〉

>

〈(
vl,n − p̃2,l,n

γn
+

m∑

i=1

Llixi,n−rl −D−1
l vl,n

)

−
( m∑

i=1

Llixi−rl −D−1
l vl

) ∣∣∣∣ p̃2,l,n−vl

〉

> φB−1

l
(‖p̃2,l,n − vl‖).(2.38)

Combining this with (2.30) yields

(2.39) (∀n ∈ N) δn +
m∑

i=1

αi,n +
m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk,n)

〉

> φB−1

l

(‖p̃2,l,n − vl‖).

Hence, using (2.27), (ii), (iii)(c), (2.21), and [8, Lemma 2.41(iii)], we get
φB−1

l
(‖p̃2,l,n − vl‖) → 0 and, in turn, p̃2,l,n → vl. Using to (2.21) and (ii), we

conclude that p2,l,n → vl and vl,n → vl.
• IfDl is couniformly monotone at vl, then it follows from (2.32) and (2.34) that
there exists an increasing function φD−1

l
: [0,+∞[ → [0,+∞] that vanishes

only at 0 such that

(∀n ∈ N) δn +
m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk)

〉

>
〈
D−1

l p̃2,l,n −D−1
l vl | p̃2,l,n − vl

〉

> φD−1

l
(‖p̃2,l,n − vl‖).(2.40)

Thus, (2.30) yields

(2.41) (∀n ∈ N) δn +

m∑

i=1

αi,n +

m∑

i=1

〈
xi,n − xi

∣∣∣∣
K∑

k=1

L∗
ki(p̃2,k,n − vk,n)

〉

> φD−1

l
(‖p̃2,l,n − vl‖),

12



and we conclude as above.

Remark 2.5. When m = 1, (1.3)–(1.4) assume the form of (1.8)–(1.9), and
Theorem 2.4 specializes to [20, Theorem 3.1]. Our proof of Theorem 2.4(i)–(iii)(d)
hinges on a self-contained application of Lemmas 2.1 and 2.3 in the primal-dual prod-
uct space K of (2.5). Alternatively, these results could be obtained as an application
of [20, Theorem 3.1] using the product space H of (2.5) as a primal space. This
strategy, however, would not enable us to recover the strong convergence results of
Theorem 2.4(iii)(e) since [20, Theorem 3.1] would impose uniform monotonicity prop-
erties on the product operators A or C of (2.6) which, in general, do not translate
easily into properties of the individual operators (Ai)16i6m and (Ci)16i6m. By con-
trast, our framework exploits properties of the each operator individually, without
imposing a global uniform monotonicity property on their product.

Remark 2.6. It follows from the Cauchy-Schwarz inequality that, for every
(xi)16i6m ∈ ⊕m

i=1 Hi,
(2.42)

K∑

k=1

∥∥∥∥
m∑

i=1

Lkixi

∥∥∥∥
2

6

K∑

k=1

( m∑

i=1

‖Lki‖ ‖xi‖
)2

6

K∑

k=1

( m∑

i=1

‖Lki‖2
)( m∑

i=1

‖xi‖2
)
.

Hence, in general, one can use λ =
∑K

k=1

∑m
i=1 ‖Lki‖2 in (1.2). However, as will be

seen in subsequent sections, this bound can be improved when the operator L of (2.6)
has a special structure.

In the remainder the paper, we highlight a few instantiations of Theorem 2.4
that illustrate the variety of problems to which it can be applied and which are not
explicitly solvable via existing techniques (see also [11] for additional applications).

3. Inclusions involving general parallel sums. The first special case of Prob-
lem 1.1 we feature is an extension of a univariate inclusion problem investigated in
[20], which involves parallel sums with monotone operators admitting Lipschitzian
inverses. In the following formulation, we lift this restriction.

Problem 3.1. Let H be a real Hilbert space, let K1, K2, and K be integers such
that 0 6 K1 6 K2 6 K > 1, let z ∈ H, let A : H → 2H be maximally monotone,
and let C : H → H be monotone and µ-Lipschitzian for some µ ∈ [0,+∞[. For every
integer k ∈ {1, . . . ,K}, let Gk be a real Hilbert space, let rk ∈ Gk, let Bk : Gk → 2Gk

and Sk : Gk → 2Gk be maximally monotone, and let Lk ∈ B (H,Gk); moreover, if
K1 + 1 6 k 6 K2, Sk : Gk → Gk is βk-Lipschitzian for some βk ∈ [0,+∞[, and, if
K2 + 1 6 k 6 K, S−1

k : Gk → Gk is βk-Lipschitzian for some βk ∈ [0,+∞[. It is
assumed that

(3.1) β = max
{
µ, βK1+1, . . . , βK

}
+

√√√√1 +
K∑

k=1

‖Lk‖2 > 0,

and that the inclusion

(3.2) find x ∈ H such that z ∈ Ax +
K∑

k=1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx
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possesses at least one solution. Solve (3.2) together with the dual problem

(3.3) find v1 ∈ G1, . . . , vK ∈ GK such that

(∀k ∈ {1, . . . ,K}) − rk ∈ −Lk

(
(A+ C)−1

(
z −

K∑

l=1

L∗
l vl

))
+B−1

k vk + S−1
k vk.

Proposition 3.2. Consider the setting of Problem 3.1. Let (a1,1,n)n∈N,

(b1,1,n)n∈N, and (c1,1,n)n∈N be absolutely summable sequences in H. For every integer

k ∈ {1, . . . ,K}, let (a2,k,n)n∈N, (b2,k,n)n∈N, and (c2,k,n)n∈N be absolutely summable

sequences in Gk; moreover, if 1 6 k 6 K1, let (b1,k+1,n)n∈N be an absolutely summable

sequence in Gk, and, if K1+1 6 k 6 K2 , let (a1,k+1,n)n∈N and (c1,k+1,n)n∈N be abso-

lutely summable sequences in Gk. Let x0 ∈ H, y1,0 ∈ G1, . . . , yK2,0 ∈ GK2
, v1,0 ∈ G1,

. . . , and vK,0 ∈ GK , let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence in [ε, (1− ε)/β],
and set

(3.4)

For n = 0, 1, . . .

s1,1,n = xn − γn
(
Cxn +

∑K
k=1 L

∗
kvk,n + a1,1,n

)

p1,1,n = JγnA(s1,1,n + γnz) + b1,1,n
If K1 6= 0, for k = 1, . . . ,K1

s1,k+1,n = yk,n + γnvk,n
p1,k+1,n = JγnSk

s1,k+1,n + b1,k+1,n

s2,k,n = vk,n − γn
(
yk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + Jγ−1

n Bk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
p1,k+1,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
If K1 6= K2, for k = K1 + 1, . . . ,K2

s1,k+1,n = yk,n − γn
(
Skyk,n − vk,n + a1,k+1,n

)

p1,k+1,n = s1,k+1,n

s2,k,n = vk,n − γn
(
yk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + Jγ−1

n Bk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
p1,k+1,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
If K2 6= K, for k = K2 + 1, . . . ,K

s2,k,n = vk,n − γn
(
S−1
k vk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + Jγ−1

n Bk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
S−1
k p2,k,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
q1,1,n = p1,1,n − γn

(
Cp1,1,n +

∑K
k=1 L

∗
kp2,k,n + c1,1,n

)

xn+1 = xn − s1,1,n + q1,1,n
If K1 6= 0, for k = 1, . . . ,K1⌊

q1,k+1,n = p1,k+1,n + γnp2,k,n
yk,n+1 = yk,n − s1,k+1,n + q1,k+1,n

If K1 6= K2, for k = K1 + 1, . . . ,K2⌊
q1,k+1,n = p1,k+1,n − γn

(
Skp1,k+1,n − p2,k,n + c1,k+1,n

)

yk,n+1 = yk,n − s1,k+1,n + q1,k+1,n.

Then the following hold for some solution x to (3.2) and some solution (v1, . . . , vK)
to (3.3).

(i) xn ⇀ x and (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk.
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(ii) Suppose that A or C is uniformly monotone at x. Then xn → x.
(iii) Suppose that, for some l ∈ {1, . . . ,K}, Bl is couniformly monotone at vl.

Then vl,n → vl.
(iv) Suppose that K2 6= K and that, for some l ∈ {K2 + 1, . . . ,K}, Sl is couni-

formly monotone at vl. Then vl,n → vl.

Proof. We assume that K2 6= 0 and consider the auxiliary problem

(3.5) find x ∈ H, y1 ∈ G1, . . . , yK2
∈ GK2

such that




z ∈ Ax+

K2∑

k=1

L∗
k

(
Bk(Lkx− yk − rk)

)
+

K∑

k=K2+1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

0 ∈ S1y1 −B1(L1x− y1 − r1)
...

0 ∈ SK2
yK2

−BK2
(LK2

x− yK2
− rK2

)

together with the dual problem (3.3) (if K2 = 0, (3.5) should be replaced by (3.2)
and the resulting simplifications in the proof are straightforward). Let us show that
solving the primal-dual problem (3.5)/(3.3) is a special case of Problem 1.1 with
(3.6)





m = K2 + 1

H1 = H
A1 = A

C1 = C

µ1 = µ

x1 = x

z1 = z,

(∀k ∈ {1, . . . ,K2})





Hk+1 = Gk

Ak+1 =

{
Sk, if 1 6 k 6 K1;

0, if K1 + 1 6 k 6 K2

Ck+1 =

{
0, if 1 6 k 6 K1;

Sk, if K1 + 1 6 k 6 K2

µk+1 =

{
0, if 1 6 k 6 K1;

βk, if K1 + 1 6 k 6 K2

xk+1 = yk

zk+1 = 0,

and

(3.7) (∀k ∈ {1, . . . ,K})






Dk =

{
{0}−1, if 1 6 k 6 K2;

Sk, if K2 + 1 6 k 6 K

νk+1 =

{
0, if 1 6 k 6 K2;

βk, if K2 + 1 6 k 6 K

Lk1 = Lk

(∀i ∈ {2, . . . ,K2 + 1}) Lki =

{
−Id , if i = k + 1;

0, otherwise.

First, we note that, in this setting, (1.3) reduces to (3.5), and (1.4) to (3.3). Now

define H and G as in (2.5), let x ∈ H, let (yk)16k6K2
∈ ⊕K2

k=1 Gk, set (xi)16i6m =

(x, y1, . . . , yK2
) ∈ H, set y = (y1, . . . , yK2

, 0, . . . , 0) ∈ G, and set λ = 1+
∑K2

k=1 ‖Lk‖2.
15



Then, using the Cauchy-Schwarz inequality in R
2,

(3.8)

K∑

k=1

∥∥∥∥
m∑

i=1

Lkixi

∥∥∥∥
2

= ‖(Lkx)16k6K2
− y‖2 6

(
‖y‖+ ‖(Lkx)16k6K2

‖
)2

6



‖y‖+

√√√√
K2∑

k=1

‖Lk‖2 ‖x‖




2

6

(
1 +

K2∑

k=1

‖Lk‖2
)(

‖y‖2 + ‖x‖2
)
= λ

m∑

i=1

‖xi‖2.

Thus, (3.1) is a special case of (1.2). On the other hand, by assumption, (3.2) has a
solution, say x. Therefore, there exist v1 ∈ G1, . . . , vK2

∈ GK2
such that

(3.9)





z ∈ Ax+

K2∑

k=1

L∗
kvk +

K∑

k=K2+1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

(∀k ∈ {1, . . . ,K2}) vk ∈ (Bk �Sk)(Lkx− rk).

Therefore, in view of (1.1), there exist y1 ∈ G1, . . . , yK2
∈ GK2

such that

(3.10)





z ∈ Ax+

K2∑

k=1

L∗
kvk +

K∑

k=K2+1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

(∀k ∈ {1, . . . ,K2}) yk ∈ S−1
k vk and Lkx− yk − rk ∈ B−1

k vk,

which implies that

(3.11)





z ∈ Ax+

K2∑

k=1

L∗
kvk +

K∑

k=K2+1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

(∀k ∈ {1, . . . ,K2}) vk ∈ Skyk and vk ∈ Bk(Lkx− yk − rk),

and therefore that
(3.12)




z ∈ Ax+

K2∑

k=1

L∗
k

(
Bk(Lkx− yk − rk)

)
+

K∑

k=K2+1

L∗
k

(
(Bk �Sk)(Lkx− rk)

)
+ Cx

(∀k ∈ {1, . . . ,K2}) 0 ∈ Skyk −Bk(Lkx− yk − rk).

This shows that (3.5) possesses a solution. Next, upon defining

(3.13) (∀n ∈ N) x1,n = xn and

(∀k ∈ {1, . . . ,K2})





xk+1,n = yk,n;

a1,k+1,n = 0, if 1 6 k 6 K1;

b1,k+1,n = 0, if K1 + 1 6 k 6 K2;

c1,k+1,n = 0, if 1 6 k 6 K1,

we see that (2.4) specializes to (3.4). Hence, in view of (3.6)–(3.7) and Theo-
rem 2.4(iii)(a)–(iii)(d), there exist a solution (x, y1, . . . , yK2

) to (3.5) and a solution
(v1, . . . , vK) to (3.3) such that

(3.14) xn ⇀ x and (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk,
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with

(3.15)

z −
K∑

k=1

L∗
kvk ∈ Ax+ Cx, (∀k ∈ {1, . . . ,K2})

{
Lkx− yk − rk ∈ B−1

k vk

vk ∈ Skyk,

and (∀k ∈ {K2 + 1, . . . ,K}) Lkx− rk ∈ B−1
k vk + S−1

k vk.

Since the strong convergence claims (ii)–(iv) are immediate consequences of Theo-
rem 2.4(iii)(e)–(iii)(f), it remains to show that x solves (3.2). We derive from (3.15)
that, for every k ∈ {1, . . . ,K2}, Lkx − yk − rk ∈ B−1

k vk and yk ∈ S−1
k vk, and, for

every k ∈ {K2 + 1, . . . ,K}, Lkx− rk ∈ B−1
k vk + S−1

k vk. Altogether,

(3.16) (∀k ∈ {1, . . . ,K}) Lkx− rk ∈
(
B−1

k + S−1
k

)
vk

and, therefore,

(3.17)

K∑

k=1

L∗
kvk ∈

K∑

k=1

L∗
k

((
B−1

k +S−1
k

)−1
(Lkx−rk)

)
=

K∑

k=1

L∗
k

(
(Bk �Sk)(Lkx−rk)

)
.

Thus, since (3.15) also asserts that z − ∑K
k=1 L

∗
kvk ∈ Ax + Cx, we conclude that x

solves (3.2).

Remark 3.3. Problem 3.1 encompasses more general scenarios than that of
[20], which corresponds to the case when K1 = K2 = 0, i.e., when all the operators
(D−1

k )16k6K are restricted to be Lipschitzian. This extension has been made possible
by reformulating the original primal problem (3.2), which involves only one variable, as
the extended primal problem (3.5), in which we added K2 auxiliary variables. We also
note that Algorithm (3.4) uses all the single-valued operators present in Problem 3.1,
including (Sk)K1+16k6K2

and (S−1
k )K2+16k6K , through explicit steps.

4. Relaxation of inconsistent common zero problems. A standard prob-
lem in nonlinear analysis is to find a common zero of maximally monotone operators
A and (Bk)16k6K acting on a real Hilbert space H [17, 23, 33], i.e.,

(4.1) find x ∈ H such that 0 ∈ Ax ∩
K⋂

k=1

Bkx.

In many situations, this problem may be inconsistent (see [19] and the references
therein) and it must be approximated. We study the following relaxation of (4.1),
together with its dual problem.

Problem 4.1. Let H be a real Hilbert space, let K be a strictly positive integer,
and let A : H → 2H be maximally monotone. For every k ∈ {1, . . . ,K}, let Bk : H →
2H be maximally monotone and let Sk : H → 2H be maximally monotone and such
that S−1

k is at most single-valued and strictly monotone, with S−1
k 0 = {0}. It is

assumed that the inclusion

(4.2) find x ∈ H such that 0 ∈ Ax +
K∑

k=1

(Bk �Sk)x
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possesses at least one solution. Solve (4.2) together with the dual problem

(4.3) find v1 ∈ H, . . . , vK ∈ H such that

(∀k ∈ {1, . . . ,K}) 0 ∈ −A−1

(
−

K∑

l=1

vl

)
+B−1

k vk + S−1
k vk.

First, we justify the fact that (4.2) is indeed a relaxation of (4.1).

Proposition 4.2. In the setting of Problem 4.1, set Z = (zerA) ∩⋂K
k=1 zerBk

and suppose that Z 6= ∅. Then the set of solutions to the primal problem (4.2) is Z.

Proof. It is clear that every point in Z solves (4.2). Conversely, let x be a solution
to (4.2) and let z ∈ Z. We first note that the operators (Bk �Sk)16k6K are at most
single-valued. Indeed, let k ∈ {1, . . . ,K} and let (y, p) and (y, q) be in gra(Bk �Sk).
Then we must show that p = q. We have p = (Bk �Sk)y ⇔ y ∈ B−1

k p + S−1
k p

⇔ y − S−1
k p ∈ B−1

k p. Likewise, y − S−1
k q ∈ B−1

k q and, by monotonicity of Bk,
−
〈
p− q | S−1

k p− S−1
k q

〉
=

〈
p− q | (y − S−1

k p)− (y − S−1
k q)

〉
> 0. Consequently, by

strict monotonicity of S−1
k ,

〈
p− q | S−1

k p− S−1
k q

〉
= 0 and p = q. Hence, since x

solves (4.2), there exists (pk)06k6K ∈ HK+1 such that

(4.4)

K∑

k=0

pk = 0, p0 ∈ Ax, and (∀k ∈ {1, . . . ,K}) pk = (Bk �Sk)x.

Therefore, we have
(4.5)
p0 ∈ Ax, 0 ∈ Az, and (∀k ∈ {1, . . . ,K}) pk ∈ Bk

(
x− S−1

k pk
)

and 0 ∈ Bkz,

and, by monotonicity of the operators A and (Bk)16k6K ,

(4.6) 〈x− z | p0〉 > 0 and (∀k ∈ {1, . . . ,K})
〈
x− S−1

k pk − z | pk
〉
> 0.

Hence, since
∑K

k=0 pk = 0, it follows from the monotonicity of the operators
(S−1

k )16k6K that

0 > −
K∑

k=1

〈
pk − 0 | S−1

k pk − S−1
k 0

〉

=

K∑

k=0

〈x− z | pk〉 −
K∑

k=1

〈
S−1
k pk | pk

〉

= 〈x− z | p0〉+
K∑

k=1

〈
x− S−1

k pk − z | pk
〉

> 0.(4.7)

Thus,
∑K

k=1

〈
pk − 0 | S−1

k pk − S−1
k 0

〉
= 0 and, therefore,

(4.8) (∀k ∈ {1, . . . ,K})
〈
pk − 0 | S−1

k pk − S−1
k 0

〉
= 0.

The strict monotonicity of the operators (S−1
k )16k6K implies that for every k ∈

{1, . . . ,K} pk = 0, i.e., x ∈ B−1
k pk + S−1

k pk = B−1
k 0 + S−1

k 0 = B−1
k 0. In turn,

p0 = −∑K
k=1 pk = 0, i.e., x ∈ A−10. Altogether, x ∈ Z.
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Remark 4.3. Suppose that in Problem 4.1 we set, for every k ∈ {1, . . . ,K},
Sk = γ−1

k Id where γk ∈ ]0,+∞[, i.e., Bk �Sk = γkBk is the Yosida approximation of
Bk of index γk [8, Proposition 23.6(ii)]. Then (4.2) reduces to the setting investigated
in [18, Section 6.3], namely

(4.9) find x ∈ H such that 0 ∈ Ax+

K∑

k=1

γkBkx,

which itself covers the frameworks of [10, 19, 36, 38] and the references therein. In
this case, Proposition 4.2 specializes to [18, Proposition 6.10]. Now let us further
specialize to the case when H = R

N , A = 0, and
(4.10)

(∀k ∈ {1, . . . ,K})





γk = 1

Bk : x 7→
{
span {uk}, if 〈x | uk〉 = ρk;

∅, if 〈x | uk〉 6= ρk,

where





uk ∈ R
N

‖uk‖ = 1

ρk ∈ R.

Then (4.1) amounts to solving the system of linear equalities

(4.11) find x ∈ R
N such that (∀k ∈ {1, . . . ,K}) 〈x | uk〉 = ρk,

whereas (4.2) amounts to solving the least-squares problem

(4.12) minimize
x∈R

N

m∑

k=1

|〈x | uk〉 − ρk|2.

The idea of relaxing (4.11) to (4.12) is due to Legendre [32] and Gauss [27].
To solve Problem 4.1, we use Proposition 3.2 to derive the following algorithm.
Proposition 4.4. Consider the setting of Problem 4.1. Let (b1,1,n)n∈N and, for

every k ∈ {1, . . . ,K}, (b1,k+1,n)n∈N and (b2,k,n)n∈N be absolutely summable sequences

in H. Let x0 ∈ H, (yk,0)16k6K ∈ HK , (vk,0)16k6K ∈ HK , and ε ∈ ]0, 1/(
√
K + 1 +

1)[ , let (γn)n∈N be a sequence in [ε, (1− ε)/
√
K + 1], and set

(4.13)

For n = 0, 1, . . .

p1,1,n = JγnA

(
xn − γn

∑K
k=1 vk,n

)
+ b1,1,n

For k = 1, . . . ,K

p1,k+1,n = JγnSk
(yk,n + γnvk,n) + b1,k+1,n

s2,k,n = vk,n − γn(yk,n − xn)
p2,k,n = s2,k,n − γn

(
Jγ−1

n Bk
(γ−1

n s2,k,n) + b2,k,n
)

vk,n+1 = vk,n − s2,k,n + p2,k,n − γn
(
p1,k+1,n − p1,1,n

)

xn+1 = p1,1,n + γn
∑K

k=1(vk,n − p2,k,n)
For k = 1, . . . ,K⌊
yk,n+1 = p1,k+1,n + γn(p2,k,n − vk,n)

Then the following hold for some solution x to (4.2) and some solution (v1, . . . , vK)
to (4.3).

(i) xn ⇀ x and (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk.
(ii) Suppose that A is uniformly monotone at x. Then xn → x.
(iii) Suppose that, for some l ∈ {1, . . . ,K}, Bl is couniformly monotone at vl.

Then vl,n → vl.
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Proof. Problem 4.1 is a special case of Problem 3.1 with K1 = K2 = K, z = 0,
C = 0, µ = 0, β =

√
K + 1, and (∀k ∈ {1, . . . ,K}) Gk = H, Lk = Id , and rk = 0.

In this context, (3.4) can be reduced to (4.13), and the claims therefore follow from
Proposition 3.2.

Remark 4.5. For brevity, we have presented an algorithm for solving Problem 4.1
in its general form. However, if some of the operators (Sk)16k6K or their inverses are
Lipschitzian, we can apply Proposition 3.2 with K1 6= K and/or K2 6= K to obtain
a more efficient algorithm in which each Lipschitzian operator is used through an
explicit step, rather than through its resolvent.

5. Multivariate structured convex minimization problems. We derive
from Theorem 2.4 a primal-dual minimization algorithm for multivariate convex min-
imization problems involving infimal convolutions and composite functions.

Problem 5.1. Let m and K be strictly positive integers, let (Hi)16i6m and
(Gk)16k6K be real Hilbert spaces, let (µi)16i6m ∈ [0,+∞[m, and let (νk)16i6K ∈
]0,+∞[

K
. For every i ∈ {1, . . . ,m} and k ∈ {1, . . . ,K}, let hi : Hi → R be con-

vex and differentiable and such that ∇hi is µi-Lipschitzian, let fi ∈ Γ0(Hi), let
gk ∈ Γ0(Gk), let ℓk ∈ Γ0(Gk) be 1/νk-strongly convex, let zi ∈ Hi, let rk ∈ Gk,

and let Lki ∈ B (Hi,Gk). Set β = max
{

max
16i6m

µi, max
16k6K

νk

}
+

√
λ > 0, where

λ ∈
[
sup∑m

i=1
‖xi‖261

∑K
k=1 ‖

∑m
i=1 Lkixi‖2,+∞

[
, and assume that

(5.1)

(∀i ∈ {1, . . . ,m}) zi ∈ ran

(
∂fi +

K∑

k=1

L∗
ki ◦ (∂gk �∂ℓk) ◦

( m∑

j=1

Lkj · −rk

)
+∇hi

)
.

Solve the primal problem
(5.2)

minimize
x1∈H1,..., xm∈Hm

m∑

i=1

fi(xi) +

K∑

k=1

(gk � ℓk)

( m∑

i=1

Lkixi − rk

)
+

m∑

i=1

(
hi(xi)− 〈xi | zi〉

)
,

together with the dual problem

(5.3) minimize
v1∈G1,..., vK∈GK

m∑

i=1

(
f∗
i �h∗

i

)(
zi−

K∑

k=1

L∗
kivk

)
+

K∑

k=1

(
g∗k(vk)+ℓ∗k(vk)+〈vk | rk〉

)
.

Remark 5.2. Problem 5.1 extends significantly the multivariate minimization
framework of [3, 13]. The minimization problem under consideration there was the
following specialization of (5.2)

(5.4) minimize
x1∈H1,..., xm∈Hm

m∑

i=1

fi(xi) +

K∑

k=1

gk

( m∑

i=1

Lkixi

)
,

where, in addition, the functions (gk)16k6K were required to be differentiable every-
where with a Lipschitzian gradient. Furthermore, no dual problem was considered.

Proposition 5.3. Consider the setting of Problem 5.1. Suppose that (5.2) has

a solution, and set

(5.5)

E =

{( m∑

i=1

Lkixi − yk

)

16k6K

∣∣∣∣

{
(∀i ∈ {1, . . . ,m}) xi ∈ dom fi

(∀k ∈ {1, . . . ,K}) yk ∈ dom gk + dom ℓk

}
.
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Then (5.1) is satisfied in each of the following cases.

(i) (rk)16k6K ∈ sriE.

(ii) E − (rk)16k6K is a closed vector subspace.

(iii) For every i ∈ {1, . . . ,m}, fi is real-valued and, for every k ∈ {1, . . . ,K}, the
operator

⊕m
j=1 Hj → Gk : (xj)16j6m 7→

∑m
j=1 Lkjxj is surjective.

(iv) For every k ∈ {1, . . . ,K}, gk or ℓk is real-valued.

(v) (Hi)16i6m and (Gk)16k6K are finite-dimensional, and (∀i ∈ {1, . . . ,m})(∃xi ∈
ri dom fi)(∀k ∈ {1, . . . ,K}) ∑m

i=1 Lkixi − rk ∈ ri dom gk + ri dom ℓk.
Proof. Define H and G as in (2.5), and L, z, and r as in (2.6). Set

(5.6)

{
f : H → ]−∞,+∞] : x 7→ ∑m

i=1 fi(xi)

g : G → ]−∞,+∞] : y 7→
∑K

k=1 gk(yk)
and

{
h : H → R : x 7→ ∑m

i=1 hi(xi)

ℓ : G → ]−∞,+∞] : y 7→ ∑K
k=1 ℓk(yk).

Then (5.5) and [8, Proposition 12.6(ii)] yield

E =
{
Lx− y

∣∣ x ∈ domf and y ∈ dom g + dom ℓ
}

= L
(
domf

)
−
(
dom g + dom ℓ

)
(5.7)

= L
(
dom(f + h− 〈· | z〉)

)
− dom

(
g� ℓ

)
.(5.8)

(i): Since the functions (ℓk)16k6K are strongly convex, so is ℓ. Hence, dom ℓ∗ = G

[8, Propositions 11.16 and 14.15] and therefore [8, Propositions 15.7(iv) and 24.27]
imply that ∂g�∂ℓ = ∂(g� ℓ) and g� ℓ ∈ Γ0(G). On the other hand, (5.8) yields
0 ∈ sri (L(dom (f + h − 〈· | z〉)) − dom (g� ℓ)(· − r)). Thus, we derive from [8,
Theorem 16.37(i)] that

∂f +L∗ ◦ (∂g�∂ℓk) ◦ (L · −r) +∇h− z

= ∂
(
f + h− 〈· | z〉

)
+L∗ ◦ ∂(g� ℓ) ◦ (L · −r)

= ∂
(
f + h− 〈· | z〉+ (g� ℓ) ◦ (L · −r)

)
.(5.9)

Since (5.2) has a solution and is equivalent to minimizing f+h−〈· | z〉+(g� ℓ)◦(L·−r)
overH, Fermat’s rule [8, Theorem 16.2] implies that 0 ∈ ran∂(f+h−〈· | z〉+(g� ℓ)◦
(L · −r)). Hence (5.9) yields z ∈ ran(∂f + L∗ ◦ (∂g�∂ℓk) ◦ (L · −r) +∇h) and we
conclude that (5.1) is satisfied.

(ii)⇒(i): [8, Proposition 6.19(i)].
(iii)⇒(i): We have L(domf ) = L(H) = G. Hence, (5.7) yields E = G.
(iv)⇒(i): We have dom g + dom ℓ = G. Hence, (5.7) yields E = G.
(v)⇒(i): Since dim G < +∞, sriE = riE. On the other hand, by (5.7) and [8,

Corollary 6.15],

(5.10) riE = ri
(
L
(
domf

)
− dom g − dom ℓ

)
= L

(
ri domf

)
− ri dom g − ri dom ℓ.

Thus, r ∈ sriE ⇔ (∃x ∈ ri domf =×m

i=1ri dom fi) Lx− r ∈ ri domg + ri dom ℓ =

×K

k=1(ri dom gk + ri dom ℓk).
Proposition 5.4. Consider the setting of Problem 5.1. For every i ∈ {1, . . . ,m},

let (a1,i,n)n∈N, (b1,i,n)n∈N, and (c1,i,n)n∈N be absolutely summable sequences in Hi

and, for every k ∈ {1, . . . ,K}, let (a2,k,n)n∈N, (b2,k,n)n∈N, and (c2,k,n)n∈N be ab-

solutely summable sequences in Gk. Furthermore, let x1,0 ∈ H1, . . . , xm,0 ∈ Hm,
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v1,0 ∈ G1, . . . , vK,0 ∈ GK , let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence in

[ε, (1− ε)/β], and set

(5.11)

For n = 0, 1, . . .

For i = 1, . . . ,m⌊
s1,i,n = xi,n − γn

(
∇hi(xi,n) +

∑K
k=1 L

∗
kivk,n + a1,i,n

)

p1,i,n = proxγnfi(s1,i,n + γnzi) + b1,i,n

For k = 1, . . . ,K

s2,k,n = vk,n − γn
(
∇ℓ∗k(vk,n)−

∑m
i=1 Lkixi,n + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + proxγ−1

n gk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
∇ℓ∗k(p2,k,n)−

∑m
i=1 Lkip1,i,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
For i = 1, . . . ,m⌊

q1,i,n = p1,i,n − γn
(
∇hi(p1,i,n) +

∑K
k=1 L

∗
kip2,k,n + c1,i,n

)

xi,n+1 = xi,n − s1,i,n + q1,i,n.

Then the following hold.

(i) (∀i ∈ {1, . . . ,m}) ∑
n∈N

‖xi,n − p1,i,n‖2 < +∞, and (∀k ∈ {1, . . . ,K})∑
n∈N

‖vk,n− p2,k,n‖2<+∞.

(ii) There exist a solution (x1, . . . , xm) to (5.2) and a solution (v1, . . . , vK) to

(5.3) such that the following hold.

(a) (∀i ∈ {1, . . . ,m}) xi,n ⇀ xi and zi−
∑K

k=1 L
∗
kivk ∈ ∂fi(xi)+∇hi(xi).

(b) (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk and
∑m

i=1 Lkixi−rk ∈ ∂g∗k(vk)+∇ℓ∗k(vk).
(c) Suppose that, for some j ∈ {1, . . . ,m}, fj or hj is uniformly convex at

xj. Then xj,n → xj.

(d) Suppose that, for some l ∈ {1, . . . ,K}, g∗l or ℓ∗l is uniformly convex at

vl. Then vl,n → vl.
Proof. Set

(5.12)

{
(∀i ∈ {1, . . . ,m}) Ai = ∂fi and Ci = ∇hi

(∀k ∈ {1, . . . ,K}) Bk = ∂gk and Dk = ∂ℓk.

It follows from [8, Proposition 17.10] that the operators (Ci)16i6m are monotone, and
from [8, Theorem 20.40] that the operators (Ai)16i6m, (Bk)16k6m, and (Dk)16k6K

are maximally monotone. Moreover, for every k ∈ {1, . . . ,K}, we derive from [8,
Corollary 13.33 and Theorem 18.15] that ℓ∗k is Fréchet differentiable on Gk and ∇ℓ∗k
is νk-Lipschitzian, and from [8, Corollary 16.24 and Proposition 17.26(i)] that D−1

k =
(∂ℓk)

−1 = ∂ℓ∗k = {∇ℓ∗k}. On the other hand, (5.1) implies that (1.3) possesses a
solution, and (1.15) implies that (5.11) is a special case of (2.4). We also recall that
the uniform convexity of a function ϕ ∈ Γ0(H) at x ∈ dom ∂ϕ implies the uniform
monotonicity of ∂ϕ at x [47, Section 3.4]. Altogether, the claims will follow at once
from Theorem 2.4 provided we show that, in the setting of (5.1) and (5.12), (1.3)
becomes (5.2) and (1.4) becomes (5.3). To this end, let us first observe that since, for
every k ∈ {1, . . . ,K}, dom ℓ∗k = Gk, [8, Proposition 24.27] yields

(5.13) (∀k ∈ {1, . . . ,K}) Bk �Dk = ∂gk �∂ℓk = ∂(gk � ℓk),

while [8, Corollaries 16.24 and 16.38(iii)] yield

(5.14) (∀k ∈ {1, . . . ,K}) B−1
k +D−1

k = ∂g∗k + {∇ℓ∗k} = ∂
(
g∗k + ℓ∗k

)
.
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Likewise, using [8, Theorem 15.3], we obtain

(5.15) (∀i ∈ {1, . . . ,m}) (Ai + Ci)
−1 = (∂fi +∇hi)

−1 =
(
∂(fi + hi)

)−1
= ∂(fi + hi)

∗ = ∂(f∗
i �h∗

i ).

Now let us define H and G as in (2.5), L, z, and r as in (2.6), and f , h, g, and ℓ as in
(5.6). We derive from (5.12), (5.13), [8, Corollary 16.38(iii), Propositions 16.5(ii), 16.8,
and 17.26(i)], and Fermat’s rule [8, Theorem 16.2] that, for every x = (xi)16i6m ∈ H,

x solves (1.3) ⇔ (∀i ∈ {1, . . . ,m}) 0 ∈ ∂fi(xi)

+

K∑

k=1

L∗
ki

(
∂(gk � ℓk)

( m∑

j=1

Lkjxj − rk

))
+∇hi(xi)− zi

⇔ 0 ∈ ∂f(x) +L∗
(
∂(g� ℓ)(Lx− r)

)
+∇(h− 〈· | z〉)(x)

⇒ 0 ∈ ∂
(
f + (g� ℓ) ◦

(
L · −r)

)
+ h− 〈· | z〉

)
(x)

⇔ x solves (5.2).(5.16)

Next, let v = (vk)16k6K ∈ G. Then we derive from (5.14), (5.15), and the same
subdifferential calculus rules as above that

v solves (1.4) ⇔ (∀k ∈ {1, . . . ,K}) 0 ∈ −
m∑

i=1

Lki

(
∂(f∗

i �h∗
i )

(
zi −

K∑

l=1

L∗
livl

))

+ ∂
(
g∗k + ℓ∗k + 〈· | rk〉

)
(vk)

⇔ 0 ∈ −L
(
∂(f∗

�h∗)(z −L∗v)
)
+ ∂

(
g∗ + ℓ∗ + 〈· | r〉

)
(v)

⇒ 0 ∈ ∂
(
(f∗

�h
∗) ◦ (z −L∗·) + g∗ + ℓ

∗ + 〈· | r〉
)
(v)

⇔ v solves (5.3),(5.17)

which completes the proof.

Remark 5.5. Proposition 5.4 provides a framework that captures and suggests
extensions of multivariate and/or infimal convolution variational formulations found
in areas such as partial differential equations [4], machine learning [6], and image
recovery [15, 16, 39].

6. Univariate structured convex minimization problems. Minimization
problems involving a single primal variable can be obtained by setting m = 1 in
Problem 5.1. However, this approach imposes that infimal convolutions be performed
exclusively with strongly convex functions. We use a different strategy relying on
Proposition 3.2, which leads to a formulation allowing for infimal convolutions with
general lower semicontinuous convex functions.

Problem 6.1. Let H be a real Hilbert space, let K1, K2, and K be integers such
that 0 6 K1 6 K2 6 K > 1, let z ∈ H, let f ∈ Γ0(H), and let h : H → R be convex
and differentiable and such that ∇h is µ-Lipschitzian for some µ ∈ [0,+∞[. For every
integer k ∈ {1, . . . ,K}, let Gk be a real Hilbert space, let rk ∈ Gk, let gk ∈ Γ0(Gk),
let ϕk ∈ Γ0(Gk), and let Lk ∈ B (H,Gk); moreover, if K1 + 1 6 k 6 K2, ϕk is
differentiable on Gk and such that ∇ϕk is βk-Lipschitzian for some βk ∈ [0,+∞[,
and, if K2 + 1 6 k 6 K, ϕk is 1/βk-strongly convex for some βk ∈ ]0,+∞[. Set
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β = max
{
µ, βK1+1, . . . , βK

}
+
√
1 +

∑K
k=1 ‖Lk‖2, and assume that

(6.1) z ∈ ran
(
∂f +

K∑

k=1

L∗
k ◦ (∂gk �∂ϕk) ◦

(
Lk · −rk

)
+∇h

)

and

(6.2) (∀k ∈ {1, . . . ,K2}) 0 ∈ sri (dom g∗k − domϕ∗
k).

Solve the primal problem

(6.3) minimize
x∈H

f(x) +

K∑

k=1

(gk �ϕk)(Lkx− rk) + h(x) − 〈x | z〉,

together with the dual problem

(6.4) minimize
v1∈G1,...,vK∈GK

(
f∗

�h∗
)(

z −
K∑

k=1

L∗
kvk

)
+

m∑

k=1

(
g∗k(vk) + ϕ∗

k(vk) + 〈vk | rk〉
)
.

Remark 6.2. It follows from (6.2) and [8, Propositions 11.16, 14.15, 15.7(i), and
24.27] that

(6.5) (∀k ∈ {1, . . . ,K}) gk �ϕk ∈ Γ0(Gk) and ∂gk �∂ϕk = ∂(gk �ϕk).

Hence, using the same type of arguments as in the proof of Proposition 5.3, we can
deduce similar conditions for (6.1) to hold, e.g., that (6.3) have a solution and that
(rk)16k6K lie in the strong relative interior of

(6.6)
{
(Lkx−yk)16k6K

∣∣ x ∈ dom f and (∀k ∈ {1, . . . ,K}) yk ∈ dom gk + domϕk

}
.

Proposition 6.3. Consider the setting of Problem 6.1. Let (a1,1,n)n∈N,

(b1,1,n)n∈N, and (c1,1,n)n∈N be absolutely summable sequences in H. For every integer

k ∈ {1, . . . ,K}, let (a2,k,n)n∈N, (b2,k,n)n∈N, and (c2,k,n)n∈N be absolutely summable

sequences in Gk; moreover, if 1 6 k 6 K1, let (b1,k+1,n)n∈N be an absolutely summable

sequence in Gk, and, if K1+1 6 k 6 K2 , let (a1,k+1,n)n∈N and (c1,k+1,n)n∈N be abso-

lutely summable sequences in Gk. Let x0 ∈ H, y1,0 ∈ G1, . . . , yK2,0 ∈ GK2
, v1,0 ∈ G1,

. . . , and vK,0 ∈ GK , let ε ∈ ]0, 1/(β + 1)[, let (γn)n∈N be a sequence in [ε, (1− ε)/β],
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and set

(6.7)

For n = 0, 1, . . .

s1,1,n = xn − γn
(
∇h(xn) +

∑K
k=1 L

∗
kvk,n + a1,1,n

)

p1,1,n = proxγnf (s1,1,n + γnz) + b1,1,n
If K1 6= 0, for k = 1, . . . ,K1

s1,k+1,n = yk,n + γnvk,n
p1,k+1,n = proxγnϕk

s1,k+1,n + b1,k+1,n

s2,k,n = vk,n − γn
(
yk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + proxγ−1

n gk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
p1,k+1,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
If K1 6= K2, for k = K1 + 1, . . . ,K2

s1,k+1,n = yk,n − γn
(
∇ϕk(yk,n)− vk,n + a1,k+1,n

)

p1,k+1,n = s1,k+1,n

s2,k,n = vk,n − γn
(
yk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
rk + proxγ−1

n gk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
p1,k+1,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
If K2 6= K, for k = K2 + 1, . . . ,K

s2,k,n = vk,n − γn
(
∇ϕ∗

k(vk,n)− Lkxn + a2,k,n
)

p2,k,n = s2,k,n − γn
(
rk + proxγ−1

n gk
(γ−1

n s2,k,n − rk) + b2,k,n
)

q2,k,n = p2,k,n − γn
(
∇ϕ∗

k(p2,k,n)− Lkp1,1,n + c2,k,n
)

vk,n+1 = vk,n − s2,k,n + q2,k,n
q1,1,n = p1,1,n − γn

(
∇h(p1,1,n) +

∑K
k=1 L

∗
kp2,k,n + c1,1,n

)

xn+1 = xn − s1,1,n + q1,1,n
If K1 6= 0, for k = 1, . . . ,K1⌊

q1,k+1,n = p1,k+1,n + γnp2,k,n
yk,n+1 = yk,n − s1,k+1,n + q1,k+1,n

If K1 6= K2, for k = K1 + 1, . . . ,K2⌊
q1,k+1,n = p1,k+1,n − γn

(
∇ϕk(p1,k+1,n)− p2,k,n + c1,k+1,n

)

yk,n+1 = yk,n − s1,k+1,n + q1,k+1,n.

Then the following hold for some solution x to (6.3) and some solution (v1, . . . , vK)
to (6.4).

(i) xn ⇀ x and (∀k ∈ {1, . . . ,K}) vk,n ⇀ vk.
(ii) Suppose that f or h is uniformly convex at x. Then xn → x.
(iii) Suppose that, for some l ∈ {1, . . . ,K}, g∗l is uniformly convex at vl. Then

vl,n → vl.
(iv) Suppose that K2 6= K and that, for some l ∈ {K2+1, . . . ,K}, ϕ∗

l is uniformly

convex at vl. Then vl,n → vl.
Proof. Using (6.5) and the same arguments as in the proof of Proposition 5.4, we

first identify Problem 6.1 as a special case of Problem 3.1 with A = ∂f , C = ∇h, and
(∀k ∈ {1, . . . ,K}) Bk = ∂gk and Sk = ∂ϕk. Using (1.15), we then deduce the results
from Proposition 3.2.

We conclude this section with an application to the approximation of inconsistent
convex feasibility problems where, for the sake of brevity, we discuss only the primal
problem.

Example 6.4. In Problem 6.1, set K1 = K2 = K, z = 0, h = 0, f = 0, and,
for every k ∈ {1, . . . ,K} rk = 0 and gk = ιCk

, where Ck is a nonempty closed convex
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subset of Gk with projection operator Pk. In addition, suppose that
(6.8)
(∀k ∈ {1, . . . ,K}) Argminϕk = {0}, ϕk(0) = 0, and 0 ∈ sri (dom ι∗Ck

− domϕ∗
k).

It follows from [8, Proposition 15.7(i)] that the infimal convolutions (ιCk
�ϕk)16k6K

are exact. Hence, (6.3) becomes

(6.9) minimize
x∈H

K∑

k=1

min
yk∈Ck

ϕk(Lkx− yk),

and it is assumed to have at least one solution. We can interpret (6.9) as a relaxation
of the (possibly inconsistent) convex feasibility problem

(6.10) find x ∈ H such that (∀k ∈ {1, . . . ,K}) Lkx ∈ Ck.

Indeed, it follows from (6.8) that, if (6.10) is consistent, then its solutions coincide
with those of (6.9). Furthermore, in view of (1.15), Algorithm (6.7) can be written
as

(6.11)

For n = 0, 1, . . .

p1,1,n = xn − γn
(∑K

k=1 L
∗
kvk,n + a1,1,n

)

For k = 1, . . . ,K

s1,k+1,n = yk,n + γnvk,n
p1,k+1,n = proxγnϕk

s1,k+1,n + b1,k+1,n

s2,k,n = vk,n − γn
(
yk,n − Lkxn + a2,k,n

)

p2,k,n = s2,k,n − γn
(
Pk(γ

−1
n s2,k,n) + b2,k,n

)

q2,k,n = p2,k,n − γn
(
p1,k+1,n − Lkp1,1,n + c2,k,n

)

vk,n+1 = vk,n − s2,k,n + q2,k,n
q1,1,n = p1,1,n − γn

(∑K
k=1 L

∗
kp2,k,n + c1,1,n

)

xn+1 = xn − p1,1,n + q1,1,n
For k = 1, . . . ,K⌊

q1,k+1,n = p1,k+1,n + γnp2,k,n
yk,n+1 = yk,n − s1,k+1,n + q1,k+1,n.

By Proposition 6.3(i), (xn)n∈N converges weakly to a solution to (6.9) if infn∈N γn > 0

and supn∈N γn <
(
1 +

∑K
k=1 ‖Lk‖2

)−1/2
. Now suppose that, for every k ∈ {1, . . . ,K},

Gk = H, Lk = Id , ϕk = ι{0} if k = 1, and ϕk = ωk‖ · ‖2, where ωk ∈ ]0,+∞[,

if k 6= 1. Then (6.10) reduces to the feasibility problem of finding x ∈ ⋂K
k=1 Ck

and (6.9) reduces to the constrained least-squares relaxation studied in [19], namely,

minimize
x∈C1

∑K
k=2 ωkd

2
Ck

(x).
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[7] A. B. Bakušinskĭı and B. T. Polyak, The solution of variational inequalities, Soviet
Math. – Doklady, 15 (1974), pp. 1705–1710.

[8] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator

Theory in Hilbert Spaces, Springer, New York, 2011.

[9] H. H. Bauschke, P. L. Combettes, and D. R. Luke, Finding best approximation

pairs relative to two closed convex sets in Hilbert spaces, J. Approx. Theory, 127
(2004), pp. 178–192.

[10] H. H. Bauschke, P. L. Combettes, and S. Reich, The asymptotic behavior of the

composition of two resolvents, Nonlinear Anal., 60 (2005), pp. 283–301.

[11] S. R. Becker and P. L. Combettes, An algorithm for splitting parallel sums of lin-

early composed monotone operators, with applications to signal recovery, J. Convex
Nonlinear Anal., to appear.
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non linéaires de type monotone, Calcolo, 7 (1970), pp. 65–183.

[41] J. E. Spingarn, Partial inverse of a monotone operator, Appl. Math. Optim., 10
(1983), pp. 247–265.

[42] J.-L. Starck, M. Elad, and D. L. Donoho, Image decomposition via the combination

of sparse representations and a variational approach, IEEE Trans. Image Process.,
14 (2005), pp. 1570–1582.

[43] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming

and variational inequalities, SIAM J. Control Optim., 29 (1991), pp. 119–138.

[44] P. Tseng, A modified forward-backward splitting method for maximal monotone map-

pings, SIAM J. Control Optim., 38 (2000), pp. 431–446.

[45] R. S. Varga, Matrix Iterative Analysis, 2nd edition, Springer-Verlag, New York, 2000.
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